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abstract: The aim of this paper is to prove the existence of weak periodic solution and super solution for
M ×M reaction diffusion system with L

1 data and nonlinearity on the gradient. The existence is proved by
the technique of sub and super solution and Schauder fixed point theorem.
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1. Introduction

Periodic behavior of solutions of quasilinear parabolic systems intervenes in the mathematical mod-
eling of a large variety of phenomena, no only in the biology but also in natural sciences, chimical,
engineering and ecology, such as gas dynamics, fusion processes, certain biological models, cellular pro-
cesses and disease propagation. The literature of time periodic solutions of ordinary, functional differential
equations have a great development, several results has been published not just in pure journals of math-
ematics but also those of applied and modelling, this is due in part to their wide applicability. Most of the
studies are devoted to the existence of global solutions, their periodic behavior and regularity properties,
particularly in relation to degenerate and singular systems.
At the same time, the periodicity of solutions for parabolic boundary value problems has also attracted
great interests of scientists, and a lots of results have been reported under either Dirichlet or Neumann
boundary conditions ( [6,10,20,24]) all these papers treat classical solutions. In the last few years atten-
tion has been given to the notion of weak solutions for boundary value problems ( [3,8,9,14,18]) these
works used differents method, topological degree theory, Schauder fixed point theorem, bifurcation the-
ory, method of sub and super solutions.

This work is devoted to study the existence of weak periodic solution for the following reaction-
diffusion systems





∂uj

∂t
− dj∆uj +Gj(t, x,∇u) = fj in QT ,

uj(0, .) = uj(T, .) in Ω, for j = 1, . . . ,M
uj(t, x) = 0 on ΣT ,

(1.1)
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where u = (u1, . . . , uM ), ∇u = (∇u1, . . . ,∇uM ), f = (f1, . . . , fM ), M > 2 and Ω is an open regular
bounded subset of RN , N > 1, with smooth boundary ∂Ω, T > 0 is the period, QT =]0, T [×Ω, ΣT =
]0, T [×∂Ω, −∆ denotes the Laplacian operator on L1(Ω) with Dirichlet boundary conditions, dj are
positive constants, Gj is a caratheodory function and fj is a nonnegative measurable function belongs to
L1(QT ). The result of this work can be applied to the example like model





∂u

∂t
− d1∆u+ α1 | ∇u |δ1 +β1 | ∇v |λ1= f1 in QT

∂v

∂t
− d2∆v + α2 | ∇u |δ2 +β2 | ∇v |λ2= f2 in QT

u(0, .) = u(T, .) in Ω
v(0, .) = v(T, .) in Ω
u = v = 0 on ΣT

(1.2)

where di, αi, βi are positives constants for i = 1, 2, to help understand the situation, let us mention some
recent works concerning the parabolic systems and periodic problems.

In [6] Amann has been intersted by the problem (1.2) when (f1, f2) are regular enough and 1 6

δi, λi 6 2, we prove the existence of classical solution in C1,2(QT ) ∩ C(QT ) by applying the technics of
sub and super-solution and Schauder’s fixed point theorem we refer the reader to [10], [20], [24] for more
details.

Alaa and M. Iguernane [3] have been considered the problem when the data (f1, f2) belongs to
L2(QT )×L2(QT ) and 1 6 δi, λi 6 2, they show the existence of weak periodic solution in L2(0, T ;H1

0(Ω))∩
C([0, T ], L2(Ω)).

The goal of this paper is to investigate the case when the data are irregular and the nonlinearity has
critical growth with respect to the gradient. We have organised this paper as follows, In section 2 we start
by defining the notion of weak periodic solution of (1.1), under some hypothesis we prove the existence of
weak periodic solution of (1.1). Section 3 is devoted to the application of our result to a periodic class of
reaction-diffusion system and section 4 present an existence theorem for the weak periodic super solution
of (1.1).

2. Main Result

This section presents two existence results for quasilinear parabolic periodic systems. The first result
prove the existence when the nonlinearities are bounded by function L1. The second result concerns
periodic systems with critical growth nonlinearity with respect to the gradient. Let us now introduce the
hypothesies which we assume throughout this section.

2.1. Assumptions

For all j = 1, . . . ,M , we consider that

fj ∈L
1(QT ), fj > 0 (2.1)

Gj(t, x, r) ∈L
1(QT ) for all r ∈ (RN )Mand a.e. (t, x) ∈ QT (2.2)

Gj : QT × Ω× (RN )M → [0,+∞[ a caratheodory function (2.3)

Gj(t, x, 0) = min{Gj(t, x, r), r ∈ (RN )M} = 0 (2.4)

Before showing the main result, we have to clarify in which sense we want to solve the system (1.1), for
which we introduce the notion of weak periodic solution.

