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Zeroth-order General Randić Index of Trees

Tomáš Vetŕık and Selvaraj Balachandran

abstract: Randić indices belong to the most well-known topological indices. We study a very general
index called the zeroth-order general Randić index. We present upper and lower bounds on the zeroth-order
general Randić index for trees with given order and independence number, and for trees with given order and
domination number. We also show that the bounds are best possible.
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1. Introduction

Topological indices have been studied because of their extensive applications. These indices are
graph invariants that play a significant role in chemistry, materials science, pharmaceutical sciences and
engineering, since they can be correlated with a large number of physico-chemical properties of molecules.
Randić indices belong to the most well-known topological indices. We use graph theory to study the
zeroth-order general Randić index.

Let G be a graph with the vertex set V (G) and the edge set E(G). The order n of a graph G is the
number of vertices of G. The degree of a vertex v ∈ V (G) is the number of edges incident with v and it
is denoted by dG(v) (or simply d(v)). We denote the star and the path graph of order n by Sn and Pn,
respectively. A tree T is a graph containing no cycles. A leaf is a vertex of T having degree one.

An independent set S is a subset of V (G) such that no two vertices in S are adjacent. The indepen-
dence number α(G) is the number of vertices in a maximum independent set of G. A dominating set D is
a subset of V (G) such that every vertex not in D is adjacent to at least one vertex in D. The domination
number γ(G) of a graph G is the cardinality of a smallest dominating set.

The zeroth-order general Randić index of a graph G is defined as

Ma
1 (G) =

∑

v∈V (G)

dG(v)
a

where a 6= 0 is a real number. If a = 2, we obtain the well-known first Zagreb index M1(G) =
∑

v∈V (G) dG(v)
2.

Khalid and Ali [7] studied tress of given order and given number of leaves/segments/branching vertices
and they determined the maximum and minimum zeroth-order general Randić index for those trees.
Yamaguchi [12] obtained the largest zeroth-order general Randić index for trees of given order, and given
diameter or radius. An upper bound on the zeroth-order general Randić index for trees of given order
and independence number, where a > 1, was presented by Tomescu and Jamil [9].

Bounds on Zagreb indices for trees with given order and domination number were given by Borovićanin
and Furtula [2] and trees with given independence number were studied in [3] and [10]. Kazemi and
Behtoei [6] obtained the mean value of the first Zagreb index for d-ary trees. Lin [8] characterized trees
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which minimize and maximize the first Zagreb index among all trees with fixed number of segments.
Upper and lower bounds on the first Zagreb index of apex trees were presented in [1]. Various Zagreb
indices for trees were studied in numerous papers, see for example [4], [5] and [11].

We present bounds on the zeroth-order general Randić index for trees with given order and indepen-
dence number, and for trees with given order and domination number. We also show that the bounds
are sharp.

2. Preliminary results

We use Lemma 2.2 in the proof of Theorem 3.1 and Lemma 2.1 in the proofs of Theorems 3.2 an 3.3.
Lemmas 2.1 and 2.2 can be stated in a more general form. We keep them simple, because this form is
sufficient for us and it is easy to follow the proofs.

Lemma 2.1. Let 1 ≤ x1 ≤ x2. For a > 1 and a < 0, we have

(x1 + 1)a − xa
1 ≤ (x2 + 1)a − xa

2 .

If 0 < a < 1, then
(x1 + 1)a − xa

1 ≥ (x2 + 1)a − xa
2 .

Equalities hold if and only if x1 = x2.

Proof. Let us study the function
f(x) = (x+ 1)a − xa.

for x ≥ 1. The derivative
f ′(x) = a[(x + 1)a−1 − xa−1].

