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Variational Analysis For Some Frictional Contact Problems ∗

L. Ait kaki and M. Denche

abstract: We consider a class of evolutionary variational problems which de-
scribes the static frictional contact between a piezoelectric body and a conductive
obstacle. The formulation is in a form of coupled system involving the displacement
and electric potential fields. We provide the existence of unique weak solution of
the problems. The proof is based on the evolutionary variational inequalities and
Banach’s fixed point theorem.
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1. Introduction

In this paper we study a class of abstract evolutionary variational problem mod-
elling the frictional contact of electro viscoelastic body with a conductive foun-
dation. Frictional contact phenomena appear in everyday life and play a very
important role in engineering structures and systems. The frictional contact con-
ditions are various and may be complex, a considerable effort has been made in its
modelling. An early study of a contact problem for elastic and viscoelastic mate-
rials within the framework of the variational inequalities was carried in reference
works [4,11,13]. An extension to non convex energy functionals generated by non
monotone laws was introduced in [12,15] and led to the so called hemivariational
inequalities.

The piezoelectricity lie between the coupling of the mechanical and electrical
material properties, it leads to the appearance of electric field when the mechanical
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stress is applied, and conversely in the presence of the electric potential the mechan-
ical stress is generated. Among the materials that exhibit sufficient charge very
few are those which are exploited in engineering controls equipement, it include
quartz, Rochelle salt, lead titanate zirconate ceramics and so on.

A considerable interest was presented on the problems involving piezoelectric
materials. The general model of electro elastic materials were studied in [10,21]
and for the frictional contact of electro-elastic material, they were given in [1,9]. A
few mathematical results arising in a study of a frictional contact of piezoelectric
bodies, like in [8,14,17,18,22], under the assumption that the foundation is insu-
lated, and in [2,7]. There is a need to expand the study the model for the process
of frictional contact when the foundation is electrically conductive and the behav-
ior of the piezoelectricity material are taken into account in the formulation of the
electrical and mechanical boundary conditions. In the case of an eletro viscoelas-
tic materiel the frictional contact of the body with a deformable and conductive
foundation leads to a non smooth boundary conditions on the contact surface. The
conductivity of the contact surface involves a coupling between the mechanical
and the electrical unknowns so it leads to an ill posed mathematical problem (see
[2,7]) . It is bypassed by the regularization of these electrical boundary conditions.
It is proved in in the last references that there exists a unique weak solution for
the frictional problem described by a normal compliance condition and version of
Coulomb’s law friction and a regularized electrical conditions.

This work is a continuation in this line of research and we study an abstract
weak formulation of quasistatic frictional contact problem for an electro-viscoelastic
material, in the framework of the MTCM, when the foundation is deformable and
conductive and the friction is described by the normal compliance and versions of
Coulomb’s law. Our interest is to show that the abstract problem with regularised
electric boundary conditions has a unique weak solution.

The paper is structured as follows. In section 2 we list some notations and
assumptions on the problem data and state our main existence and uniqueness
result. In section 3 we present the proof of the theorem. The arguments of the
proof are based on the evolutionary variational inequalities and Banach’s fixed
point theorem. In section 4 we give an example of application of the abstract
result.

The abstract weak formulation is given by the following problem PV .

Problem PV

Find a displacement field u : [0, T ] → V and an electric potential ϕ : [0, T ] → W

such that

(Au̇(t), v − u̇(t))V + (Bu(t), v − u̇(t))V + (E∗ϕ(t), v − u̇(t))V+
j(u(t), v)− j(u(t), u̇(t)) ≥ (f(t), v − u̇(t))V ,

(1.1)

for all v ∈ V and t ∈ [0, T ],

(Cϕ(t), ζ)W − (Eu(t), ζ)W + (h(u(t), ϕ(t)), ζ)W = (q(t), ζ)W , (1.2)
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for all ζ ∈W and t ∈ [0, T ], and

u(0) = u0. (1.3)

Here V and W are respectively spaces of admissible displacements and of elec-
tric potentiels, there are Hilbert spaces. The operators A, B, E, E∗, C and are
respectively related to the electro viscoelastic constitutive law. The operators A, B
and E are defined on V , the operators C and E∗are defined onW . The functionals
J and h are respectively determined by the machanical and electrical boundary
conditions on the contact surface. The data f is related to the traction forces and
to the body forces. The data q is related to the densities of volume and surface free
electric charges. The fonction u0 is the initial data of the displacement field u. Here
[0, T ] is the interval of the observation. The dot above u denotes the derivative of
the displacement u with respect to the variable t.