Definition 2.1. A function u = (u1, . . . , uM ) is said to be a weak periodic solution of the system (1.1),
if satisfies for all j = 1, . . . ,M





uj ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

Gj(t, x,∇u) ∈ L1(QT ),
∂uj

∂t
− dj∆uj +Gj(t, x,∇u) = fj in D

′(QT ),

uj(0, .) = uj(T, .) in L1(Ω)

(2.5)



Weak Periodic Solution for Some Quasilinear Parabolic systems 3

Definition 2.2. We call weak periodic super-solution (resp. sub-solution) of (1.1) a function u satisfying
(2.5) with ” = ” remplaced by ” ≥ ” (resp. ” ≤ ”).

Remark 2.3. Let uj ∈ C([0, T ], L1(Ω)), we say that uj(0, .) = uj(T, .) in L1(Ω) if for all φ ∈ L∞(Ω),

lim
s7→0

∫

Ω

(uj(T − s, x)− uj(s, x))φ(x) dx = 0

Theorem 2.4. Under hypotheses (2.1)-(2.4), and assuming that there exists w = (w1, . . . , wM ) a weak
periodic super-solution of (1.1) and there exists a function θ ∈ L1(QT ) such that

{
| Gj(t, x, r) |≤ θ(t, x) a.e. (t, x) ∈ QT

∀r ∈ (RN )M , ∀j = 1, . . . ,M
(2.6)

Then the system (1.1) has a weak periodic solution satisfies for all j = 1, . . . ,M

0 ≤ uj ≤ wj in QT

Proof. For all j = 1, . . . ,M , we approximate fj as follows, let hn
j ∈ C2

0 (QT ), such that

hn
j > 0, ‖ hn

j ‖L1(QT )≤‖ fj ‖L1(QT ), (2.7)

and hn
j converges to fj in L1(QT )

+, we denote

fn
j = hn

j 1[wj≤n], wn
j = min(wj , n).

We define the approximate system of (1.1) by





un
j ∈ L2(0, T ;H1

0 (Ω)) ∩ C([0, T ], L2(Ω)),
∂un

j

∂t
− dj∆un

j +Gj(t, x,∇un−1
1 , . . . ,∇un

j , . . .∇un−1
M ) = fn

j in D′(QT ),

un
j (0, .) = un

j (T, .) in L2(Ω).

(2.8)

Since Gj is bounded and fn
j ∈ L∞(QT ), the problem (2.8) has a solution un

j (see [18]) such that

0 ≤ un
j ≤ wn

j ≤ wj (2.9)

We applied the result of [12], to get

‖ un
j ‖

L1(0,T ;W 1,1
0

(Ω)) ≤ C

[
‖ fn

j ‖L1(QT ) + ‖ Gj ‖L1(QT ) + ‖ un
j (0) ‖L1(Ω)

]

≤ C

[
‖ fj ‖L1(QT ) + ‖ θ ‖L1(QT ) + ‖ wj(0) ‖L1(Ω)

]
.

The last passage is obtained by using (2.6), (2.7) and (2.9). According to the classical result of [11], the
application (un

j (0), ξ
n
j ) 7−→ un

j is compact from L1(Ω)× L1(QT ) into L1(0, T ;W 1,1
0 (Ω)), where

ξnj (t, x) = fn
j (t, x)−Gj(t, x,∇un−1

1 , . . . ,∇un
j , . . . ,∇un−1

M )

Then, we can extract a subsequence of un
j , still denoted by un

j for simplicity, such that

un
j −→ uj in L1(0, T ;W 1,1

0 (Ω))

(un
j ,∇un

j ) −→ (uj ,∇uj) a.e. in QT .