If a > 1, then (x+ 1)a−1 > xa−1, thus f ′(x) > 0 which means that f(x) is a strictly increasing function.
Let a < 1. Then 1− a = c > 0. We have

(x+ 1)a−1 − xa−1 =

(

1

x+ 1

)c

−

(

1

x

)c

< 0

since 0 < 1
x+1 < 1

x
≤ 1 which means that

(

1
x+1

)c

<
(

1
x

)c
. Thus if a < 0, then f ′(x) > 0, so f(x) is a

strictly increasing function. If 0 < a < 1, then f ′(x) < 0 and f(x) is a strictly decreasing function.
Hence for a > 1 and a < 0, if x1 ≤ x2, then f(x1) ≤ f(x2) which gives

(x1 + 1)a − xa
1 ≤ (x2 + 1)a − xa

2 .

For 0 < a < 1, if x1 ≤ x2, then f(x1) ≥ f(x2) which gives

(x1 + 1)a − xa
1 ≥ (x2 + 1)a − xa

2 .

Clearly, equalities hold if and only if x1 = x2. �

Lemma 2.2. Let 2 ≤ x1 ≤ x2. For a > 1 and a < 0, we have

xa
1 + xa

2 < (x1 − 1)a + (x2 + 1)a.

If 0 < a < 1, then
xa
1 + xa

2 > (x1 − 1)a + (x2 + 1)a.

Proof. Let x ≥ 1. From the proof of Lemma 2.2 we know that the function

f(x) = (x + 1)a − xa

is strictly increasing for a > 1 and a < 0. So if 2 ≤ x1 ≤ x2, then f(x1 − 1) < f(x2) which gives

xa
1 + xa

2 < (x1 − 1)a + (x2 + 1)a.

For 0 < a < 1, f(x) is strictly decreasing. Thus if 2 ≤ x1 ≤ x2, then f(x1 − 1) > f(x2) which gives

xa
1 + xa

2 > (x1 − 1)a + (x2 + 1)a.

�
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3. Main results

Any tree with n vertices is a bipartite graph and each partite set is an independent set. One of the
partite sets has at least n

2 vertices, thus for every tree T we obtain α(T ) ≥ n
2 . Note that α(T ) ≤ n− 1

and the equality holds for stars. Therefore for any tree having n vertices and independence number s,
we get n

2 ≤ s ≤ n− 1.
In Theorems 3.1 and 3.2 we present upper and lower bounds on the zeroth-order general Randić index

for trees of given order and independence number.

Theorem 3.1. Let T be a tree having order n and independence number s. For a > 1 and a < 0, we
have

Ma
1 (T ) ≥ (n− 1− (n− s)p)(p+ 1)a + (1− s+ (n− s)p)pa + (n− s− 1)2a + 2s− n+ 1,

and if 0 < a < 1, then

Ma
1 (T ) ≤ (n− 1− (n− s)p)(p+ 1)a + (1− s+ (n− s)p)pa + (n− s− 1)2a + 2s− n+ 1,

where p =
⌊

n−1
n−s

⌋

. The bounds are sharp.

Proof. Let T be a tree of order n having independence number s. Let S be any independent set in T

having s vertices. We define S = V (T ) \ S. Note that |S| = n − s. Let y be the number of edges uv

with u ∈ S and v ∈ S. We denote by z the number of edges between vertices in S. The set S is an
independent set, thus there are no edges between vertices of S. Every tree has n− 1 edges, so we obtain
z + y = n− 1. We have

∑

u∈S

d(u) = y = n− z − 1

and
∑

u∈S

d(u) +
∑

u∈S

d(u) =
∑

u∈V (T )

d(u) = 2|E(T )| = 2n− 2,

thus
∑

u∈S

d(u) =
∑

u∈V (T )

d(u)−
∑

u∈S

d(u) = n+ z − 1.

We know that

Ma
1 (T ) =

(

∑

u∈S

d(u)a

)

+





∑

u∈S

d(u)a



 .

By Lemma 2.2, the sum
∑

u∈S d(u)a is smallest for a > 1 and a < 0 (the sum
∑

u∈S d(u)a is largest
for 0 < a < 1) if d(u) and d(v) differ by at most one for any u, v ∈ S. We have |S| = s, thus
d(u), d(v) ∈

{⌊

y
s

⌋

,
⌈

y
s

⌉}

. Similarly,
∑

u∈S d(u)a is smallest for a > 1 and a < 0 (
∑

u∈S d(u)a is largest

for 0 < a < 1) if d(u) and d(v) differ by at most one for any u, v ∈ S. We have |S| = n − s, thus

d(u), d(v) ∈
{⌊

n+z−1
n−s

⌋

,
⌈

n+z−1
n−s

⌉}

.