2. Preliminaries and notations

We consider a body which occupies the domain Ω ⊂ R
d (d = 2, 3) with a

smooth boundary ∂Ω = Γ and a unit outward normal ν.We denote by ΓC the
contact boundary, and we use the usual notation uν for the normal component
of vector u. We consider that spaces V and H are real Hilbert spaces satisfying
V ⊂ H ⊂ V ′ and W ⊂ H ⊂ W ′ with continuous and dense injections, where

H = L2(Ω) and H =
(
L2(Ω)

)d
. We define inner product on V and on W by

(u, v)V = (ε(u), ε(v))
H
, (ϕ, ς)W = (∇ϕ,∇ς)H ,

where ε is linear map defined from V to H.We suppose that we may apply the
Sobolev trace theorem, it means that there exists two constants c0 and c̃0, depend-
ing only on Ω, and parts of Γ, such that

|ζ|L2(ΓC) ≤ c0 |ζ|W , ∀ ζ ∈W , (2.1)

|v|(L2(ΓC))d ≤ c̃0 |v|V , ∀v ∈ V . (2.2)

Let the Hilbert spaces Lp(0, T ;H) and W 1,p(0, T ;V ) 1 ≤ p ≤ +∞,

Lp(0, T ;H) = {u | u : ]0, T [ → H} , (2.3)

W 1,p(0, T ;V ) =

{
u ∈ Lp(0, T ;V ), u̇ =

du(t)

dt
∈ Lp(0, T ;V )

}
. (2.4)

The spaces C(0, T ;X) and C1(0, T ;X) are respectively continuous and differen-
tiable continuous functions from [0, T ] into X with a respective norms :

|f |C(0,T ;X) = max
t∈[0,T ]

|f |X and |f |C1(0,T ;X) = max
t∈[0,T ]

|f |X + max
t∈[0,T ]

∣∣∣ḟ
∣∣∣
X
.

The functional h given in the equation (1.2) is defined with the Riesz represen-
tation theorem by

(h(u, ϕ), ζ)W =

∫

ΓC

ψ(uν − g)φL(ϕ− ϕ0)ζ da, (2.5)
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where ϕ0 is the potential of the electric foundation. The function φL is given by

φL(s) =





−L if s < −L,

s if − L ≤ s ≤ L,

L if s > L,

(2.6)

here L is a large positive constant, it may be arbitrarily large, higher than any
possible peak voltage in the system. The function ψ is given bellow.

We list the assumptions on the problem’s data. We assume that A is nonlinear
strongly monotone and Lipshitz continuous operator on V , and B is a nonlinear
Lipshitz continuous operator on V such that






(a) A : V → V.

(b) There exists LA > 0 such that
|Au1 −Au2|V ≤ LA |u1 − u2|V , ∀u1, u2 ∈ V.

(c) There exists mA > 0 such that

(Au1 − Au2, u1 − u2)V ≥ mA |u1 − u2|
2
V , u1, u2 ∈ V.

(2.7)





(a) B : V → V.

(b) There exists LB > 0 such that
|Bu1 − Bu2|V ≤ LB |u1 − u2|V ∀u1, u2 ∈ V,

(2.8)

for more details see [20].
The linear operators E∗ and E satisfy





(a) E∗ :W → V ,
(b) there exists CE∗ > 0 such that

|E∗v|V ≤ CE∗ |v|W , ∀u ∈W ,
(c) E : V →W

|Eu|W ≤ CE |u|V , ∀u ∈ V.

(2.9)

The operator C is linear such that





(a) C :W →W ,
(b) there exists MC > 0 such that

|Cτ |W ≤MC |τ |W , ∀ τ ∈W ,
(c) there exists LC > 0 such that

(Cτ,Cτ)W ≥ mC |τ |
2
W , ∀ τ ∈W.

(2.10)

The function ψ satisfies




(a) ψ : ΓC × R → R+.

(b) ∃Lψ > 0 such that |ψ(x, u1)− ψ(x, u2)| ≤ Lψ|u1 − u2|
∀u1, u2 ∈ R, a.e. x ∈ ΓC .

(c) ∃Mψ > 0 such that |ψ(x, u)| ≤Mψ ∀u ∈ R, a.e. x ∈ ΓC .
(e) x 7→ ψ(x, u) is measurable onΓC , for allu ∈ R.

(e) x 7→ ψ(x, u) = 0, for allu ≤ 0.

(2.11)
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The functional j : X ×X → R satisfies:





(a) j(u, ·) is convex and l.s.c. on V for all u ∈ V ,
(b) There exists m > 0 such that

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)
≤ m |u1 − u2|V |v1 − v2|V ∀u1, u2, v1, v2 ∈ V.

