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Some Topological Properties and Asymptotic Behavior of the Higher Eigencurves for the
p-Laplacian Operator with Weight

Mimoun Moussaoui, Ahmed Dakkak and Omar Chakrone

ABSTRACT: In this paper, we show that for each real a there exists a unique real ¢, («) such that A\, (ami +
tn(a)ma) = 1, where m; and mg are bounded weight functions and Ay, (m) is the n** Ljusternik-Schinerlmann
eigenvalue of the p-Laplacian operator with weight m. We also study the asymptotic behavior, the variational
formulation and some topological properties of the eigencurve t,(+).

Key Words: Higher eigencurves, Topological properties, Variational formulation, Asymptotic be-
havior.

Contents
1 Introduction 1
2 Main results 2
3 Preliminary results 3
4 Proofs of the main results 4

1. Introduction

The study of differential equations and variational problems has become an important topic of modern
nonlinear analysis because of their important applications, we refer the reader to [8] for more.
Consider the following nonlinear eigenvalue problem

—Apu= Im(z)uP2u in Q, ()
u= 0 on 0f2
where  is a smooth bounded domain in RN, —A,u = —div(|Vu[’">Vu) is the p-Laplacian, 1 < p <
oo, m(-) € M*(Q), with

M*(Q) = {p e L®(Q) : meas{z € Q: p(z) > 0} £ 0}.

We say that A is an eigenvalue of the p-Laplacian with weight m(.) when the problem (P) has at least a
nontrivial solution u € Wy ?(Q). The set of positive eigenvalues constitutes the spectrum o (=Ap,m, Q).
For p = 2 (A, = A is the Laplacian operator), it is well known (see [6,7]), that o (=A,m,Q) =
{pp(m),k=1,2,...}, with
0 < py(m) < py(m) < pg(m)... = 400,

each eigenvalue p;(m) is repeated as many times as its multiplicity. For p # 2, the critical point theory
of Ljusternik-Schnirelmann (see [9]) provides a sequence in 0,5 (=4, m,Q) given by A\1(m) < Aa(m) <
As(m) < ... < A\, (m),... = oo and formulated as follows

1 . / »
= sup min | m|u 1.1
)~ e min |ul (1.1)

where T'), is defined by:

', ={K C S : Kis symmetrical, compact and ~(K) > n},
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where S is the unit sphere of W, *(Q2) and v is the genus function (see [9]). We may also define the
negative spectrum by A_,,(m) = =\, (—m) (See [3]). Whether or not this sequence of both the positive
and negative eigenvalues, denoted Ag(m), constitutes the whol set of all eigenvalues remains an open
question when N > 1 and p # 2.

Consider two weight functions my, mo € MT(Q), it is rather desirable to gather more information about
the question "Whether or not C,, = {(«, 8) € R? : \,,(amy + fmz) = 1} constitutes a curve?” . Several
applications related to these problems can be found in the bifurcation domain, we refer the reader to [2].
On the other hand, this is a kind of inverse problem in the following sense:

For ¢ > 0 given, we look for a weight m(-) € span{mi, mo} such that A\, (m) = ¢. By the homogeneity of
A\, we take § = 1.

Existence results for the curves C,, with n € {1,2} were studied in [1,4,5] among other. In [1] the
authors considered the case where n = 1 and my is a constant, they established some properties relating
to the first eigencurve C; such as concavity, differentiability and the asymptotic behavior. The authors
in [4] showed that C,, # () under the assumption essigf mg > 0, the technique used is based on the

strict monotonicity property, which is not applicable in the general case where ess igf mz = 0. In [5],

the authors considered the case where n = 2 they showed that for each a € R there exists a real number
B5(a) such that («a, fy(a)) € Cy. They proved the asymptotic behavior of 5,(-). The techniques used
are not adaptable when n > 3.
In this paper, we assume that

my,mg € MT(Q), ma >0 a.e.inQ and ess Si)r*lf mo >0 (Hyp)

mi

where QF = {z € Q : mi(z) # 0}. For each a € R, we prove the existence of a unique real number
t, () such that A, (amq + t,(a)ms) = 1, we give the variational formulation of ¢, («), we also study its
monotonicity, continuity properties and its asymptotic behavior .