By applying the dominated convergence theorem, it follows that

Gj(t, x,∇un−1
1 , . . . ,∇un

j , . . . ,∇un−1
M ) −→ Gj(t, x,∇u) in L1(QT )
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To ensure that uj is a solution of (1.1), we will show that uj is periodic in time, to do this we have

un
j (T ) = Sdj

(T )un
j (0) +

∫ T

0

S(T − s)ξnj (s, .)ds

where Sdj
(t) is the semigroup of contractions in L1(Ω) generated by the operator −dj∆ with Dirichlet

boundary condition on ∂Ω. Since un
j (0, .) = un

j (T, .) in L1(Ω), we have for all φ ∈ L∞(Ω)

lim
n→+∞

∫

Ω

un
j (0, x)φ(x)dx = lim

n→+∞

∫

Ω

Sdj
(T )un

j (0, x)φ(x)dx

+ lim
n→+∞

∫

Ω

∫ T

0

Sdj
(T − s)ξnj (s, x)φ(x)dsdx

as we can see Sdj
(t) is continuous in L1(Ω) and ξnj → ξj strongly in L1(QT ), then

∫

Ω

uj(0, x)φ(x)dx =

∫

Ω

Sdj
(T )uj(0, x)φ(x)dx +

∫

Ω

∫ T

0

Sdj
(T − s)ξj(s, x)dsdx,

=

∫

Ω

uj(T, x)φ(x)dx

Then uj(0, .) = uj(T, .) in L1(Ω). �

Theorem 2.5. Suppose that (2.1)-(2.4) hold, and assuming that for all j = 1, . . . ,M

| Gj(t, x, r1, . . . , rM ) |≤ Kj(t, x) +

M∑

j=1

Cj ‖rj‖
p
, (2.10)

for all p ∈ [1, N+2
N+1 [, rj ∈ R

N , with Kj ∈ L1(QT ) and Cj > 0.
Then (1.1) has a weak periodic solution uj satisfies for all j = 1, . . . ,M

0 ≤ uj ≤ ŵj in QT

where ŵj is solution of the following system





ŵj ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

∂ŵj

∂t
− dj∆ŵj = fj in D′(QT ),

ŵj(0, .) = ŵj(T, .) in L1(Ω).

Remark 2.6. Thanks to the positivity of the nonlinearities G, we can easily verified that ŵ=(ŵ1, . . . , ŵM)
is a weak periodic super solution of (1.1). The existence of ŵ will be proved in the Appendix by Schauder’s
fixed point theorem.

2.2. Proof

For all j = 1, . . . ,M , we approximate Gj as follows

Gn
j (t, x, r) =

Gj(t, x, r)

1 +
1

n
| Gj(t, x, r) |

1[ŵj6n]

Setting
fn
j = fj1[ŵj≤n], ŵn

j = min(ŵj , n)

We define the approximate system of (1.1) by





un
j ∈ L2(0, T ;H1

0(Ω)) ∩ C([0, T ], L2(Ω)),
∂un

j

∂t
− dj∆un

j +Gn
j (t, x,∇un) = fn

j in D
′(QT ),

un
j (0, .) = un

j (T, .) in L2(Ω).

(2.11)
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ŵn
j is a weak periodic super-solution of (2.11) and Gn

j is bounded by n, then by applying the result of
Theorem 2.4, problem (2.11) has a solution un

j such that

0 ≤ un
j ≤ ŵn

j ≤ ŵj , for all j = 1 . . .M. (2.12)

We want to pass to the limit in the approximate system (2.11), for this we need to prove the following
lemmas.
Set XT = Lp(0, T ;W 1,p

0 (Ω)), where 1 ≤ p < N+2
N+1 .

Lemma 2.7. For all j = 1, . . . ,M .

i) There exists a constant C depending on ‖ fj ‖L1(QT ) such that
∫

QT

| Gn
j (t, x,∇un) |≤ C

ii) There exists a constant C depending on p, T,Ω such that

‖ un
j ‖XT

≤ C

[
2 ‖ fj ‖L1(QT ) + ‖ ŵj(0) ‖L1(Ω)

]

Proof. i) Integrate the equation satisfied by un
j over QT , we get for all j = 1, . . . ,M .

∫

QT

∂un
j

∂t
−

∫

QT

dj∆un
j +

∫

QT

Gn
j (t, x,∇un) =

∫

QT

fn
j (t, x),

since un
j (0, .) = un

j (T, .) in Ω and Gn
j ≥ 0, we have

∫

QT

| Gn
j (t, x,∇un) | dxdt 6

∫

QT

fn
j (t, x)dxdt,

6‖ fj ‖L1(QT ) .

ii) Furthermore, by [12] we have

‖ un
j ‖XT

≤ C(p,Ω)

[
‖ fn

j ‖L1(QT ) + ‖ Gn
j (∇un) ‖L1(QT ) + ‖ un

j (0) ‖L1(Ω)

]

≤ C(p,Ω)

[
2 ‖ fj ‖L1(QT ) + ‖ ŵj(0) ‖L1(Ω)

]

The latter inequality is obtained by using (i) and (2.12). �

According to Lemma 3.3 we have fn
j (t, x)−Gn

j (t, x,∇un) bounded in L1(QT ), then we can apply the
compactness result of [11] to extract a subsequence of un

j denoted by un
j , such that

un
j −→ uj in L1(0, T ;W 1,1

0 (Ω))

(un
j ,∇un

j ) −→ (uj ,∇uj) a.e. in QT .