Since d(u) ≥ 1, we obtain
∑

u∈S d(u) ≥ s, thus y ≥ s and 1 ≤ y

s
. We know that for trees s ≥ n

2 ,
therefore

1 ≤
y

s
=

n− z − 1

s
≤

n− 1
n
2

< 2.

Thus
⌊

y

s

⌋

= 1 which means that y = s + t where 0 ≤ t < s. So
∑

u∈S d(u)a is smallest for a > 1 and
a < 0 (

∑

u∈S d(u)a is largest for 0 < a < 1) if S contains t vertices having degree 2 and s − t vertices
having degree 1. Then for a > 1 and a < 0,

∑

u∈S

d(u)a ≥ t2a + (s− t)1a = (y − s)2a + (s− (y − s)) = (y − s)2a + 2s− y

= (n− z − 1− s)2a + 2s− n+ z + 1.
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If 0 < a < 1, then
∑

u∈S

d(u)a ≤ (n− z − 1− s)2a − n+ z + 1.

We have
∑

u∈S d(u) = n+z−1 and |S| = n−s, therefore n+z−1 ≥ n−s. Let n+z−1 = (n−s)k+ l

where k =
⌊

n+z−1
n−s

⌋

and 0 ≤ l < n− s. Then l = n+ z − 1 − (n− s)
⌊

n+z−1
n−s

⌋

. The sum
∑

u∈S d(u)a is

smallest for a > 1 and a < 0 (
∑

u∈S d(u)a is largest for 0 < a < 1) if S contains l vertices having degree

k + 1 and n − s − l vertices having degree k. Let us use k instead of
⌊

n+z−1
n−s

⌋

in the next paragraphs.

For a > 1 and a < 0, we get

∑

u∈S

d(u)a ≥ l(k + 1)a + (n− s− l)ka

= (n+ z − 1− (n− s)k)(k + 1)a + (n− s− (n+ z − 1− (n− s)k))ka

= (n+ z − 1− (n− s)k)(k + 1)a + (1− s− z + (n− s)k)ka

and

Ma
1 (T ) ≥ (n− z − 1− s)2a + 2s− n+ z + 1

+(n+ z − 1− (n− s)k)(k + 1)a + (1− s− z + (n− s)k)ka = f(z).

For 0 < a < 1,

∑

u∈S

d(u)a ≤ (n+ z − 1− (n− s)k)(k + 1)a + (1 − s− z + (n− s)k)ka

and

Ma
1 (T ) ≤ (n− z − 1− s)2a + 2s− n+ z + 1

+(n+ z − 1− (n− s)k)(k + 1)a + (1− s− z + (n− s)k)ka = f(z).

We have s ≤ y = n− z − 1, thus 0 ≤ z ≤ n− 1− s and

n− 1

n− s
≤

n+ z − 1

n− s
≤

n− 2

n− s
+ 1 <

n− 1

n− s
+ 1.

This means that the interval
[

n−1
n−s

, n−1
n−s

+ 1
)

contains exactly one integer. If z = (n− s)
⌊

n−1
n−s

⌋

− s+ 1,

we get n+z−1
n−s

=
⌊

n−1
n−s

⌋

+ 1. This means that

k =

⌊

n− 1

n− s

⌋

for 0 ≤ z < (n− s)

⌊

n− 1

n− s

⌋

− s+ 1 (3.1)

and

k =

⌊

n− 1

n− s

⌋

+ 1 for (n− s)

⌊

n− 1

n− s

⌋

− s+ 1 ≤ z ≤ n− s− 1. (3.2)

Then

f(z) = z((k + 1)a + 1− ka − 2a) + (n− 1− (n− s)k)(k + 1)a

+(1− s+ (n− s)k)ka + (n− 1− s)2a + 2s− n+ 1.