This paper is organized as follows. In section 2, we present our main results. In section 3, we introduce
some basic preliminary results. In section 4, we give the proofs of our main results.

2. Main results

We will use below the notation Qf, = {z € Q : mi(z) > 0}, Q,,, = {z € Q: mi(x) < 0} and
O, = {z € Q:my(x) # 0}
Our main results are the following.

Theorem 2.1. Assume (Hy) holds, then we have:
1. For a € [0, \,(m1)], there exists a unique real t,(a) € RT such that A, (amy + tp(a)me) = 1.
2. For a €]An(my), +00[, there exists a unique real t,(a) € R™ such that \,(amy + t,(a)msg) = 1.

3. If my > 0 a.e.in Q, then for a €] — oo, \,(my)], there exists a unique real t,(c) € RY such that
An(amy + tp(a)meg) = 1.

4. If meas(€2,,,) > 0, then
e For a € [A_,,(m1),0], there exists a unique real t,(a) € RT such that A\p(ami + t,(a)me) = 1.

o For o €] — 00, A_p,(m1)|, there exists a unique real t,, () € R™ such that A, (amq + t,(a)ma) = 1.
Denoting by ', = {K € I, : K € S'}, §" = {u € S: [, mo|u|? # 0}, we have the following results.
Theorem 2.2. Assume (Hy) holds, then we have:
1. For a € R, the unique real t,(a) such that \p,(amy + t,(a)ma) =1, is given by

1—a,mi|ulP
tn(a) = inf maxM
KerLuek [ molulP
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2. t,(+) is continuous in R.
3. If meas(Q,,,) > 0, then t,(-) is decreasing in [An(m1),+ool and increasing in | — 0o, A_p(m1)].
4. If my () > 0 a.e.in Q, then t,(-) is decreasing in R.

Theorem 2.3. Assume (Hy) holds, then we have:

tn(a)

1. lim

= —esssup L,
a—r—+00 £ M2

my

2. If meas (Q,,) > 0, then lim tn(a)

= —ess inf 2L,
a——oco0 ¢ - M2

my

3. Ifmy >0inQ, then lim =) = —ess inf 20

— & *
a—r—00 sz

3. Preliminary results
First we recall the following results which will be used later.

Proposition 3.1. If m,m’ € M (Q) such that m’(z) > m(z) a.e.x € Q and m/'(z) > m(z) for a.e.
x € Qf, then for each n in N* we have A\, (m) > A, (m').

Proof. we have

1 / »
= sup min [ mlu|".
n(m Kel', ueK

>

Let (K;) a sequence in I',, such that

. . P 1
lim min [ m|u/’ = sup min m|u| =
j—otoo Kjo Jo KeT,, veK A (m

since K; is compact we have
H11<in/m’|u|p:/m’|u1<j|p ug, € Kj.
J

The sequence (ug;) is bounded, so ug; — % in W, P (€2) and ug,; — U in LP(Q), in other hand we have

mln/ mlul? </m|uK |p—/m’|uK o /(m/—m)|qu|p, (3.1)

passing to the limit in (3.1) we get

- ap < — m’ —m)|alP
i < / mia < 5o / (' — m)[al?. (3.2)

We claim that § = [,(m’ —m)|a|’ > 0, indeed if 6 = 0 then @ = 0 in €}, hence from (3.2) we get

W (m) < 0 contradiction, so we conclude that

that is A, (m/) < A, (m).
Proposition 3.2. ([5]) We have

1. If m, m € M*T(Q) and m(z) < m'(x) for a.e. x € Q, then A,(m) > Ap(m).

2. The mapping Ap: m — A\p(m) is continuous in M¥(Q) for the distance d(m,m') = ||m — m/||s-
Proposition 3.3. ([5]) Let (my) be a sequence in M+ (Q) such that my — m in L>(Q) then,

khrf An(my) = +oo  if and only if m(z) <0 for a.e.x € Q.
s—+00



M. Moussaoul, A. DAKKAK AND O. CHAKRONE

4. Proofs of the main results

Proof of theorem 2.1.

