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Subdivisions of the Spectra for D(r, 0, s, 0, t) Operator on Certain Sequence Spaces
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abstract: In this paper we have examined the approximate point spectrum, defect spectrum and compres-
sion spectrum of the operator D(r, 0, s, 0, t) on the sequence spaces c0, c and bvp(1 < p < ∞).
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1. Preliminaries and Definition

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator. The set of all bounded
linear operators on X into itself is denoted by B(X). The adjoint T ∗ : X∗ → X∗ of T is defined by
(T ∗Φ)(x) = Φ(Tx) for all Φ ∈ X∗ and x ∈ X . Clearly, T ∗ is a bounded linear operator on the dual space
X∗.

Let T : D(T ) → X a linear operator, defined on D(T ) ⊆ X , where D(T ) denote the domain of T and
X is a complex normed linear space. For T ∈ B(X) we associate a complex number α with the operator
(T −αI) denoted by Tα defined on the same domain D(T ), where I is the identity operator. The inverse
(T − αI)−1, denoted by T−1

α is known as the resolvent operator of T . Many properties of Tα and T−1
α

depend on α and spectral theory is concerned with those properties. We are interested in the set of all
α in the complex plane such that T−1

α exists. Boundedness of T−1
α is another essential property. We also

determine α′s for which the domain of T−1
α is dense in X .

A regular value is a complex number α of T such that
(R1)T

−1
α exists,

(R2)T
−1
α is bounded

and
(R3)T

−1
α is defined on a set which is dense in X .

The resolvent set of T is the of all such regular values α of T , denoted by ρ(T,X). Its complement
is given by C \ ρ(T,X) in the complex plane C is called the spectrum of T , denoted by σ(T,X). Thus
the spectrum σ(T,X) consist of those values of α ∈ C, for which Tα is not invertible.
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2. Subdivisions of the spectrum

In this section, we discuss about the point spectrum, continuous spectrum, residual spectrum, ap-
proximate point spectrum, defect spectrum and compression spectrum. There are many different ways
to subdivide the spectrum of a bounded linear operator. Some of them are motivated by applications to
physics, in particular in quantum mechanics.

2.1. The point spectrum, continuous spectrum and residual spectrum

The spectrum σ(T,X) is partitioned into three disjoint sets as follows:
(i) The point (discrete) spectrum σp(T,X) is the set of complex numbers α such that T−1

α does not
exist. Further σp(T,X) is called the eigen value of T .

(ii) The continuous spectrum σc(T,X) is the set of complex numbers α such that T−1
α exists and

satisfies (R3) but not (R2) that is T
−1
α unbounded.

(iii) The residual spectrum σr(T,X) is the set of complex numbers α such that T−1
α exists (and

may be bounded or not) but not satisfy (R3), that is, the domain of T−1
α is not dense in X .

This is to note that in finite dimensional case, continuous spectrum coincides with the residual spec-
trum and equal to the empty set and the spectrum consists of only the point spectrum.

2.2. The approximate point spectrum, defect spectrum and compression spectrum

Given a bounded linear operator T in a Banach space X , we call a sequence (xk) in X as a Weyl
sequence for T if ||xk|| = 1 and ||Txk|| → 0, as k → ∞.

Appell et al. [4], have been given three more classification of spectrum called the approximate point
spectrum, defect spectrum and compression spectrum.

(a) The approximate point spectrum:

σap(T,X) = {α ∈ C: there exist a Weyl sequence for T − αI}.

(b) The defect spectrum: σδ(T,X) = {α ∈ C : T − αI is not surjective}.

(c) The compression spectrum: σco(T,X) = {α ∈ C : R(T − αI)}.

The two subspectra given by (a) and (b) form a (not necessarily disjoint) subdivisions σ(T,X) =
σap(T,X) ∪ σδ(T,X) of the spectrum.

The compression spectrum gives rise to another subdivisions (not necessarily disjoint) decomposition
σ(T,X) = σap(T,X) ∪ σco(T,X) of the spectrum.