We show that Theorem 3.1 holds for k = 1. Note that z ≥ 0 and s ≥
⌈

n
2

⌉

. Thus

n+ z − 1

n− s
≥

n− 1
⌊

n
2

⌋ =

{

2 if n is odd,
2− 2

n
if n is even.
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So k = 1 if and only if n is even, z = 0 and s = n
2 . This is satisfied only by paths with 2s vertices if

d(u) and d(v) differ by at most one for u, v ∈ S and u, v ∈ S. Note that paths satisfy the bound given in
Theorem 3.1.

So let us suppose that k ≥ 2. By Lemma 2.2, for a > 1 and a < 0, we have (k+1)a+1− ka− 2a > 0,
thus z1((k + 1)a + 1− ka − 2a) < z2((k + 1)a + 1− ka − 2a) for z1 < z2. Therefore if z is in the interval
obtained in (3.1), f(z) is smallest for z = 0. If z is in the interval obtained in (3.2), f(z) is smallest for

z′ = (n− s)
⌊

n−1
n−s

⌋

− s+ 1.

If 0 < a < 1, then (k+1)a+1−ka−2a < 0, thus z1((k+1)a+1−ka−2a) > z2((k+1)a+1−ka−2a)
for z1 < z2. Therefore if z is in the interval obtained in (3.1), f(z) is largest for z = 0. If z is in the

interval obtained in (3.2), f(z) is largest for z′ = (n− s)
⌊

n−1
n−s

⌋

− s+ 1.

We compare f(0) and f(z′). Let p =
⌊

n−1
n−s

⌋

. We get k = p for z = 0 and k = p + 1 for z′ =

(n− s)p− s+ 1. We obtain

f(z′) = z′((p+ 2)a + 1− (p+ 1)a − 2a)

−z′(p+ 2)a + (z′ + n− s)(p+ 1)a + (n− 1− s)2a + 2s− n+ 1

= z′(1 − 2a) + (n− s)(p+ 1)a + (n− 1− s)2a + 2s− n+ 1

and

f(0) = (n− 1− (n− s)p)(p+ 1)a + (1 − s+ (n− s)p)pa + (n− 1− s)2a + 2s− n+ 1.

Consequently, for a > 1 and a < 0,

f(z′)− f(0) = z′((p+ 1)a + 1− pa − 2a) > 0

for p ≥ 2 since from Lemma 2.2 we have (p+ 1)a + 1− pa − 2a > 0. Therefore f(z′) > f(0) which yields
Ma

1 (T ) ≥ f(0).

If 0 < a < 1, then

f(z′)− f(0) = z′((p+ 1)a + 1− pa − 2a) < 0

for p ≥ 2 since from Lemma 2.2 we have (p+ 1)a + 1− pa − 2a < 0. Therefore f(z′) < f(0) which yields
Ma

1 (T ) ≤ f(0).

If p =
⌊

n−1
n−s

⌋

= 1, we get s = n
2 . Otherwise if s ≥ n+1

2 , we would obtain
⌊

n−1
n−s

⌋

≥ 2). So s = n
2 and

it holds only for paths if d(u) and d(v) differ by at most one for u, v ∈ S and u, v ∈ S. Note that paths
satisfy the bound stated in Theorem 3.1.

We show that the bounds are sharp. Let T be a tree with z = 0, which implies that S is also an
independent set, where degrees of any two vertices in S differ by at most one and degrees of any two
vertices in S differ by at most one. Then

Ma
1 (T ) = f(0) = (n− 1− (n− s)p)(p+ 1)a + (1 − s+ (n− s)p)pa + (n− 1− s)2a + 2s− n+ 1

where p =
⌊

n−1
n−s

⌋

. Hence the bounds stated in Theorem 3.1 are sharp. �

Theorem 3.2. Let T be a tree having order n and independence number s. Then for a > 1 and a < 0,

Ma
1 (T ) ≤ sα + s+ 2α(n− s− 1).