(2.12)

Where

f ∈W 1,p (0, T ;V ) , (2.13)

q ∈W 1,p (0, T ;H) , (2.14)

u0 ∈ V . (2.15)

Theorem 2.1. Assume that (2.7)–(2.15) hold. Then there exists a unique solution
of the problem PV . Moreover, the solution satisfies

u ∈W 2,p(0, T ;V ), ϕ ∈W 1,p(0, T ;W ). (2.16)

3. Proof of the main result

The proof of Theorem 2.1 is carried out in several steps and is based on the
following abstract result for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and the associated
norm ‖ · ‖X , and consider the following problem, find a function x : [0, T ] → X

such that

(Aẋ (t) , y − ẋ (t))X + (Bx (t) , y − ẋ (t))X + j(x (t) , y)− j(x (t) , ẋ (t))
≥ (f, y − ẋ (t))X ∀ y ∈ X, t ∈ [0, T ],

(3.1)

x(0) = x0. (3.2)

To solve problem (3.1) and (3.2) we need the following assumptions.
The operator A : X → X is strongly monotone and Lipschitz continuous, i.e.,





(a) there exists mA > 0 such that
(Ax1 − Ax2, x1 − x2)X ≥ mA‖x1 − x2‖

2
X , ∀x1, x2 ∈ X ,

(b) there exists LA > 0 such that
‖Ax1 −Ax2‖X ≤ LA‖x1 − x2‖X , ∀x1, x2 ∈ X.

(3.3)

The nonlinear operatorB : X → X is Lipschitz continuous, i.e., there exists LB > 0
such that

‖Bx1 −Bx2‖X ≤ LB ‖x1 − x2‖X ∀x1, x2 ∈ X. (3.4)

The functional j : X ×X → R satisfies




(a) j(x, ·) is convex and l.s.c. on X for all x ∈ X ,
(b) There exists m > 0 such that

j(x1, y2)− j(x1, y1) + j(x2, y1)− j(x2, y2)
≤ m ‖x1 − x2‖X ‖y1 − y2‖X , ∀x1, x2, y1, y2 ∈ X.

(3.5)

Finally, we assume that

f ∈ C (0, T,X) , x0 ∈ X. (3.6)



26 L. Ait kaki and M. Denche

Theorem 3.1. Let (3.3)–(3.6) hold. Then,

(1) there exists a unique solution x ∈ C1 ([0, T ] , X) of problem (3.1) and (3.2),

(2) if x1 and x2 are two solutions of (3.1) and (3.2) corresponding to the data
f1, f2 ∈ C([0, T ];X), then there exists c > 0 such that

‖ẋ1(t)−ẋ2(t)‖X ≤ c (‖f1(t)−f2(t)‖X+‖x1(t)−x2(t)‖X) ∀ t ∈ [0, T ], (3.7)

(3) if, moreover, f ∈W 1,p(0, T ;X), for some p ∈ [1,∞], then the solution satis-
fies x ∈W 2,p(0, T ;X).

The proof of the existence and uniqueness of the solution is a standard result
of evolutionary variational inequalities it can be found for example in [5,16].

We turn now to the proof of Theorem 2.1. To this end we assume that (2.7)–
(2.9) and (2.12)-(2.15) hold, and with the same techniques of the fixed point the-
orem developped in [7] we prove the existence and uniqueness of the solution u of
inequality (1.1).which satisfies the three results of the Theorem 3.1.

Let η ∈ C([0, T ], V ) be given, and consider the following problem .
Problem P1

η.
Find a displacement field uη : [0, T ] → V such that

(A(u̇η(t)), v − u̇η(t))V + (B(uη(t)), v − u̇η(t))V + (η(t), v − u̇η(t))V +,

j(uη(t), v) − j(uη(t), u̇η(t)) ≥ (f(t), v − u̇η(t))V , ∀ v ∈ V, t ∈ [0, T ], (3.8)

uη(0) = u0. (3.9)

We have the following result for P1
η.

Lemma 3.2. (1) There exists a unique solution uη ∈ C1([0, T ];V ) to the prob-
lem (3.8) and (3.9).

(2) If u1 and u2 are two solutions of (3.8) and (3.9) corresponding to the data
η1, η2 ∈ C([0, T ];V ), then there exists c > 0 such that

|u̇1(t)− u̇2(t)|V ≤ c (|η1(t)− η2(t)|V +|u1(t)− u2(t)|V ) ∀ t ∈ [0, T ]. (3.10)

(3) If, moreover, η ∈W 1,p(0, T ;V ) for some p ∈ [1,∞], then the solution satisfies
uη ∈W 2,p(0, T ;V ).