1. To show the first result, we distinguish several cases.
if o = 0, the unique real ¢,(0) such that: A, (0m; +t,(0)mg) = 1 is £,(0) = A, (m2).
If 0 < a < A\p(my), we consider the function h,(-) defined by hs(t) = A\, (amy + tms). Tt is clear
that ho() is well defined on [0,4o00], decreasing and continuous (see proposition 3.2). In other
hands, we have

> 1 (4.1)

and

A (&
lm h(t) = lim Sn(Emitme)
t—+oo t—+oo t

=0. (4.2)

Using (4.1), (4.2) and the fact that h, is continuous, we deduce that there exists a real ¢, (o) €
10, +o0] such that hq(t, () =1, i.e. Ap(amy + &, (a)ma) = 1.

If @ = A\ (my), we take ¢, () = 0.

To show the uniqueness, we proceed as follows, let § < 5/, assume A, (amy + fBma) = A\, (amq +
Blmg) = 1, denote m = ami + Sms and m = am; + B,mg. If x € Qf By (Ho) we deduce that
ma(x) > 0, hence fmsg < B'ma, so we conclude that m’ (z) > m(x) for a.e.xe Q and m'(x) > m(x)
for a.e.x € Qf, then by proposition 3.1 we get A, (m) > \,(m’) which gives a contraduction.

2. Since a > A\, (m1) we deduce that

0 < ho(0) < 1. (4.3)
Let Ay = {t <0 : amy +tme < 0inQ}, we have d = _(X”LHOO € Ag, hence A, # (0. Set
ess 1r+1f mo
Q'ml
To = Sup Aq,, we will show that A, =] — 00, 74]. Indeed, for k € N*, there exists t; € A, such that

1 . 1 1
To — — < t, it follows that am; + 7ome < amy + tima + —ma, then am; + 7oms < E||m2||oo.

Using the fact that k& € N* is arbitrary, we deduce that amy + 7omo < 0, so 7, € A,, hence

Aq =] — 00,74] (since 0 ¢ A, then 7, < 0).
Let (¢;); be a sequence in |74, 0] such that 1iJJrrn (t;) = To. Then we have
1—>+00
ami +t;mg — amy + Tome  in L(Q). (4.4)

The function h(-) is well defined on |7, 0[, hence by (4.4) and proposition 3.3 we deduce that

lim ho(8;) = +o00. (4.5)
1— 400
So relations (4.3) and (4.5) imply that there exists t,,(a) €]7q4,0[ such that h(t, (@) = 1, ie.,
An(amy + t,(a)msg) = 1. As in the first result, we show the uniqueness.

3. For the third result, we prove only the case a < 0, the case a € [0, A, (m1)] has been already treated.
For this, we consider the set B, = {t > 0: amy +tmg € MT(Q)}. It is easy to see that

t> M implies that t € B,.
€ss lrif mo
Q

my

Let n, = inf B,. We show that 1, ¢ B,. Indeed, for k € N*, n, — ¢ ¢ B,. Hence am; +
1 1
oMo — Emg < 0in Q. Tt follows that amy + n,ma < —||mal||w. Since k € N* is arbitrary we get

ami +n,mo < 0. Hence n, ¢ Ba and B, =|n,,+0oo[. Let (¢;); be a sequence in B, such that
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lim ¢; = n,, then am; +t;ms — amqi +n,me in L*(Q). According to proposition 3.3, we

Jj—+o0

obtain
lim hq(t) = +oo. (4.6)
t—nd

On the other hand we have

(2
lim ha(f) = lim 2nlEmitme)

t——+oo t——+oo t

then from (4.6) and the previous results, we deduce that there exists a unique real ¢, (a) €]n,,, +00]
such that he (6, () = 1,i.e., Ap(amq + t,(a)ms) = 1.