To ensure that uj is a solution of the problem (1.1), it remains to show that un
j converges to uj strongly

in XT . To do this, we write for m,n ≥ 1 and 0 < γ < 1,
∫

QT

| ∇un
j −∇um

j |p≤

(∫

QT

| ∇un
j −∇um

j |

)γ(∫

QT

| ∇un
j −∇um

j |
p−γ
1−γ

)1−γ

(2.13)

Choose γ such that p−γ
1−γ

= q ∈ [1, N+2
N+1 [, then (2.13) gives desired result.

Thanks to the assumption (2.10), we deduce

Gn
j (t, x,∇un) −→ Gj(t, x,∇u) in L1(QT )

Since the nonlinearities converge strongly in L1(QT ), the periodicity of uj can be obtained by the same
reasoning of the first proof.
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3. Application to a class of reaction-diffusion systems

In this paragraph we apply the result of the first section to prove the existence of weak periodic
solution for the following quasilinear parabolic system





∂uj

∂t
− dj∆uj +Gj(t, x,∇u) = Fj(t, x, u) + µj in QT ,

uj(0, .) = uj(T, .) in Ω,
uj(t, x) = 0 on ΣT

(3.1)

where u = (u1, . . . , uM ), ∇u = (∇u1, . . . ,∇uM ), µ = (µ1, . . . , µM ), F (., u) = (F1(., u), . . . , FM (., u)) with
M > 2, the nonlinearities Gj and Fj are assumed to be a caratheodory functions and µj is a nonnegative
measurable function belongs to L1(QT ). In order to show the existence of weak solution of (3.1), we will
follow the process of approximation, ”truncating” the nonlinearities term Gj(t, x,∇u) so that it becomes
bounded, and applying the result of Theorem 2.4 to study the behavior of a sequence (un

j ) solutions of
the approximated problems. Due to the structure of the approximation, the sequence (un

j ) will be non
decreasing with respect to n, so this monotony will be guaranteed a good compactness of the sequence
(un

j ) in a suitable Banach space.

3.1. Assumptions

For all j = 1, . . . ,M , we assume that

µj ∈ L1(QT ), µj > 0 (3.2)

Fj : [0, T ] × Ω× R
M → [0,+∞[ a caratheodory function (3.3)

Fj(t, x, s) ∈ L1(QT ), Fj(., s) is quasimonotone nondecreasing (3.4)

Gj : [0, T ] × Ω× (RN )M → [0,+∞[ a caratheodory function (3.5)

Gj(t, x, r) ≤ Hj(t, x) +

M∑

j=1

Cj ‖rj‖
2

(3.6)

with Hj ∈ L1(QT ) and Cj > 0. For (3.4) we recall that a function Fj(., u) is said to be quasimonotone
nondecreasing if Fj(., u) is nondecreasing with respect to all components uj of u. The notion of weak
periodic solution is presented here to clarify in which sense we want to solve the system (3.1).

Definition 3.1. A function u = (u1, . . . , uM ) is said to be a weak periodic solution of the system (3.1),
if for all j = 1, . . . ,M , we have





uj ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

Gj(t, x,∇u), Fj(t, x, u) ∈ L1(QT ),
∂uj

∂t
− dj∆uj +Gj(t, x,∇u) = Fj(t, x, u) + µj in D′(QT ),

uj(0, .) = uj(T, .) in L1(Ω)

(3.7)

Basing on the result of the first section, we can prove that (3.1) has nonnegative weak solution which
is the main result of the following theorem.

Theorem 3.2. Suppose that the hypotheses (3.2)-(3.6) hold, and assuming that there exists
v = (v1, . . . , vM ) such that, for all j = 1, . . . ,M





vj ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

Fj(t, x, v) ∈ L1(QT )
∂vj

∂t
− dj∆vj = Fj(t, x, v) + µj in D′(QT ),

vj(0, .) = vj(T, .) in L1(Ω).