Proof: We apply Theorem 3.1, we take X = V , with the inner product (·, ·)V and
the associated norm |·|V . The Riesz representation theorem allows us to define
fη : [0, T ] → V by

(fη(t), v)V = (f(t)− η(t), v)V , (3.11)

for all u, v ∈ V and t ∈ [0, T ]. Assumptions (2.7), (2.8) and (2.12) imply that the
operators A and B and j satisfy respectively conditions (3.3), (3.4) and (3.5).
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Moreover, since the function f ∈ W 1,p(0, T ;V ) and keeping in mind that η ∈
C([0, T ];V ), we deduce from the expression (3.11) that fη ∈ C([0, T ];V ). We
note that (2.15) shows that condition (3.6) is satisfied. Hence the Lemma 3.2 is a
concequence of Theorem 3.1 . �

In the next step we use the solution uη ∈ C1([0, T ], V ) of the problem P1
η,

obtained in Lemma 3.2, to construct the following variational problem for the
electrical potential.

Problem P2
η.

Find an electrical potential ϕη : [0, T ] →W such that

(C (ϕη(t)) , ζ)W − (E(uη(t)), ζ)W + (h(uη(t), ϕη(t)), ζ)W = (q(t), ζ)W ,
∀ζ ∈W , t ∈ [0, T ].

(3.12)

For the well-posedness of problem P2
η we have

Lemma 3.3. There exists a unique solution ϕη ∈ W 1,p(0, T ;W ) which satisfies
(3.12).
Moreover, if ϕη1 and ϕη2 are the solutions of (3.12) corresponding to η1, η2 ∈
C([0, T ];V ) then, there exists c > 0, such that

|ϕη1(t)− ϕη2(t)|W ≤ c |uη1(t)− uη2(t)|V ∀ t ∈ [0, T ]. (3.13)

Before giving the proof of the theorem, note that the regularity of the solution
of the electrical problem was given in [2,7] under a small condition (Mψ <

mC

c2
0

),

we will see through our proof that this small condition is omitted

Proof:

Let t ∈ [0, T ], the problem P2
η can be written in the following operaror form.

Find ϕη : [0, T ] →W such that for ∀ t ∈ [0, T ]

Cη(t)ϕη(t) = qη(t),

where Cη(t) : W → W is a nonlinear operator given by the Riesz representation
theorem

(Cη(t)ϕ, ζ)W = (C(ϕ), ζ)W + (h(uη(t), ϕ), ζ)W , (3.14)

(qη(t), ζ)W = (E(uη(t)), ζ)W + (q(t), ζ)W , (3.15)

for all ϕ, ζ ∈ W . Let ϕ1, ϕ2 ∈ W , then the assumptions on the coercivity of the
operator C ((2.10)(c)), the positivity of the fonction ψ (see (2.11)) and on the
monotonicity of the function φL defined by (2.6) imply that

(Cη(t)ϕ1 − Cη(t)ϕ2, ϕ1 − ϕ2)W (3.16)

≥ mC |ϕ1 − ϕ2|
2
W +

∫

ΓC

ψ(uην(t)− g)
(
φL(ϕ1 − ϕ0)− φL(ϕ2 − ϕ0)

)
(ϕ1 − ϕ2) da

≥ mC |ϕ1 − ϕ2|
2
W . (3.17)
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Using (2.10)(b), the bound |ψ(ui − g)| ≤ Mψ, the Lipshitz continuity of φL given
by (2.6) and the Sobolev trace theorem (2.1) we have

(Cη(t)ϕ1 − Cη(t)ϕ2, ζ)W

≤MC |ϕ1 − ϕ2|W |ζ|W +Mψ

∫

ΓC

|ϕ1 − ϕ2| |ζ| da ∀ζ ∈ W,

≤ (MC +Mψc
2
0) |ϕ1 − ϕ2|W |ζ|W ,

this implies that,

|Cη(t)ϕ1 − Cη(t)|W ≤ (MC +Mψc
2
0) |ϕ1 − ϕ2|W . (3.18)

This shows that the operator Cη(t) is a strongly monotone Lipschitz continuous
operator on W and therefore, there exists a unique element ϕη(t) ∈W solution of
Cη(t)ϕη(t) = q(t).

The definition of the operator (3.14) means that ϕη(t) ∈ W is the unique
solution of the nonlinear variational equation (3.12).

We show next that ϕη ∈ W 1,p(0, T ;W ). Let t1, t2 ∈ [0, T ] and, for the sake
of simplicity, we write ϕη(ti) = ϕi, uην(ti) = ui, qη(ti) = qi, for i = 1, 2. Using
(2.10)(a) and (2.9), we find

mC |ϕ1 − ϕ2|
2
W +

∫

ΓC

ψ(u1 − g)φL(ϕ1 − ϕ0)− ψ(u2 − g)φL(ϕ2 − ϕ0) (ϕ1 − ϕ2) da

≤ cE |u1 − u2|V |ϕ1 − ϕ2|W + |q1 − q2|W |ϕ1 − ϕ2|W . (3.19)