If 0 < a < 1, then

Ma
1 (T ) ≥ sα + s+ 2α(n− s− 1).

The bounds are sharp.
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Proof. The bound holds for small n. For n = 2, the only tree is the path P2 and we have s = 1. If n = 3,
we get P3 and s = 2. For n = 4 we have two trees, namely S4 if s = 3 and P4 if s = 2, and the bound is
again satisfied.

Let us prove Theorem 3.2 by induction on n. Let T be a tree with n vertices and independence
number s, where n ≥ 5 and n

2 < s < n − 1 (cases s = n
2 and s = n − 1 are discussed at the end of

this proof). Assume that the bound is satisfied for trees having n′ = n − 1 vertices (their independence

number is s′ = s or s′ = s− 1). This means that for n
2 < s < n− 1, we have n′

2 ≤ s′ ≤ n′ − 1.
Let v1v2 . . . vd+1 be any path having length d in T , where d is the diameter of T . So v1 and vd+1 are

leaves. Let dT (v2) = k. We obtain k ≤ s. Let S be any maximum independent set of T . Let T1 be a tree
with V (T1) = V (T ) \ {v1} and E(T1) = E(T ) \ {v1v2}. Let us consider two cases.

Case 1: v1 6∈ S.

Then α(T1) = s. If v2 would be adjacent to w 6∈ {v1, v3} in T that is not a leaf, we get a path of length
at least d+1 in T . If v2 would be adjacent to w 6∈ {v1, v3} that is a leaf, then v1 and w must be in every
maximum independent set (which means that v1 ∈ S). Thus v1 and v3 are the only neighbours of v2 in
T . Therefore dT (v1) = 1, dT (v2) = 2, dT1

(v2) = 1 and

Ma
1 (T )−Ma

1 (T1) = 2α.

Since T1 has order n− 1 and independence number s, for a > 1 and a < 0, by the induction hypothesis
we get

Ma
1 (T1) ≤ sα + s+ 2α((n− 1)− s− 1).

Then
Ma

1 (T ) = Ma
1 (T1) + 2α ≤ sα + s+ 2α(n− s− 1).

If 0 < a < 1, then by the induction hypothesis we get

Ma
1 (T1) ≥ sα + s+ 2α((n− 1)− s− 1).

Thus
Ma

1 (T ) = Ma
1 (T1) + 2α ≥ sα + s+ 2α(n− s− 1).

Case 2: v1 ∈ S.

Then α(T1) = s− 1. We have dT (v1) = 1, dT (v2) = k and dT1
(v2) = k − 1, thus

Ma
1 (T )−Ma

1 (T1) = 1 + kα − (k − 1)α.

Note that T1 has order n− 1 and independence number s− 1, so for a > 1 and a < 0, by the induction
hypothesis we get

Ma
1 (T1) ≤ (s− 1)α + (s− 1) + 2α((n− 1)− (s− 1)− 1).

Thus

Ma
1 (T ) = Ma

1 (T1) + 1 + kα − (k − 1)α ≤ (s− 1)α + (s− 1) + 2α(n− s− 1) + 1 + kα − (k − 1)α.

Since by Lemma 2.1, kα − (k − 1)α ≤ sα − (s− 1)α, we get

Ma
1 (T ) ≤ sα + s+ 2α(n− s− 1).

If 0 < a < 1, then by the induction hypothesis we get

Ma
1 (T1) ≥ (s− 1)α + (s− 1) + 2α((n− 1)− (s− 1)− 1).

Thus
Ma

1 (T ) ≥ (s− 1)α + (s− 1) + 2α(n− s− 1) + 1 + kα − (k − 1)α.

Since by Lemma 2.1, kα − (k − 1)α ≥ sα − (s− 1)α, we get

Ma
1 (T ) ≥ sα + s+ 2α(n− s− 1).
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It is easy to check that the bound is satisfied if s = n
2 and if s = n− 1. If s = n− 1, we obtain a star

and for stars Sn we get Ma
1 (Sn) = (n − 1)α + n − 1. If s = n

2 , then both partite sets of T (which is a
bipartite graph) have n

2 vertices. Each partite set is an independent set of T , so there is an independent
set not containing the leaf v1. Then we can use Case 1 and prove the bound by induction.