Clearly σp(T,X) ⊆ σap(T,X) and σco(T,X) ⊆ σδ(T,X). Moreover, comparing these subspectra with
σ(T,X) = σp(T,X) ∪ σc(T,X) ∪ σr(T,X)

we note that σr(T,X) = σco(T,X) \ σp(T,X) and σc(T,X) = σ(T,X) \ [σp(T,X) ∪ σco(T,X)].

Proposition 2.3 [Appell et al. [4], Proposition 1.3, p.28] Spectra and subspectra of an operator T ∈ B(X)
and its adjoint T ∗ ∈ B(X∗) are related by the following relations:

(i)σ(T ∗, X∗) = σ(T,X).
(ii)σc(T

∗, X∗) ⊆ σap(T,X).
(iii)σap(T

∗, X∗) = σδ(T,X).
(iv)σδ(T

∗, X∗) = σap(T,X).
(v)σp(T

∗, X∗) = σco(T,X).
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(vi)σco(T
∗, X∗) ⊇ σp(T,X).

(vii)σ(T,X) = σap(T,X) ∪ σp(T
∗, X∗) = σp(T,X) ∪ σap(T

∗, X∗).

2.3. Goldberg’s classification of spectrum

If X is a Banach space and T ∈ B(X), then there are three possibilities for R(T ):
(I)R(T ) = X ,
(II)R(T ) 6= R(T ) = X ,
(III)R(T ) 6= X ,

and

(1)T−1 exists and is continuous,
(2)T−1 exists but is discontinuous,
(3)T−1 does not exist.
If these possibilities are combined in all possible ways, nine different states are created. These are

labelled by: I1, I2, I3, II1, II2, II3, III1, III2, III3. If an operator is in the state III2 for example,
then R(T ) 6= X and T−1 exists but is discontinuous.

Table 1: Subdivisions of spectrum of a linear operator

1 2 3

T−1
α exists and is bounded T−1

α exists and is unbounded T−1
α does not exist

I R(T − αI) = X α ∈ ρ(T,X) -
α∈ σp(T,X)

α∈ σap(T,X)

II R(T − αI) = X α ∈ ρ(T,X)

α∈ σc(T,X)

α∈ σap(T,X)

α∈ σδ(T,X)

α∈ σp(T,X)

α∈ σap(T,X)

α∈ σδ(T,X)

III R(T − αI) 6= X

α∈ σr(T,X)

α∈ σδ(T,X)

α∈ σco(T,X)

α∈ σr(T,X)

α∈ σap(T,X)

α∈ σδ(T,X)

α∈ σco(T,X)

α∈ σp(T,X)

α∈ σap(T,X)

α∈ σδ(T,X)

α∈ σco(T,X)

Let E and F be two sequence spaces and A = (ank) be an infinite matrix of real or complex numbers
ank, where n, k ∈ N = 0, 1, 2, . . .. Then, we say that A defines a matrix mapping from E into F ,
denote by A : E → F , if for every sequence x = (xn) ∈ E the sequence Ax = {(Ax)n} is in F where
(Ax)n =

∑∞
k=0 ankxk(n ∈ N and x ∈ E), provided the right hand side converges for every n ∈ N and

x ∈ E.

Throughout the paper w, ℓ∞, c, c0, ℓp and bvp denote the space of all, bounded, convergent, null, p-
absolutely summable and p-bounded variation sequences respectively. The zero sequence is denoted by
θ = (0, 0, ..., .).

Let m,n ≥ 0 be fixed integers, then Esi, Tripathy and Sarma [8] has introduced the following type of
difference sequence spaces.Z(△n

m) = {x = (xk) ∈ w : ∆n
mx = (∆n

mxk) ∈ Z} for Z = ℓ∞, c and c0, where
∆n

mx = (∆n
mxk) = (△n−1

m xk −△n−1
m xk+m) and △0

mxk = xk for all k ∈ N .

Taking n = 1, we have the sequence spaces ℓ(△m), c(△m) and c0(△m) studied by Tripathy and Esi
[15].

Taking m = 1, we have the sequence spaces △(△n), c(△n) and c0(△n) studied by Et and Colak [7].
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Taking m = 1 and n = 1, we have the sequence spaces ℓ∞(△), c(△) and c0(△) studied by Kizmaz [10].