Adding and subtracting the same quantity
∫
ΓC
ψ(u1 − g)φL(ϕ2 −ϕ0) (ϕ1 − ϕ2)

in the left side of the inequality (3.19) we get

mC |ϕ1 − ϕ2|
2
W +

∫

ΓC

ψ(u1 − g)
(
φL(ϕ1 − ϕ0)− φL(ϕ2 − ϕ0)

)
(ϕ1 − ϕ2) da

+

∫

ΓC

(
ψ(u1 − g)− ψ(u2 − g)

)
φL(ϕ2 − ϕ0) (ϕ1 − ϕ2) da

≤ cE |u1 − u2|V |ϕ1 − ϕ2|W + |q1 − q2|W |ϕ1 − ϕ2|W ;

this yeilds to

mC |ϕ1 − ϕ2|
2
W +

∫

ΓC

ψ(u1 − g)
(
φL(ϕ1 − ϕ0)− φL(ϕ2 − ϕ0)

)
(ϕ1 − ϕ2) da

≤ cE |u1 − u2|V |ϕ1 − ϕ2|W + |q1 − q2|W |ϕ1 − ϕ2|W

+

∫

ΓC

|ψ(u1 − g)− ψ(u2 − g)φL(ϕ2 − ϕ0)| |ϕ1 − ϕ2| da,

the positivity of ψ and the monotonicity φL leads to

ψ(u1 − g)
(
φL(ϕ1 − ϕ0)− φL(ϕ2 − ϕ0)

)
(ϕ1 − ϕ2) ≥ 0, (3.20)
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We use now the Lipshitz continuity of ψ, the bound |φL(ϕ1 − ϕ0)| ≤ L, and
inequalities (2.2) and (2.1) to obtain

mC |ϕ1 − ϕ2|
2
W

≤
[
(cE + LψLc0c̃0) |u1 − u2|V + |q1 − q2|W

]
|ϕ1 − ϕ2|W . (3.21)

It follows from inequality (3.21) that

|ϕ1 − ϕ2|W ≤
(cE + LψLc0c̃0)

mC
|u1 − u2|V +

1

mC
|q1 − q2|W , (3.22)

since uη ∈ C1([0, T ];H), and q ∈ W 1,p(0, T ;W ) (2.14), inequality (3.22) implies
that ϕη ∈W 1,p(0, T ;W ).

For all t ∈ [0, T ], let η1, η2 ∈ C([0, T ];V ) and let ϕηi = ϕi, uηi = ui, i = 1, 2.
We use (3.19) and the same arguments used in the proof of (3.21) we obtain

|ϕ1(t)− ϕ2(t)|W ≤
1

mβ
(cE + LψLc0c̃0) |u1 − u2|V .

This leads to (3.13), and this achieved the proof. �

We now consider the operator Λ : C([0, T ];V ) → C([0, T ];V ) defined by

Λη(t) = E∗ϕη(t) ∀ η ∈ C([0, T ];V ), t ∈ [0, T ]. (3.23)

For η ∈ C([0, T ];V ), ϕη is the solution of the problem P2
η, by definition of E∗

and the regularity of ϕη( ϕη ∈ W 1,2(0, T,W )) we have that E∗ϕη ∈ C([0, T ];V ).
The operator Λ is then well defined. We show now that Λ has a unique fixed point.

Lemma 3.4. There exists a unique η̄ ∈ C([0, T ];V ) such that Λη̄ = η̄.

Proof: Let η1, η2 ∈ C([0, T ];V ) and denote by ui and ϕi the functions uηi and
ϕηi obtained in Lemmas 3.2 and 3.3, for i = 1, 2. Let t ∈ [0, T ], using (3.23) and
(2.9) we obtain

|Λη1(t)− Λη2(t)|V ≤ c |ϕ1(t)− ϕ2(t)|W ,

keeping in mind (3.13), we find

|Λη1(t)− Λη2(t)|V ≤ c |u1(t)− u2(t)|V . (3.24)

On the other hand (3.10) yields

|u̇1(t)− u̇2(t)|V ≤ c
(
|η1(t)− η2(t)|V + |u1(s)− u2(s)|V

)
.

Since ui ∈ C1(0, T, V ), thus

ui(t) = u0 +

∫ t

0

u̇i(s) ds,
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then

|u1(t)− u2(t)|V ≤

∫ t

0

|u̇1(s)− u̇2(s)|V ds, (3.25)

and

|u̇1(t)− u̇2(t)|V ≤ c
(
|η1(t)− η2(t)|V +

∫ t

0

|u̇1(s)− u̇2(s)|V ds
)
.

It follows now from a Gronwall’s type lemma [3], that

∫ t

0

|u̇1(s)− u̇2(s)|V ds ≤ c

∫ t

0

|η1(s)− η2(s)|V ds. (3.26)

Combining (3.24)–(3.26), we deduce

|Λη1(t)− Λη2(t)|V ≤ c

∫ t

0

|η1(s)− η2(s)|V ds.