Then (3.1) has a weak periodic solution u = (u1, . . . , uM ) such that for j = 1, . . . ,M , we have

0 6 uj 6 vj



Weak Periodic Solution for Some Quasilinear Parabolic systems 7

3.2. Approximating Problem

For j = 1, . . . ,M , we consider the sequence defined by u0
j = vj and for n > 1, un

j is the solution of
the followimg system





un
j ∈ L1(0, T ;W 1,1

0 (Ω)) ∩ C([0, T ], L1(Ω)),
∂un

j

∂t
− dj∆un

j +Gn
j (t, x,∇un) = Fj(t, x, u

n−1) + µj in D′(QT ),

un
j (0, .) = un

j (T, .) in L1(Ω).

(3.8)

Where,

Gn
j (t, x, r) =

Gj(t, x, r)

1 +
1

n
| Gj(t, x, r) |

by using Theorem 2.4 combined with an induction argument, we prove the existence of un
j solution of the

approximate system (3.8) such that
0 6 un

j 6 un−1
j 6 vj . (3.9)

3.3. A priori estimates

Before giving the lemmas that will be useful for the proof of Theorem 3.2, let us define the truncation
function Tk ∈ C2 for all real positive number k by,

Tk(s) = s if 0 6 s 6 k,

Tk(s) 6 k + 1 if s > k,

0 6T ′
k(s) 6 1 if s > 0,

T ′
k(s) = 0 if s > k + 1,

0 6 −T ′′
k (s) 6 C(k).

For example, the function Tk can be defined as

Tk(s) = s in [0, k],

Tk(s) =
1

2
(s− k)4 − (s− k)3 + s in [k, k + 1],

Tk(s) =
1

2
(k + 1) for s > k + 1.

Setting

Sk(v) =

∫ v

0

Tk(s) ds.

Lemma 3.3. For j = 1, . . . ,M .

i) There exists a constant C depending on ‖ µj ‖L1(QT ) and ‖ Fj(v) ‖L1(QT ), such that

∫

QT

| Gn
j (t, x,∇un) | dxdt 6 C.

ii)

lim
k 7→+∞

sup
n

∫

[un
j
>k]

| Gn
j (t, x,∇un) | dxdt = 0.

Proof. (i) Integrating the equation satisfies by un
j over QT ,

∫

QT

∂un
j

∂t
−

∫

QT

dj∆un
j +

∫

QT

Gn
j (t, x,∇un) =

∫

QT

Fj(t, x, u
n−1) +

∫

QT

µj ,
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since un
j (0, .) = un

j (T, .) in L1(Ω) and by using the assumptions (3.3), (3.4) and (3.9) we get

∫

QT

| Gn
j (t, x,∇un) |6

∫

QT

Fj(t, x, v) +

∫

QT

µj .

(ii) Multiplying the equation satisfies by un
j by the truncated function Tk(u

n
j ) and integrating over

QT , we obtain ∫

QT

∂Sk(u
n
j )

∂t
+ dj

∫

QT

| ∇Tk(u
n
j ) |

2 +

∫

QT

Gn
j (t, x,∇un)Tk(u

n
j )

=

∫

QT

Fj(t, x, u
n−1)Tk(u

n
j ) +

∫

QT

µjTk(u
n
j ),

the hypothesis on Fj and the periodicity of un
j , yields

∫

QT

Gn
j (t, x,∇un)Tk(u

n
j ) 6

∫

QT

Fj(t, x, v)Tk(u
n
j ) +

∫

QT

µjTk(u
n
j ),

then for every 0 < A < k, we have

k

∫

[un
j
>k]

Gn
j (t, x,∇un) 6 k

∫

QT ∩[un
j
>A]

(
Fj(t, x, v) + µj

)

+A

∫

QT∩[un
j
6A]

(
Fj(t, x, v) + µj

)
,

consequently, ∫

[un
j
>k]

Gn
j (t, x,∇un) 6

∫

QT

(
Fj(t, x, v) + µj

)
χ[un

j
>A]

+
A

k

∫

QT

(
Fj(t, x, v) + µj

)
.

To conclude the desired result, it suffices to show that

lim
k 7→+∞

sup
n

∫

QT

(
Fj(t, x, v) + µj

)
χ[un

j
>A] = 0,

to do this we remark,

| [un
j > A] |6

1

A
‖ un

j ‖L1(QT )6
1

A
‖ vj ‖L1(QT ),

which implies,
lim

A 7→+∞
sup
n

| [un
j > A] |= 0.