Our main focus in this paper is on the operator D(r, 0, s, 0, t) represented by the following matrix

D(r, 0, s, 0, t) =





















r 0 0 0 0 0 . . .

0 r 0 0 0 0 . . .

s 0 r 0 0 0 . . .

0 s 0 r 0 0 . . .

t 0 s 0 r 0 . . .

0 t 0 s 0 r . . .

. . . . . . . . .





















Here we assume that s and t are complex parameters which do not simultaneously vanish.

Remark: In particular if we consider r = 1, s = −2 and t = 1 then D(1, 0,−2, 0, 1) = △2
2.

The spectra of the difference operator has been investigated on different classes of sequences by var-
ious authors in the recent past. Altay and Basar ([1], [2], [3]) studied the spectra of difference operator
and generalized difference operator on c0, c and ℓp . Tripathy and Paul ([16],[18],[19]) studied the spectra
of the difference type operators D(r, 0, 0, s) and D(r, 0, s, 0, t) over the sequence spaces c0, c, ℓp and bvp.
Moreover, Paul and Tripathy ([11],[13]) have investigated the fine spectra of the operatorD(r, 0, 0, s) over
the sequence spaces ℓp, bvp and bv0 respectively. Recently Tripathy and Paul [17] studied the spectrum
of the operator B(f, g) on the vector valued sequence space c0(X). Basar et.al ([5],[6]) have studied
the subdivisions of the spectra for the generalized difference operator B(r, s) and the triple band matrix
B(r, s, t) over the sequence spaces c0, c and ℓp and bvp. Paul and Tripathy [12] have investigated the
subdivisions of the spectra for the operator D(r, 0, 0, s) over the sequence spaces c0, c, ℓp and bvp. Das
and Tripathy [14] studied the spectra of the lower triangular matrix B(r, s, t) over the sequence space cs

and Tripathy and Das [20] studied about upper triangular matrix U(r, s) over the sequence space cs.

Lemma 2.5 [17].Let s be a complex number such that
√
s2 = −s and defined the set by

S =

{

α ∈ C :

∣

∣

∣

∣

∣

2(r − α)

−s+
√

s2 − 4t(r − α)

∣

∣

∣

∣

∣

≤ 1

}

.

Then σ(D(r, 0, s, 0, t), c0) = S.

Lemma 2.6 [18]σpt(D(r, 0, s, 0, t), c0) = Ø.

Lemma 2.7 [18]σr(D(r, 0, s, 0, t), c0) = S1, where

S1 =

{

α ∈ C :

∣

∣

∣

∣

∣

2(r − α)

−s+
√

s2 − 4t(r − α)

∣

∣

∣

∣

∣

< 1

}

.

Lemma 2.8 [18]σ(D(r, 0, s, 0, t), c) = S, where S is define as in Lemma 2.5.

Lemma 2.9 [18]σpt(D(r, 0, s, 0, t), c) = Ø.

Lemma 2.10 [18] σr(D(r, 0, s, 0, t), c) = S1 ∪ {r + s+ t} , where S1 is defined as in Lemma 2.7.

Lemma 2.11 [19] σ(D(r, 0, s, 0, t), ℓp) = S, where S is define as in Lemma 2.5.

Lemma 2.12 [19]σpt(D(r, 0, s, 0, t), ℓp) = Ø.

Lemma 2.13 [19] σr(D(r, 0, s, 0, t), ℓp) = S1, where S1 is defined as in Lemma 2.7.



Subdivisions of the Spectra 5

Lemma 2.14 [19] σ(D(r, 0, s, 0, t), bvp) = S, where S is defined as in Lemma 2.5.

Lemma 2.15 [19] σpt(D(r, 0, s, 0, t), bvp) = Ø.

Lemma 2.16 [19] σr(D(r, 0, s, 0, t), bvp) = S1,where S1 is defined as in Lemma 2.7.

3. Subdivisions of the spectrum of D(r, 0, s, 0, t) over c0

In this section, we give the subdivisions of the spectrum of the operator D(r, 0, s, 0, t) over the se-
quence space c0.

Theorem 3.1. If α = r, then α ∈ III1σ(D(r, 0, s, 0, t), c0).

