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An Inverse Source Problem For a Two Terms Time-fractional Diffusion Equation
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ABSTRACT: In this paper, we consider an inverse problem for a linear heat equation involving two time-
fractional derivatives, subject to a nonlocal boundary condition. We determine a source term independent of
the space variable, and the temperature distribution with an over-determining function of integral type.
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1. Introduction

Recently, a great attention has been focused on the study of boundary value problems (BVP) for
fractional differential equations. They appear as mathematical models in different branches in sciences
as physics, chemistry, biology, geology, control theory, signal theory, nanoscience and so on. The reader
can find many applications in the book [8] and references therein.

Many kinds of boundary problems, including inverse problems [4], were formulated for different type
of PDEs of integer order or with fractional order differential operators. In [12], Luchko and Gorenflo
studied a multi-terms fractional differential equation with Caputo fractional derivatives and using opera-
tional method, a solution of an initial boundary problem for that equation was obtained in explicit form
containing multinomial Mittag-Leffler function, some properties of which were obtained by Zhiyuan Li
et al [10]. Later, Yikan Liu [11] established strong maximum principle for fractional diffusion equations
with multiple Caputo derivatives and investigated a related inverse problem. We note as well the work by
Daftardar-Gejji and Bhalikar [2] where a multi-terms fractional diffusion-wave equation was considered
and boundary-value problems for this equation were solved by the method of separation of variables.
Kirane et al [9] considered a two dimensional inverse source problem for a time fractional diffusion equa-
tion and prove the well posedness of the inverse source problem using Fourier method. In [1] Aleroev
et al studied a linear heat equation involving a Riemann-Liouville fractional derivative in time, with a
nonlocal boundary condition.

In this paper we study the linear heat equation

D u(w,t) + Db u(z,t) — ouge(w,t) = Fla,t), (x,t) € Qr, (1.1)
with initial and nonlocal boundary conditions,

u(z,0) = ¢(z), x€(0,1), (1.2)
w(0,¢) = w(l,t), wu.(1,t)=0, te(0,7],

where Qr = (0,1) x (0,71, ¢ is a positive constant, “Df, and CDg+ stand for the Caputo fractional
derivatives of order v and 3, respectively, with 0 < § < a < 1 and ¢(x) is the initial temperature.

2010 Mathematics Subject Classification: 80A23, 65N21, 26A33, 45J05, 34K37, 42A16.
Submitted November 07, 2018. Published December 08, 2018

Typeset by Esxstyle.
1 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.45265

2 F. DiB AND M. KIRANE

For (1.1)—(1.3) the direct problem is the determination of u(x, ) in Qr such that u(.,t) € C?([0,1],R)
and
“Dg.ulw,.),* Dy u(z,.) € C((0,T],R)

when the initial temperature ¢(x) and the source term F(x,t) are given and continuous.
Letting the source term have the form F(z,t) = a(t) f (x, t), the inverse problem consists of determining
a(t) and the temperature distribution u(z,t), from the initial temperature ¢(x) and boundary conditions
(1.3). This problem is not uniquely solvable.
To have the inverse problem uniquely solvable, we impose the over-determina-
tion condition

/01 zu(z, t)dx = g(t), te]0,T], (1.4)

where g € AC([0, T, R) (the space of absolutely continuous functions). The solvability of inverse problems
with such condition has been considered earlier [5,6].

A solution of the inverse problem is a pair of functions {u(z,t),a(t)} satisfying u(.,t) € C?[(0,1),R],
‘D u(x,.),° D0+u( .) € C((0,7T],R) such that a € C ((0,T],R"), satisfying the initial data and the
COIldlthIl (1.4).

When we want to solve the inverse problem (1.1) — (1.4) using separation of variables (Fourier’s
method), we have to consider the spectral problem

{ X" = —puX, xe( 1) (L5)

X(0)=Xx(1), X'(1)=

The boundary-value problem (1.5) is non self-adjoint, it admits the following conjugate (adjoint) problem:

(1.6)

Y" =—pY, z€(0,1),
{ Y(0)=0, Y'(0)=Y'(1).

Our approach to the solvability of the inverse problem (1.1) — (1.4) is based on the expansion of the
solution u(zx,t) using a biorthogonal system of functions obtained from the eigenfunctions and associated
eigenfunctions of the spectral problem (1.5) and its adjoint problem (1.6) (see II'in [3] and Keldysh [7]).

The rest of the paper is organized as follows: in Section 2, for the sake of the convenience we recall some
basic definitions and results needed in the sequel. In Section 3, we present our main results concerning
the existence, uniqueness and continuous dependence of the solution of the inverse problem.