Since (Fj(t, x, v) + µj) ∈ L1(QT ), we have for each ǫ > 0 there exists δ > 0 such that for all mesurable
E ⊂ QT ,

| E |< δ,

∫

E

(
Fj(t, x, v) + µj

)
6

ǫ

2
,

according to the previous result, we obtain that for each ǫ > 0, then there exists Aǫ such that for all
A > Aǫ

sup
n

(∫

QT

(Fj(t, x, v) + µj)χ[un
j
>A]

)
6

ǫ

2
,

choosing A = Aǫ and letting k tend to infinity, we obtain

lim
k 7→+∞

sup
n

(∫

[un
j
>k]

Gn
j (t, x,∇un)

)
= 0.

�
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Lemma 3.4. Let (un
j ) be the sequence defined as above. Then for j = 1, . . . ,M .

i) (un
j ) converges to uj strongly in L1(0, T ;W 1,1

0 (QT )),

ii) ‖ Tk(u
n
j ) ‖L2(0,T ;H1

0
)6 C

[
‖ Fj(v) ‖L1(QT ) + ‖ µj ‖L1(QT )

]
.

Proof. (i) Letting

ηnj = Fj(t, x, u
n−1) + µj −Gn

j (t, x,∇un),

from the result (i) of Lemma 3.3, (3.4) and (3.9), it follows that ηnj bounded in L1(QT ) and according to
[11], the application

L1(Ω)× L1(QT ) −→ L1(0, T ;W 1,1
0 (QT ))

(un
j (0), η

n
j ) 7−→ un

j

is compact. Then, we can extract a subsequence of (un
j ), still denoted by (un

j ) for simplicity, such that

un
j −→ uj in L1(0, T ;W 1,1

0 (Ω))

(un
j ,∇un

j ) −→ (uj ,∇uj) a.e. in QT

(ii) Multiplying by Tk(u
n
j ) the equation satisfies by un

j , we obtain

∫

QT

∂Sk(u
n
j )

∂t
+ dj

∫

QT

| ∇Tk(u
n
j ) |

2 +

∫

QT

Gn
j (t, x,∇un)Tk(u

n
j )

=

∫

QT

Fj(t, x, u
n−1)Tk(u

n
j ) +

∫

QT

µjTk(u
n
j ),

the periodicity implies, ∫

QT

∂Sk(u
n
j )

∂t
= 0.

We use (3.5) and (3.9), to get ∫

QT

Gn
j (t, x,∇un)Tk(u

n
j ) > 0,

finally by application of (3.4) and (3.9) we get,

∫

QT

| ∇Tk(u
n
j ) |

26 C

[ ∫

QT

Fj(t, x, v) +

∫

QT

µj

]
.

�

Lemma 3.5. Let (un
j ) be the sequence defined as above. Then for all j = 1, . . . ,M .

Tk(u
n
j ) converges to Tk(uj) strongly in L2(0, T ;H1

0 (Ω)).

Proof. To prove this lemma, we consider for all j = 1, . . . ,M ,

z
n,k
j = Tk(vj − un

j ),

zkj = Tk(vj − uj),

z
n,k,h
j = (Tk(vj − un

j ))
h,
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where σh denotes the Lebesgue steklov regularization defined for h > 0 by

σh(t, x) =
1

h

t+h∫

t

σ(s, x)ds.

To prove Tk(u
n
j ) converges strongly to Tk(uj) in L2(0, T ;H1

0 (Ω)), it suffices to prove that

lim
n→∞

∫

QT

∥∥∥∇z
n,k
j

∥∥∥
2

dxdt ≤

∫

QT

∥∥∇zkj
∥∥2 dxdt.