Proof: Let α = r, then by Lemma 2.7, D(r, 0, s, 0, t)− rI = D(0, 0, s, 0, t) is in state III1 or III2. The
left inverse of D(0, 0, s, 0, t) is given by

D(0, 0, s, 0, t)−1 =

























0 0
1

s
0 0 0 . . .

0 0 0
1

s
0 0 . . .

0 0 0 0
1

s
0 . . .

. . . . . . . . .

. . . . . . . .

. . . . . . .

























Clearly D(0, 0, s, 0, t)−1 ∈ B(c0) for all t and s. That is, D(0, 0, s, 0, t) has a continuous inverse for all
t and s. Hence α ∈ III1σ(D(r, 0, s, 0, t), c0).

Theorem 3.2 If α 6= r and α ∈ σr(D(r, 0, s, 0, t), c0) then

α ∈ III2σ(D(r, 0, s, 0, t), c0).

Proof: Since

σr(D(r, 0, s, 0, t), c0) = III1σ(D(r, 0, s, 0, t), c0) ∪ III2σ(D(r, 0, s, 0, t), c0).

Now, α ∈ σr(D(r, 0, s, 0, t), c0) implies either α ∈ III1σ(D(r, 0, s, 0, t), c0) or α ∈ III2σ(D(r, 0, s, 0, t), c0).
Since from the Theorem 3.1, α ∈ III1σ(D(r, 0, s, 0, t), c0) if α = r.

As α 6= r, hence α ∈ III2σ(D(r, 0, s, 0, t), c0).

Theorem 3.3. III3σ(D(r, 0, s, 0, t), c0) = Ø..

Proof: III3σ(D(r, 0, s, 0, t), c0) = σp(D(r, 0, s, 0, t), c0) = Ø is obtained by Lemma 2.6.

Theorem 3.4. σco(D(r, 0, s, 0, t), c0) = S1, where S1 is defined as in Lemma 2.7.

Proof:

σco(D(r, 0, s, 0, t), c0) = III1σ(D(r, 0, s, 0, t), c0) ∪ III2σ(D(r, 0, s, 0, t), c0)

∪III3σ(D(r, 0, s, 0, t), c0).

Now, III1σ(D(r, 0, s, 0, t), c0) ∪ III2σ(D(r, 0, s, 0, t), c0) = σr(D(r, 0, s, 0, t), c0) = S1 is obtained by
Lemma 2.7. Again, III3σ(D(r, 0, s, 0, t), c0) = Ø is obtained by Theorem 3.3.

Hence, σco(D(r, 0, s, 0, t), c0) = S1.



6 A. Paul and B. Chandra Tripathy

Theorem 3.5. σap(D(r, 0, s, 0, t), c0) = S \ {r}, where S is define as in Lemma 2.5.

Proof: Since

σap(D(r, 0, s, 0, t), c0) = σ(D(r, 0, s, 0, t), c0) \ III1σ(D(r, 0, s, 0, t), c0),

σap(D(r, 0, s, 0, t), c0) = S \ {r} is obtained by Lemma 2.5 and Theorem 3.1.

Theorem 3.6. σδ(D(r, 0, s, 0, t), c0) = S, where S is as define in Lemma 2.5.

Proof: Since
σδ(D(r, 0, s, 0, t), c0) = σ(D(r, 0, s, 0, t), c0) \ I3σ(D(r, 0, s, 0, t), c0).

Now, I3σ(D(r, 0, s, 0, t), c0)∪II3σ(D(r, 0, s, 0, t), c0)∪III3σ(D(r, 0, s, 0, t), c0) = σp(D(r, 0, s, 0, t), c0) = Ø
is obtained by Lemma 2.6 and hence

I3σ(D(r, 0, s, 0, t), c0) = Ø.

Thus, σδ(D(r, 0, s, 0, t), c0) = Ø.

As a consequence of proposition 2.3, we have the following results.

Corollary 3.7.The following results hold:
(i)σap(D(r, 0, s, 0, t)∗, c∗0) = S

(ii)σδ(D(r, 0, s, 0, t)∗, c∗0) = S \ {r} where S is define as in Lemma 2.5.