Let us show that the bounds are sharp. Let T be a tree containing one vertex w having degree s,
where w is adjacent to 2s−n+1 leaves and n− s− 1 vertices of degree 2 such that every vertex of degree
2 is adjacent to a leaf. The vertices adjacent to w form a maximum independent set. The order of T is
n and the independence number is s. We have

Ma
1 (T ) = sα + s+ 2α(n− s− 1),

therefore the bounds are sharp. �

Any tree of order n is a bipartite graph and each partite set is a dominating set. One of the partite
sets has at most n

2 vertices, thus for every tree T we obtain γ(T ) ≤ n
2 . Note that γ(Sn) = 1. Therefore

for any tree having n vertices and dominating number γ, we get 1 ≤ γ ≤ n
2 .

Let us state bounds on the zeroth-order general Randić index for trees of given order and domination
number.

Theorem 3.3. Let T be a tree having order n and domination number γ. Then for a > 1 and a < 0,

Ma
1 (T ) ≤ (n− γ)α + n− γ + 2α(γ − 1).

If 0 < a < 1, then

Ma
1 (T ) ≥ (n− γ)α + n− γ + 2α(γ − 1).

The bounds are sharp.

Proof. The bound holds for small n. For n = 2, the only tree is the path P2. If n = 3, we get P3. In
both cases γ = 1. For n = 4 we have two trees, namely S4 if γ = 1 and P4 if γ = 2, and the bound is
again satisfied.

Let us prove Theorem 3.3 by induction on n. Let T be a tree with n vertices and domination number
γ, where n ≥ 5 and 1 < γ < n

2 (cases γ = 1 and γ = n
2 are discussed at the end of this proof). Assume

that the bound is satisfied for trees having n′ = n − 1 vertices (their domination number is γ′ = γ or

γ′ = γ − 1). This means that for 1 < γ < n
2 , we have 1 ≤ γ′ ≤ n′

2 .
Let v1v2 . . . vd+1 be any path having length d in T , where d is the diameter of T . So v1 and vd+1 are

leaves. Let dT (v2) = k. Clearly, all vertices except for the neighbours of v2 also form a dominating set of
T , which means that γ ≤ n− k. Thus k ≤ n− γ. Let D be any smallest dominating set of T . Let T1 be
a tree with V (T1) = V (T ) \ {v1} and E(T1) = E(T ) \ {v1v2}. Let us consider two cases.

Case 1: v1 6∈ D.

Then γ(T1) = γ. We have dT (v1) = 1, dT (v2) = k and dT1
(v2) = k − 1, thus

Ma
1 (T )−Ma

1 (T1) = 1 + kα − (k − 1)α.

Note that T1 has order n − 1 and domination number γ, so for a > 1 and a < 0, by the induction
hypothesis we get

Ma
1 (T1) ≤ ((n− 1)− γ)α + (n− 1)− γ + 2α(γ − 1).

Thus

Ma
1 (T ) = Ma

1 (T1) + 1 + kα − (k − 1)α ≤ (n− γ − 1)α + n− γ − 1 + 2α(γ − 1) + 1 + kα − (k − 1)α.

Since by Lemma 2.1, kα − (k − 1)α ≤ (n− γ)α − (n− γ − 1)α, we get

Ma
1 (T ) ≤ (n− γ)α + n− γ + 2α(γ − 1).
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If 0 < a < 1, then by the induction hypothesis we get

Ma
1 (T1) ≥ ((n− 1)− γ)α + (n− 1)− γ + 2α(γ − 1).

Thus
Ma

1 (T ) ≥ (n− γ − 1)α + n− γ − 1 + 2α(γ − 1) + 1 + kα − (k − 1)α.

Since by Lemma 2.1, kα − (k − 1)α ≥ (n− γ)α − (n− γ − 1)α, we get

Ma
1 (T ) ≥ (n− γ)α + n− γ + 2α(γ − 1).