4. This case is treated in the same way.
Proof of Theorem 2.2.

1. First we claim that T’} # 0. Indeed, assume by contradiction that T’ = @, then for all K € T,
there exists u € K such that u ¢ S". Hence, taking into account that €, , C Q.. , we deduce that
Jo(amy|u|? 4+ Bma|ulP)dz = 0 for each (o, §) € Cy, which gives

m}én/ (amy|ul? + pma|ulP)dx <0 VK €T,
Q

It follows that

1
l=———— =supmin [ ami|ulP + Bma|u|Pdx < 0.
An(amy + pma) pf K /Q 1ful Bmalul -

Which is a contradiction, so T’} # ().

1— afﬂ ma |ulP

Let 0, (o) = inf max , so for each K € I'. we have

Kely, K Jo malul?

1—a,mi|ulP
gn(a)gmaxw
B Tymalup

Since K is compact, there exists uy € K such that

L—a fomiful?  1—a [qmi|ugl?

Jamalulp fg malugl?

max

Then
on(a>/m2|uk|f’+a/ maul? <1,
Q Q

hence

min <9n(a)/ m2|u|p+a/ m1|u|p) <1 (4.7
K Q Q
On the other hand, if K ¢ I'} we have

min <0n(o¢)/ m2|u|p—|—oz/ m1|u|p) <0. (4.8)
K Q Q
From (4.7) and (4.8), we get

min (Hn(a)/ m2|u|p—|—oz/ m1|u|p) <1, VKeT,
K Q Q
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thus

sup min (Hn(oz)/ m2|uk|p—|—oz/ m1|uk|p) <1.
Kel,, uek Q Q

Hence

which gives
An (0 (a)mg + amy) > 1. (4.9)

On other hand, for K ¢ '}, we have
min (tn(a)/ m2|u|p+a/ m1|u|p> <0,
K Q Q

sup min (tn(oz)/ m2|u|p+a/ m1|u|p> <0. (4.10)
Q Q

K¢rt! ueK

hence

Since A, (amy + ty(a)mz) = 1, we have

sup min (tn(oz)/ m2|u|p+a/ m1|u|p> =1. (4.11)
Kel, veK Q Q

From (4.10) and (4.11) we deduce that

sup min (tn(oz)/ m2|u|p—|—o</ m1|u|p> =1. (4.12)
Q Q

Kel'} uEK

Assume by contradiction that, there exists K; € I'}, such that

then for all © € K1 we have

tn(a)/m2|u|p+/am1|u|p> 1.
Q Q

Since K7 is compact, we get

ue Ky

min (/ amyq|ul? +tn(a)/ malulf) > 1,
Q Q

so we conclude that

sup min </ am1|u|p+tn(o¢)/ m2|u|p) > 1. (4.13)
KeTl u€K \ Jo Q

This contradicts the equality (4.12). So for all K € T'L we have

11—/, amq|ulP
tn(e) < max 1 Joamlul®
wek [ malulP

Hence
1— [, amq|ulP
tn(a) < inf max M =0,(a). (4.14)
Il ueK fQ m2|u|P

Using the monotonicity of A, with respect to the weight (see Proposition 3.2), (4.9) and (4.14) we
get 1 = A\, (amy + tp(a)ma) > N (amy + 0, (a)ms) > 1. Hence we deduce that ¢, () = 0, ().
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2. Let K € T'L, we define a functional () in K x R by

1— o [, ma|ul?
h(u,a) = ——2
) = el

For (a,a’) € R?, we have

(@' = a) Jomalul”

h(u,a) — h(u, ') = T malal?
o Mmaju

)

hence
Moo
ess inf mo
Q5

|h(u, ) — h(u, )| < 6la—a/| where &=

It follows that
hu, ') — dla — | < h(u, ) < h(u, ') + dla —o|.