4. Subdivisions of the spectrum of D(r, 0, s, 0, t) over c

In this section, we give the subdivisions of the spectrum of the operatorD(r, 0, s, 0, t) over the sequence
space c.
Theorem 4.1 If α = r, then α ∈ III1σ(D(r, 0, s, 0, t), c).

Proof: This theorem can be established in a way similar to that of the proof of Theorem 3.1.

Theorem 4.2 If α 6= r and α ∈ σr(D(r, 0, s, 0, t), c) then

α ∈ III2σ(D(r, 0, s, 0, t), c).

Proof: This is obtained in the similar way that is used in the proof of Theorem 3.2.

Theorem 4.3 III3σ(D(r, 0, s, 0, t), c) = Ø..

Proof: This is obtained in the similar way that is used in the proof of Theorem 3.3.

Theorem 4.4 σco(D(r, 0, s, 0, t), c) = S1 ∪ {r + s+ t},where S1 is defined as in Lemma 2.7.

Proof:σco(D(r, 0, s, 0, t), c) = III1σ(D(r, 0, s, 0, t), c) ∪ III2σ(D(r, 0, s, 0, t), c) ∪ III3σ(D(r, 0, s, 0, t), c).
Now,

III1σ(D(r, 0, s, 0, t), c) ∪ III2σ(D(r, 0, s, 0, t), c) = σr(D(r, 0, s, 0, t), c)

= S1 ∪ {r + s+ t},

is obtained by Lemma 2.10. Again III3σ(D(r, 0, s, 0, t), c) = Ø is obtained by Theorem 4.3. Hence,
σco(D(r, 0, s, 0, t), c) = S1 ∪ {r + s+ t}
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Theorem 4.5 σap(D(r, 0, s, 0, t), c) = S \ {r}, where S is define as in Lemma 2.5.

Proof: Since

σap(D(r, 0, s, 0, t), c) = σ(D(r, 0, s, 0, t), c) \ III1σ(D(r, 0, s, 0, t), c),

σap(D(r, 0, s, 0, t), c) = S \ {r} is obtained by Lemma 2.8 and Theorem 4.1.

Theorem 4.6 σδ(D(r, 0, s, 0, t), c) = S, where S is define as in Lemma 2.5.

Proof: Since, σδ(D(r, 0, s, 0, t), c) = σ(D(r, 0, s, 0, t), c) \ I3σ(D(r, 0, s, 0, t), c).

Now, I3σ(D(r, 0, s, 0, t), c)∪II3σ(D(r, 0, s, 0, t), c)∪III3σ(D(r, 0, s, 0, t), c) = σp(D(r, 0, s, 0, t), c) = Ø
is obtained by Lemma 2.9 and hence

I3σ(D(r, 0, s, 0, t), c) = Ø.

Thus, σδ(D(r, 0, s, 0, t), c) = S.

As a consequence of proposition 2.3, we have the following results.

Corollary 4.7. The following results hold:

(i)σap(D(r, 0, s, 0, t)∗, ℓ1) = S

(ii)σδ(D(r, 0, s, 0, t)∗, ℓ1) = S \ {r} where S is define as in Lemma 2.5.

5. Subdivisions of the spectrum of D(r, 0, s, 0, t) on (1 < p < ∞)

In this section, we give the subdivisions of the spectrum of the operator D(r, 0, s, 0, t) over the se-
quence space where 1 < p < ∞.

Theorem 5.1. If α = r, then α ∈ III1σ(D(r, 0, s, 0, t), ℓp).

Proof: If α = r, then by Lemma 2.13, D(r, 0, s, 0, t)− rI = D(0, 0, s, 0, t) is in state III1 or III2. The
left inverse of D(0, 0, s, 0, t) is given by

D(0, 0, s, 0, t)−1 =

























0 0
1

s
0 0 0 . . .

0 0 0
1

s
0 0 . . .

0 0 0 0
1

s
0 . . .

. . . . . . . . .

. . . . . . . .

. . . . . . .

























Then, D(0, 0, s, 0, t)−1 ∈ (ℓ1 : ℓ1)∩ (ℓ∞ : ℓ∞) that is, D(0, 0, s, 0, t)−1 ∈ (ℓp : ℓp) for all t and s. Thus,
D(0, 0, s, 0, t) has a continuous inverse for all t and s. Hence α ∈ III1σ(D(r, 0, s, 0, t), ℓp).