Reiterating this inequality n times implies that the operator Λn = Λ ◦ Λ ◦ · · · ◦ Λ︸ ︷︷ ︸
n times

satisfies

|Λnη1(t)− Λnη2(t)|C([0,T ];V ) ≤
cn

n!
|η1(t)− η2(t)|C([0,T ];V ) .

This inequality shows that for a sufficiently large n the operator Λn is a contraction
on the Banach space C([0, T ];V ) and therefore, there exists a unique element η̄ ∈
C([0, T ];V ) such that Λη̄ = η̄.

When we replace η by η̄ the unique solution of the equation Λη = η in problems
P1
η,P

2
η and taking into account that Λη̄ = E∗ϕη̄, then the couple (uη̄, ϕη̄) becomes

the unique solution of the respective problems P1
η̄ and P2

η̄, therefore (uη̄, ϕη̄) is the
unique solution of the problem PV . The regularity (2.16) follows from Lemmas 3.2
and 3.3. The proof of the Theorem 2.1 is now complete. �

4. Application

We choose a model of the frictional contact of an electro-viscoelastic material
with deformable and conductive foundation which descibed by the problem P :

Problem P Find a displacement field u : Ω× [0, T ] → R
d, an electric potential

ϕ : Ω× [0, T ] → R, an electric displacement field, such that

σ = Aε(u̇) + Gε(u) + E∗∇ϕ in Ω× (0, T ) , (4.1)

D = Eε(u)− γ∇ϕ in Ω× (0, T ) , (4.2)

Div σ + f0 = 0 in Ω× (0, T ) , (4.3)

div D − q0 = 0 in Ω×× (0, T ) , (4.4)

u = 0, on Γ1 × (0, T ) , (4.5)
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σν = f2 on Γ2 × (0, T ) , (4.6)

σν = − p (uν − g) , on Γ3 × (0, T ) , (4.7)





‖στ‖ ≤ µpτ (uν − g), on Γ3 × (0, T ) ,
‖στ‖ < µpτ (uν − g) =⇒ u̇τ = 0,

‖στ‖ = µpτ (uν − g) =⇒ ∃λ > 0 such that στ = −λu̇τ ,
(4.8)

ϕ = 0 on Γa × (0, T ) , (4.9)

D·ν = qb onΓb × (0, T ) , (4.10)

D·ν = kψ (uν − g)φL (ϕ− ϕ0) on Γ3 × (0, T ) , (4.11)

u(0) = u0, in Ω. (4.12)

First, Equations. (4.1) and (4.2) represent the nonlinear electro-viscoelastic
constitutive law in which σ = (σij) is the stress tensor, A and G are the viscosity
and elasticity operators, whereas ε(u) = (eij(u)) denotes the linearized strain
tensor, respectively, E = (eijk) is the third-order piezoelectric tensor, E∗ is its
transpose, γ = (γij) denotes the electric permittivity tensor and D is the electric
displacement vector.

The equations (4.3) and (4.4) are the equilibrium equations, in equation (4.3)
we suppose the process is quasistatic. Here the conditions (4.5) and (4.6) are
the displacement and traction boundary conditions, respectively conditions (4.7)
and (4.8), represent frictionl contact condition on Γ3 described by the normal
compliance function p; such that p (r) = 0 when r ≤ 0, g is the initial gap and the
condition, uν − g ≥ 0 represents the penetration of body in the foundation.The
friction bound µpτ (uν − g) is the maximum value of the modulus of the tangential
tensor. Conditions (4.7) and (4.8) were used in several studies as in [6,19]. The
expressions (4.9) and (3.8) are boundary conditions on electric potential ϕ and
displacement field D on Γa and Γb. On part of the boundary Γ3, and during
the process of contact the normal of electric displacement field is assumed to be
proportional to the difference between the potential of foundation ϕ0 and the body’s
surface potential, given by condition (4.11). Finally, (4.12) is the initial condition
on displacement.
Next denote by S

d the space of second order of symmetric tensors on R
d (d = 1, 2, 3)

and by (·) and |·| respectively the scalar product and the Euclidean norm in S
d

(resp in R
d).

u.v = uivi |u| = (u.u)
1

2 ∀u,v ∈ R
d, i = 1, · · · d.

σ.τ = σijτij |τ | = (τ.τ)
1

2 ∀σ, τ ∈ S
d, i = 1, · · · d, j = 1, · · · d.