2. Preliminaries

In this section, we recall basic definitions and notations from fractional calculus. For a differentiable
function f: Rt — R, the left sided Caputo fractional derivative of order 0 < o < 1 is defined by (see [8])

D(?—%—f(ﬂ = F(l 1_ Oé) /0 (tf_(:—_iad’rv (21)

where I'(.) is the Euler Gamma function. The integral (2.1) can be written as a convolution

DG f(t) = (va * ) (1),

where

t) = I'(l—a)’ ’
Vo (£) { 0 £ <0,

In the discussion of single-term time fractional diffusion equations, it turns out that the expressions
of solutions use the usual Mittag-Lefller function

E¢ (2 ngk+ , 2€C, (>0, neR. (2.2)
=0
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The explicit solutions to two-terms case use a generalized form of (2.2) called the binomial Mittag-
Leffler function of which several basic properties play remarkable roles especially for obtaining estimates
for the stability.

The binomial Mittag-Leffler function is defined as (see [12])

zk‘l

o k
Z1%
E(Bpﬁg) Bo 21722 ZZ ’L' —Z ' F(ﬁo +’Lﬁl ( —7,) 62)’ (23)

k=0 i=0

where we assume 0 < 5, < 2,0 < 1,85 <1, 21,22 € C, i and k are non-negative integers.
Concerning the relation between binomial Mittag-Leffler functions with different parameters, we have
the following lemma.

Lemma 2.1. (see lemma 3.1, [10]) Let 0 < By < 2, 0 < 31,85 < 1, 21,22 € C be fized. Then

1
TG 21E(,,6,),80+6, (21, 22) T 22E(5,,8,) 5,48, (21, 22)
= Eg,.8,).8, (21,22) - (2.4)
For regularity of the solution to the two-terms time-fractional diffusion equation, the estimate
C

| Ear,01—a2), (21, 22)| < <C, (2.5)

1+|Z1|

where 0 < < 2,1> a3 > az >0 and C a positive constant (see lemma 3.2, [10]) is useful.

In order to prove the convergence of the series corresponding to D§,u(z,t), we need the following
formula (see lemma 3.3, [10])

a (talE(al,alfag),lJral (_qltala _q2ta17a2))
= talilE(al,al—OzQ),al (_qltalv _q2ta17a2) , t>0, (26)

where g1 and ¢y are positive constants, and the following lemma.

Lemma 2.2. (see lemma 15.2 page 278 [13]) Let the fractional derivatives DS, f,, exist for all n € N
and let the series Y " o fn and Y. " D% f, uniformly converge on every sub-interval [a + €,b], € > 0,
then, the former series admits termwise fractional differentiation:

(C ff+ an) (x): (Z CD§+fn> (:E), a>0, a<z<b.
n=0

n=0

Let H be a Hilbert space with the scalar product (.,.). Two sets S; and Sy of functions of H form a
bi-orthogonal system of functions if a one-to-one correspondence can be established between them such
that,

(fi,95) = 0ijs
where f; € S1, g; € S2 and §;; is the Kronecker symbol.

Let L2(0, 1) denote the classical Lebesgue space of measurable functions ¢ : (0,1) — R such that |¢(.)|>
is integrable, provided with the scalar product (.,.) defined by

1
(6,€) = /0 o(2)E(@)de,  for all 6,6 € L(0,1),

ol = ( [ 1 ¢2<x>dx)%

and the associated norm
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Let C(]0,T]) denote the space of continuous functions w : [0,T] — R, equipped with the norm

= t)|.
ol = v fo(t)

A bi-orthogonal system of functions. The sets of functions

{2, {4 cos (2mnz)} >, ,{4(1 — x)sin (2rnz)},~,} (2.7)
and
{@,{xcos (2mnz)} 2 |, {sin (2mnx)} -} (2.8)

are obtained from the non-self-adjoint spectral problem (1.5) and its adjoint problem (1.6), respectively.

The set of functions (2.7) and (2.8) is complete in L?*(0,1) and forms a Riesz basis in L?(0,1).
Furthermore, the set of functions (2.7) — (2.8) constitutes a bi-orthogonal system with the one to one
correspondence

{\2’/, {4cos (2mnz)};" 1, {4 (1 — ) sin (2mnx)},~, }
1 1 \

{ =, {xcos (2mnz)},2, , {sin(2mnz)} 2, }.

3. Mains Results
3.1. Existence and uniqueness of the solution of the inverse problem.

We have the following theorem.