Case 2: v1 ∈ D.

Then γ(T1) = γ − 1. If v2 would be adjacent to w 6∈ {v1, v3} in T that is not a leaf, we get a path of
length at least d+1 in T . If v2 would be adjacent to w 6∈ {v1, v3} that is a leaf, then v2 must be in every
smallest dominating set (which means that v1 6∈ D). Thus v1 and v3 are the only neighbours of v2 in T .
So dT (v1) = 1, dT (v2) = 2, dT1

(v2) = 1 and

Ma
1 (T )−Ma

1 (T1) = 2α.

Since T1 has order n− 1 and domination number γ− 1, for a > 1 and a < 0, by the induction hypothesis
we get

Ma
1 (T1) ≤ ((n− 1)− (γ − 1))α + (n− 1)− (γ − 1) + 2α((γ − 1)− 1).

Then
Ma

1 (T ) = Ma
1 (T1) + 2α ≤ (n− γ)α + n− γ + 2α(γ − 2) + 2α.

If 0 < a < 1, then by the induction hypothesis we get

Ma
1 (T1) ≥ ((n− 1)− (γ − 1))α + (n− 1)− (γ − 1) + 2α((γ − 1)− 1).

Thus
Ma

1 (T ) = Ma
1 (T1) + 2α ≥ (n− γ)α + n− γ + 2α(γ − 2) + 2α.

It is easy to check that the bound is satisfied if γ = 1 and if γ = n
2 . If γ = 1, we obtain a star and for

stars Sn we get Ma
1 (Sn) = (n− 1)α + n− 1. If γ = n

2 , then both partite sets of T (which is a bipartite
graph) have n

2 vertices. Each partite set is a dominating set of T , so there is a dominating set containing
the leaf v1. Then we can use Case 2 and prove the bound by induction.

Let us show that the bounds are sharp. Let T be a tree containing one vertex w having degree s,
where w is adjacent to n− 2γ + 1 leaves and γ − 1 vertices of degree 2 such that every vertex of degree
2 is adjacent to a leaf. The vertices of degree at least 2 form a minimum dominating set. The order of T
is n and the domination number is γ. We have

Ma
1 (T ) = (n− γ)α + n− γ + 2α(γ − 1),

therefore the bounds are sharp. �

4. Conclusion

In Theorem 3.1 we showed that if a > 1 or a < 0, then for a tree T having order n and independence
number s, we have

Ma
1 (T ) ≥ (n− 1− (n− s)p)(p+ 1)a + (1− s+ (n− s)p)pa + (n− s− 1)2a + 2s− n+ 1,

where p =
⌊

n−1
n−s

⌋

. Vasilyev, Darda and Stevanović [10] proved that

M1(T ) ≥ 2(n− 1) +

⌊

n− 1

s

⌋

(2n− 2− s) +

⌊

n− 1

n− s

⌋

(n− 2 + s)−

⌊

n− 1

s

⌋2

s−

⌊

n− 1

n− s

⌋2

(n− s).
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Note that this result can be presented in a simpler form. For any tree having n vertices and independence
number s, we have n

2 ≤ s ≤ n− 1, therefore
⌊

n−1
s

⌋

= 1. For a = 2, the zeroth-order general Randić index
is the first Zagreb index and from Theorem 3.1 we obtain

M1(T ) = M2
1 (T ) ≥ (n− 1− (n− s)p)(p+ 1)2 + (1− s+ (n− s)p)p2 + (n− s− 1)22 + 2s− n+ 1

= 4(n− 1)− 2s+ (n+ s− 2)p− (n− s)p2

= 4(n− 1)− 2s+

⌊

n− 1

n− s

⌋

(n+ s− 2)−

⌊

n− 1

n− s

⌋2

(n− s).
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12. Yamaguchi, S., Zeroth-order general Randić index of trees with given order and distance conditions. MATCH Commun.
Math. Comput. Chem. 62 (1), 171-175, (2009).
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