For h > 0, we have

lim
n7→+∞

dj

∫

QT

∥∥∥∇z
n,k
j

∥∥∥
2

dxdt = lim
h→0

lim
n7→+∞

dj

∫

QT−h

∥∥∥∇z
n,k,h
j

∥∥∥
2

dxdt

= lim
h→0

lim
n7→+∞

T−h∫

0

< z
n,k,h
j ,−dj∆z

n,k,h
j > dxdt

≤ lim
h→0

lim
n7→+∞

T−h∫

0

< z
n,k,h
j ,

∂z
n,k,h
j

∂t
− dj∆z

n,k,h
j > dxdt,

we remark that,

∂z
n,k,h
j

∂t
− dj∆z

n,k,h
j > 0,

and according to (3.9), we have 0 6 z
n,k,h
j 6 z

k,h
j , then

lim
n7→+∞

dj

∫

QT

∥∥∥∇z
n,k
j

∥∥∥
2

dxdt

6 lim
h→0

lim
n7→+∞

T−h∫

0

< z
k,h
j ,

∂z
n,k,h
j

∂t
− dj∆z

n,k,h
j > dxdt,

6 lim
h→0

lim
n7→+∞

[ T−h∫

0

< z
k,h
j ,

∂z
n,k,h
j

∂t
> dt+ dj

∫

QT−h

∇z
n,k,h
j ∇z

k,h
j dxdt

]
.

Since z
n,k
j converges to zkj weakly in L2(0, T ;H1

0(Ω)), then z
n,k,h
j converges to z

k,h
j weakly in

L2(0, T ;H1
0 (Ω)), we obtain

lim
n7→+∞

dj

∫

QT

∥∥∥∇z
n,k
j

∥∥∥
2

dxdt

6 lim
h→0

[ T−h∫

0

< z
k,h
j ,

∂z
k,h
j

∂t
> dt+ dj

∫

QT−h

∥∥∥∇z
k,h
j

∥∥∥
2

dxdt

]

6 lim
h→0

[
1

2

∫

Ω

[(zk,hj )2]T−h
0 dx+ dj

∫

QT−h

∥∥∥∇z
k,h
j

∥∥∥
2

dxdt

]

6 dj

∫

QT

∥∥∇zkj
∥∥2 dxdt.

�
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3.4. Passing to the Limit

According to lemma (3.4) there exists a mesurable fonction

uj ∈ L1(0, T ;W 1,1
0 (Ω))

and a subsequence still denoted (un
j ) for simplicity, such that

un
j −→ uj in L1(0, T ;W 1,1

0 (Ω)),

(un
j ,∇un

j ) −→ (uj ,∇uj) a.e. in QT ,

then,
Fj(t, x, u

n−1) −→ Fj(t, x, u) a.e. in QT ,

thanks to Lebesgue theorem, we have

Fj(t, x, u
n−1) −→ Fj(t, x, u) in L1(QT ).

By the previous result of Lemmas (3.3) and (3.4), we have

Gn
j (t, x,∇un) −→ Gj(t, x,∇u) a.e. in QT , (3.10)

It remains to show that

Gn
j (t, x,∇un) → Gj(t, x,∇u) in L1(QT ),

using (3.10) it suffices to prove that Gn
j (t, x,∇un) is equi-integrable in L1(QT ) namely

∀ε > 0, ∃ δ > 0, ∀ E ⊂ QT , if |E| < δ then

∫

E

Gn
j (t, x,∇un) dx dt ≤ ε.

Let E be a mesurable subset of QT , ε > 0, and k > 0. We have for all j = 1, . . . ,M ,
∫

E

Gn
j (t, x,∇un) dx dt = Ij,1 + Ij,2.

Where

Ij,1 =

∫

E∩[un
j
>k]

Gn
j (t, x,∇un) dx dt,

and

Ij,2 =

∫

E∩[un
j
≤ k]

Gn
j (t, x,∇un) dx dt.

The first integral Ij,1 verify the following inequality

Ij,1 ≤

∫

[un
j
>k]

Gn
j (t, x,∇un) dx dt,

we obtain from the Lemma (3.3) the existence of k∗ > 0, such that, for all k > k∗, we have

Ij,1 ≤
ǫ

3
.

Concerning Ij,2 we use the assumption (3.6), we obtain for all k ≥ k∗

Ij,2 ≤

∫

E

(
Hj(t, x) +

M∑

j=1

Cj | ∇Tk(u
n
j ) |

2

)
dx dt.
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Since Hj ∈ L1(QT ), then Hj is equi-integrable in L1(QT ), there exists δ1 > 0, such that, if | E |≤ δ1,
then ∫

E

Hj(t, x) dx dt ≤
ǫ

3
.

We have also from the lemma (3.5) the sequence (| ∇Tk(u
n
j ) |2)n is equi-integrable in L1(QT ), which

implies the existence of δ2 > 0, such that, if | E |≤ δ2, we have

M∑

j=1

Cj

∫

E

| ∇Tk(u
n
j ) |

2 dx dt ≤
ǫ

3
.

Finally, by choosing δ∗ = inf(δ1, δ2), if | E |≤ δ∗, we obtain

∫

E

Gn
j (t, x,∇un) dx dt ≤ ε.