So we conclude that we have

sup h(u, ') — §la — o'| < sup h(u, ) < sup h(u, ') + dla — o|.
K K K

Since K is arbitrary,

inf h(u,o’) = dla—a'| < inf h(u,a) < inf h(u,a’) + 8la — o/|.
Klgmlst}ip (u, o) = dla a|*Klgr;Sl;<p (u a)legrhst;(p (u, o) + dla —

Hence we get
[tn (@) — tn ()] < o — o).
3. For a €]\, (m1), +o0[, we have t,(a) < 0. Denote '}t = {K € T} : i?(f JomilulP > 0}. Since

1 — o fomilul?

tn(a) = inf max <0, we conclude that there exists K & T} such that

F’}L K fQ m2|u|p
1 — o [, milulP . 1
max ———+——— < 0. Hence max(l—a [,mi|ul’) <0, it follows that T');* # ( and
K- Jomalul? K
1 — o [,mifulP

tp(a) = inf max
TL( ) F}j— K fQ m2|u|p
Let K € TL* and «, o €]\, (m1), +oo], assume o > o, we get

1—a'me1|u|p - 1—anm1|u|p

> Yu € K.
Joma|ulP Jo malul?
It follows that ,
11—« mq|ulP 1—«of,mq|ulP
o L0 fomful? Joymlu
wek [, molulP wek [, molulP

Since K € T'LT is arbitrary, we conclude that ¢,(a’) > t, (). Hence t,(-) is decreasing.
Similarly we show that ¢,(+) is increasing in | — 0o, A_,, (mq)[.

4. The case my > 0 is treated in the same way. [ |

Proof of Theorem 2.3.

_tn . . . . .
1. For a > Ap(mq), set gla) = (a). We will show that g¢(-) is an increasing function on
o

JAn(m1), +0o[. Indeed let a, ' €]\, (m1),+oo[ such that o > . Assume by contradiction that

’ () (o)

tn (v tn (v t
n(a) > "(, ) Hence we have m; + ——~mgy > m; + ——2my. By proposition 3.2, we get
a a
tn(()/) ’

o o
tn(Q
n( )mg)gx\n(ml—F —ma) =
o o

o= )\n(ml +
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t tn(a ;
which gives a contradiction. Then tnl) < n(c,y ), this implies g(a) > g(a ), i.e., g(.) is increasing.
a

«@
On the other hand, we have

amq(x) + t,(a)ma(z) > 0in ), with meas(2q) > 0.
Since o > 0 and t,, () < 0 ( see theorem 2.2). The inequality above implies that Q, C Q;f, . Hence

—tn(e) _
« mao

Vo e Qq C Q.

So we conclude that
g(a) < esssup m < M
Qf M2 ess énf ma
my *
i

It follows that g is bounded from above and is an increasing function.
Let I = lim g(a), we have
a—r+o0

[ < esssup m (4.15)
of, M2
and
t’ﬂ(a) . [e'e)
my + ——=mg — mq —lme in L=(Q). (4.16)
o
. tn (o) e :
Since A\, (m1 + mg) = o — 400, from proposition 3.3 and (4.16), we deduce that m; —lms <
0 Vx e Q, thus
€ss sup 4l <. (4.17)
Q+ mao

my

The inequalities (4.15) and (4.17) yield the result.

—tn(a)

2. The proof can be carried out as we did in the first result. We consider the mapping f(«) = ,
«

we affirm that f is decreasing on | — oo, A_,,(m1)[. Taking into account that ¢, () < 0, we conclude
that

f(a) > ess inf m
Q,,, M2

my

Hence, f is bounded from below. Let k = Erg f(a), we have

. mi
k > ess inf —
Qpy, M2

and

—my — mg — —mq + kma in  L(Q).

tn ()

Since A\, (—ml — t”g")mQ) = |a| — +o0, we get —mq +kmgo < 0in Q. This yields k < ess inf %
Qn, M2
Hence, we get

. mi
= —ess inf —.
ma

. tyh(a
lim
a——00 (@] Q';Ll

3. We show the third result in a similar way. |
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