Theorem 5.2. If α 6= r and α ∈ σr(D(r, 0, s, 0, t), ℓp) then

α ∈ III2σ(D(r, 0, s, 0, t), ℓp).

Proof: This is obtained in the similar way that is used in the proof of Theorem 3.2.
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Theorem 5.3.III3σ(D(r, 0, s, 0, t), ℓp) = Ø..

Proof: This is obtained in the similar way that is used in the proof of Theorem 3.3.

Theorem 5.4. σco(D(r, 0, s, 0, t), ℓp) = S1, where S1 is as defined in Lemma 2.7.

Proof:

σco(D(r, 0, s, 0, t), ℓp) = III1σ(D(r, 0, s, 0, t), ℓp) ∪ III2σ(D(r, 0, s, 0, t), ℓp)

∪III3σ(D(r, 0, s, 0, t), ℓp).

Now, III1σ(D(r, 0, s, 0, t), ℓp) ∪ III2σ(D(r, 0, s, 0, t), ℓp) = σr(D(r, 0, s, 0, t), ℓp) = S1, is obtained by
Lemma 2.13. Again, III3σ(D(r, 0, s, 0, t), ℓp) = Ø, is obtained by Theorem 5.3.

Hence σco(D(r, 0, s, 0, t), ℓp) = S1.

Theorem 5.5. σap(D(r, 0, s, 0, t), ℓp) = S \ {r},where S is as defined in Lemma 2.5.

Proof: Since

σap(D(r, 0, s, 0, t), ℓp) = σ(D(r, 0, s, 0, t), ℓp) \ III1σ(D(r, 0, s, 0, t), ℓp),

σap(D(r, 0, s, 0, t), ℓp) = S \ {r} is obtained by Lemma 2.11 and Theorem 5.1.

Theorem 5.6. σδ(D(r, 0, s, 0, t), ℓp) = S, where S is as defined in Lemma 2.5.

Proof: Since σδ(D(r, 0, s, 0, t), ℓp) = σ(D(r, 0, s, 0, t), ℓp) ∪ I3σ(D(r, 0, s, 0, t), ℓp). Now,

I3σ(D(r, 0, s, 0, t), ℓp) ∪ II3σ(D(r, 0, s, 0, t), ℓp) ∪ III3σ(D(r, 0, s, 0, t), ℓp) = σp(D(r, 0, s, 0, t), ℓp) = Ø,

is obtained by Lemma 2.12 and hence

I3σ(D(r, 0, s, 0, t), ℓp) = Ø.

Thus, σδ(D(r, 0, s, 0, t), ℓp) = S

As a consequence of proposition 2.3, we have the following results.

Corollary 5.7. Let p−1 + q−1 = 1 then, the following results hold:

(i)σap(D(r, 0, s, 0, t)∗, ℓq) = S

(ii)σδ(D(r, 0, s, 0, t)∗, ℓq) = S \ {r} where S is as defined in Lemma 2.5.

6. Subdivisions of the spectrum of D(r, 0, s, 0, t) on bvp(1 < p < ∞)

In this section, we give the subdivisions of the spectrum of the operator D(r, 0, s, 0, t) over the se-
quence space bvp.

Since the subdivisions of the spectrum of the operator D(r, 0, s, 0, t) on the sequence space bvp can be
derived by analogy to that space ℓp, we omit the detail and give the related results without proof.

Theorem 6.1. The following results hold:

(i)σap(D(r, 0, s, 0, t), bvp) = S \ {r}
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(ii)σδ(D(r, 0, s, 0, t), bvp) = S,

(iii)σco(D(r, 0, s, 0, t), bvp) = S1, where S and S1 are defined as in Lemma 2.5 and Lemma 2.7 respec-

tively.

As a consequence of proposition 2.3, we have the following results.

Corollary 6.2. The following results hold:
(i)σap(D(r, 0, s, 0, t)∗, bv∗p) = S

(ii)σδ(D(r, 0, s, 0, t)∗, bv∗p) = S \ {r} where S is as defined in Lemma 2.5.
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