On the other hand,

un
j (T ) = Sdj

(T )un
j (0) +

∫ T

0

S(T − s)ηnj (s, .)ds,

where,

ηnj (t, x) = Fj(t, x, u
n−1) + µj(t, x) −Gn

j (t, x,∇un).

Since un
j (0, .) = un

j (T, .) in L1(Ω), we have for all φ ∈ L∞(Ω)

lim
n→+∞

∫

Ω

un
j (0, x)φ(x)dx = lim

n→+∞

∫

Ω

Sdj
(T )un

j (0, x)φ(x)dx

+ lim
n→+∞

∫

Ω

∫ T

0

Sdj
(T − s)ηnj (s, x)φ(x)dsdx.

As well known Sdj
(t) is continuous in L1(Ω) and ηnj → ηj strongly in L1(QT ), then

∫

Ω

uj(0, x)φ(x)dx =

∫

Ω

Sdj
(T )u(0, x)φ(x)dx +

∫

Ω

∫ T

0

Sdj
(T − s)ηj(s, x)dsdx,

=

∫

Ω

uj(T, x)φ(x)dx.

Then uj(0, .) = uj(T, .) in L1(Ω).

4. Appendix

Theorem 4.1. Let f = (f1, . . . , fM ) be a nonnegative function belongs to [L1(QT )]
M . Then there exists

ŵ = (ŵ1, . . . , ŵM ) a nonnegative weak periodic solution of the following system





ŵj ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

∂ŵj

∂t
− dj∆ŵj = fj in D′(QT ), for j = 1, . . . ,M

ŵj(0, .) = ŵj(T, .) in L1(Ω).

(4.1)

Remark 4.2. As well known (4.1) is linear and the second membre f = (f1, . . . , fM ) does not depend on
the components of the solution ŵ = (ŵ1, . . . , ŵM ), consequently it suffices to prove the result of Theorem
4.1 just for one equation.
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Proof. First of all, we define the following solution operator

S : L1(Ω) → L1(Ω)

v 7→ ŵ(T, .),

where ŵ is the unique solution of the following system





ŵ ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

∂ŵ

∂t
− d∆ŵ = f in D′(QT ),

ŵ(0, .) = v in L1(Ω).

(4.2)

the existence and uniqueness of ŵ solution of (4.2) can be deduced from [12]. To use the Schauder fixed
point theorem, we prove that S is continuous and compact. The compacity is a direct consequence of
[11] and for the continuity, we conside a sequence (vn) in L1(Ω), such that (vn) converges strongly to v

in L1(Ω) and let ŵn = S(vn), ŵ = S(v). From [12] we have the following estimate

‖ ŵn − ŵ ‖L∞(0,T ;L1(Ω)) + ‖ ŵn − ŵ ‖
L1(0,T ;W 1,1

0
(Ω))6 C ‖ vn − v ‖L1(Ω)

which implies,
‖ ŵn(T, .)− ŵ(T, .) ‖L1(Ω)6 C ‖ vn − v ‖L1(Ω)

then the continuity is achieved. It remains to prove the existence of a radius R0 > 0, such that the ball
B(0, R0) of L

1(Ω) is invariant for S. To do this, we take y solution of the following problem





y ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

∂y

∂t
− d∆y = f in D′(QT ),

y(0, .) = 0 in L1(Ω).

(4.3)

from (4.2) and (4.3), we get





(ŵ − y) ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ C([0, T ], L1(Ω)),

∂(ŵ − y)

∂t
− d∆(ŵ − y) = 0 in D

′(QT ), for j = 1, . . . ,M

(ŵ − y)(0, .) = v in L1(Ω).

(4.4)

According to the classical result of [7], the solution of (4.4) satisfies the following estimate

‖ ŵ(T, .)− y(T, .) ‖L1(Ω) 6‖ ŵ(0, .)− y(0, .) ‖L1(Ω) exp(−λ1T )

6‖ v ‖L1(Ω) exp(−λ1T ).

Consequently,
‖ S(v)(T, .) ‖L1(Ω)6‖ y(T, .) ‖L1(Ω) + ‖ v ‖L1(Ω) exp(−λ1T ),

where λ1 is the first eigenvalue of −d∆ with Dirichlet boundary condition. To get the desired result it
suffices to choose

R0 >
‖ y(T, .) ‖L1(Ω)

1− exp(−λ1T )
.

This ends the proof. �
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