Here and bellow the indices i, j run between 1 and d and the summation convention
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over repeated indices is adopted. Let Ω ⊂ R
d, we shall use the notation

H =
{
u = (ui) | ui ∈ L2(Ω)

}
=

(
L2(Ω)

)d
,

W =
{
D ∈ H | divD ∈ L2(Ω)

}
,

H =
{
σ = (σ)ij | σij = σji ∈ L2(Ω)

}
,

H1 = {u = (ui) | ε (u) ∈ H} ,
H1 = {σ ∈ H | Divσ ∈ H} ,

with ε : H → H and Div : H → H are respectively operators of deformation and
divergence defined by :

ε (u) = (εij (u)) , εij (u) =
1

2
(uij + uji) and Divσ = (σij,j) ,

The tensors E = (eijk) and its transpose E∗ = (ekij) satisfy the equality
Eσ · v = σ·E∗v, where the index that follows a comma indicates a partial deriva-
tive with respect to the corresponding component of the independent variable. The
space H , H, H1 and H1 are Hilbert spaces endowed with the inner products given
by

(σ, τ )
H

=

∫

Ω

σijτij dx,

(u,v)H1
= (u,v)H + (ε (u) , ε (v))

H
,

(σ, τ )
H1

= (σ, τ )
H

+ (Divσ, Divτ )H .

For every vector v∈ H1, we use the notation v for the trace of v on Γ and we
denote by vν and vτ the normal and tangential components of v on Γ, given by
vν =v·ν and vτ =v−vνν. For regular stress field σ (say C1), the application of
its trace to ν is the Cauchy stress vector σν. We define the normal and tangential
components of σ by σν = (σν) · ν and στ =σν −σνν, and recall that the Green’s
formula holds

(σ, ε (v))
H

+ (Divσ,v)H =

∫

Γ

σν · v, ∀v ∈ H1. (4.13)

Let set now

V = {v ∈ H1 | v = 0, in Γ1} , W =
{
ξ ∈ H1 | ξ = 0, in Γa

}
,

for u, v ∈ V we have (u,v)V = (ε (u) , ε (v))
H1

and for ϕ, ξ ∈ W , (ϕ, ξ)W =

(∇ϕ,∇ξ)H , and we have |u|V = (u,u)
1/2
V , |ϕ|V = (ϕ, ϕ)

1/2
W . We give now the

assumptions on the datas of the problem .The viscosity operatorA and the elasticity
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one G satisfy the conditions




a) A : Ω× S
d → S

d,
b) there exists LA > 0 such that
|A (x, ε1)−A (x, ε2)| ≤ LA |ε1 − ε2| ∀ε1, ε2 ∈ S

d, , a.e. x ∈ Ω,
c) there exists mA > 0 such that

(A (x, ε1)−A (x, ε2)) · (ε1 − ε2) ≥ mA |ε1 − ε2|
2
,

∀ε1, ε2 ∈ S
d, a.e. x ∈ Ω,

d) the mapping 7−→ A (x, ε) is Lebesgue measurable on Ω,
e) the mapping x 7−→ A (x,0) belongs to H.

(4.14)





a) G : Ω× S
d × R → S

d,
b) there exists LG > 0 such that
|G (x, ε1)− G (x, ε2)| ≤ LG |ε1 − ε2| ,
∀ε1, ε2 ∈ S

d, a.e. x ∈ Ω, such that
c) the mapping x 7−→ G (x, ε) is Lebesgue measurable on Ω, ∀ε ∈ S

d,
d) the mapping x 7−→ G (x,0, 0) belongs to H.

(4.15)
The permeability tensor γ satisfy






a) E : Ω× S
d → R

d,
b) E (x, ζ) = (eijk(x)ζjk) , ∀ζ = (ζij) ∈ S

d a.e. x ∈ Ω,
c) eijk = eikj ∈ L∞ (Ω)

(4.16)





a) γ : Ω× R
d → R

d,
b) γ (x,E) = (γij(x)Ej) , ∀E = (Ei) ∈ R

da.e. x ∈ Ω,
c) γik = γji ∈ L∞ (Ω) ,

d) there exists mγ > 0 such that γij(x)EiEj ≥ mγ ‖E‖
2
,

∀E = (Ei) ∈ R
da.e. x ∈ Ω.

(4.17)

We also assume that the normal compliance function p satisfies





a) p : Γ3 × R → R+,
b) there exists Lp > such that |p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2| ,
∀r1, r2 ∈ R, a.e. x ∈ Γ,
c) the mapping x 7−→ p(x, r) is Lebesgue mesurable in Γ3, ∀r ∈ R,
d) r ≤ 0, p(x, r) = 0, a.e. x ∈ Γ3.

(4.18)

As example of normal compliance functions which satisfy (4.18), we may consider
p(x, r) = cr+, where c > 0 and r+ = max {0, r}. This condition (4.18) means
that the reaction of the obstacle is proportional to the penetration (uν)+. The gap
function g satisfies the initial potential ϕ0, the friction coefficient the volume of
forces f0 and f2 and the charges densities qa, qb satisfy

g ∈ L2(Γ3), g ≥ 0 a.e. on Γ3, ϕ0 ∈ L2(Γ3), (4.19)

µ ∈ L∞(Γ3), µ ≥ 0 a.e. on Γ3, |µ|L∞(Γ3)
≤ µ0, (4.20)

f0 ∈ L2
(
0, T ;L2 (Ω)

d
)
, f2 ∈ L2

(
0, T ;L2 (Γ2)

d
)
, (4.21)

q0 ∈ W 1,p
(
0, T ;L2 (Ω)

)
,qb ∈ W 1,p

(
0, T ;L2 (Γb)

)
. (4.22)



34 L. Ait kaki and M. Denche

By means of a Riesz representation theorem and the assumptions on the problem’s
data, let define the mappings

(f(t),v)V ′,V =(f0(t),v)H + (f2(t),v)L2(Γ2)
d , ∀v ∈ V , a.e. t ∈ (0, T ) , (4.23)

(q(t), ξ)W =− (q0(t), ξ)L2(Ω) − (qb(t), ξ)L2(Γb)
, ∀ξ ∈ W , t ∈ (0, T ) , (4.24)

j(u,v) =

∫

Γ3

p(uν − g)vν da+

∫

Γ3

µp(uν − g) ‖vτ‖ da, ∀u,v ∈ V , (4.25)

(h (u, ϕ) , ξ) =

∫

Γ3

ψ (uν − g)φL (ϕ− ϕ0) ξ da,∀u ∈ V , ∀ξ,ϕ ∈ W,

The variational formulation of the problem P is given by

(Aε(u̇ (t)), ε(v)−ε(u̇ (t) ))
H

+ (G(ε(u(t)), ε(v)−ε(u̇ (t) ))
H
+

(E∗∇ϕ(t), ε(v)−ε(u̇ (t) ))
H

+ j (u(t),v)− j (u(t), u̇ (t))
≥ (f(t), ε(v)−ε(u̇ (t) ))V ′,V , ∀v ∈ V, ∀t ∈ [0, T ] ,

(4.26)

(γ∇ϕ(t),∇ξ)
H

− (Eε(u(t),∇ξ)
H

+ (h (u(t), ϕ(t)) , ξ)W (4.27)

= (q(t), ξ)W ,∀ξ ∈W , ∀t ∈ [0, T ] , (4.28)

u(0) = u0. (4.29)

Note on one hand that the continuous imbeddings V ⊂ H ⊂ V ′ resp (W ⊂ H ⊂
W ′) and the Riesz representation theorem allow us to define the operators A,B :
V → V , C :W →W , E∗ :W →W and E : V →W such that

(Aε(u̇ (t)), ε(v)
H

= (Au̇(t), v)V , (G(ε(u(t)), ε(v))
H

= (Bu(t), v)V , (4.30)

(E∗∇ϕ(t), ε(v))
H

= (E∗ϕ(t), v)V , (γ∇ϕ(t),∇ξ)
H

= (Cϕ(t), ξ)W , (4.31)

(Eε(u(t),∇ξ)
H

= (Eϕ(t), ξ)W , for all v ∈ V , ζ ∈W , (4.32)

and on the other hand by assumptions (4.18), (4.20) and the Sobolev’s trace theo-
rem (2.2), the functional j given by (4.25) is convex, l.s.c. and satisfies

j(u1, v2)− j(u2, v1) + j(u2, v1)− j(u2, v2) (4.33)

≤ m |u1 − u2| |v1 − v2|V , ∀ui, vi ∈ V, i = 1, 2,

where m = c̃20µ0Lν . In addition to the assumptions data of the problem P , we
deduce that all the assumptions of Theorem 2.1 hold, hence we conclude that there
exists a unique weak solution of the problem P satisfing (4.26)-(4.29) with the
regularity (u, ϕ) ∈ W 2,p(0, T ;V )×W 1,p(0, T ;W ).

5. Conclusion

We studied a class of abstract evolutionary variational problema modelling a
the quasistatic process of frictional contact between a deformable body made of an
electro-viscoelastic material, and a conductive deformable foundation. An example
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of a contact modeled with the normal compliance condition and the associated
Coulomb’s law of dry friction.

Our interest is to show that the abstract problem with a regularised electric
boundary conditions has a unique weak solution. The existence of the unique weak
solution for the problem was established by using arguments from the theory of evo-
lutionary variational inequalities involving nonlinear strongly monotone Lipschitz
continuous operators, and a fixed-point theorem. The novelly in this work is that
we established the result of existence of solution without a smallness assumption
given in [2,7], from now on, this will not represents a physical obstacle to study a
contact problems with a deformable and conductive foundation, under the electric
boundary condition (4.11) which combining the penetration of the body and it’s
potential drop.
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