Theorem 3.1. Let the following conditions be satisfied

(H1) ¢ € C([0,1]), (1) = ¢(0), ¢'(1) =0, ¢"(0) = ¢"(1), ¥"'(1) =0,

(H2) f € CYQp,R), f(Lt) = f0.8), fu(lt) = 0, faullt) = fu(01),
Saowz(1,t) =0, fol xf(z,t)dx # 0, and there exists a constant My > 0 such that
1 1
0<—X< / ,tydr| . 3.1
i <| [ ot (3.1)

(H3) ge AC([0,T],R).
Then, for

ol

T < (ﬁ) , where Cy is defined in (3.17),

the inverse problem (1.1) — (1.4) has a unique solution.
Proof.

1-Existence of the solution of the inverse problem: We write the formal solution u(x,t) for the
linear system (1.1) — (1.4) in the form

u(w,t) = 2up(t) + Z Uop—1(t)4 cos (2mnz) + Z U2n (t)4 (1 — z) sin (27nx) , (3.2)

n=1 n=1

where ug(t), u2n—1(t), uan(t) for n € N are to be determined.
Let

flz,t) =2fo(t) + Z fon—1(t)4 cos (2mnx) + Z fon(t)4 (1 — x) sin (27nx) ,

n=1 n=1
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where fo(t), fon—1(t) and fo,(t) are given by

folt) = /Of(x,t)xdx,

1
Foma(t) = /0 (@, t)z cos (2mnz) dx, (3.3)

fan(t) = /Of(x,t)sin(27mx)dx.

Using properties of the bi-orthogonal system we have

UO(t) = <U(Z‘,t),$> )
Uzn—1(t) = (u(z,t),zcos (2mnx)), (3.4)
Uzn(t) = (u(z,t),sin (2mnx)) .

By virtue of (3.4), we have

D3+U0(t)+D€+UO(t) = <D8‘+u(x,t)+D§+u(x,t),x>,
D uan(t) + Dg+u2n(t) = <D8‘+u(x, t) + D§+u(x, t),sin (27mx)> ,
D uan—1(t) + D§+uQn_1(t) = <D8‘+u(x, t) + D§+u(x, t),x cos (27mx)> )
Whereupon
Dg.uot) + Diuo(t) = alt)folt), (3.5)
Dy uzn(t) + D§+U2n(t) + Apuzn(t) = a(t)fon(t), (3.6)
D8+U2n—1(t) + D§+u2n—l(t) + (Ai/g)UQTL—l(t) + 2Anu2n(t) = a(t)an—l(t)v (37)

where A\, := 2mnop.
In order to get the unknown constants ug(0), u2,—1(0) and u2,(0), we use (3.4) and the initial
temperature given in (1.2),

uo(0) = (u(x,0),z) = (p(z), ) = @y,
u2n—1(0) = (u(x,0),zcos (2mnx)) = (p(x),z cos (2mnx)) := 9,1,
u2,(0) = (u(z,0),sin (2mnx)) = (p(x),sin (2mnz)) = @y,

where ¢, ¢5,,_1 and ¢,,, are the coefficients of the series expansion in the basis (2.7) of the function
() :

1 1 1
Yy = / o(z)zdr; @q, 1 = / o(z)x cos (2mnx) dx; s, = / o(z) sin (2rnz) dz.
0 0 0

By using Theorem 4.1, [12] we obtain:
eThe solution of the linear fractional differential equation (3.5) with the initial condition ¢y,

wo(t) = [(1% " Bacp.al~1""%)) x a(t) fo(0)] + 0o [1 — t* " Earp 1yas(—127)] (3.8)
eThe solution of the linear fractional differential equation (3.6) with the initial condition ¢,
usn(t) = [(* 'Blap.a)a(—t"77 =Aat®)) x a(t) f2n(t)]

+§02n[1 - ta_BE(af,B,a),lJrafﬁ(_ta_B; _)\nta)
_)‘ntaE(afﬁ,a),lJra(_taiﬁa _)‘ﬂta)]' (39)
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Using (2.4), we get

uQn(t) = [(ta_lE(af,B,a),a(_ta_Bv _Anta)) * a‘(t)fQTL(t)]
+<p2nE(af,8,a),1(_ta_Ba _/\nta)- (310)

eThe solution of the linear fractional differential equation (3.7) with the initial condition ¢,,,_;

’U,Qn_l(t) = [(ta_lE(a,ﬁ’a),a(—ta_ﬁ, — ()\EL/Q) ta)) * (a(t)fgn_l(t) + 2Aann(t))}
+ Pon—1 [1 - taiﬁE(afﬁ,a),lJrafﬁ(_taiﬁv _Anta)
Mt Ela—p.a)ital—t 2 =Aat)] .

Using (2.4) and (3.10), we get

uz—1(t) = [t Bla—pa)a(—t77 = (A2 /0) %)) * (a(t) fan—1(1))]
+ [2Anh(t) * a(t) fan (1)]
+ 20020t T Ea—pa),a(—t 7P = (A2 /0) t%) % Eq_p .oy (=277, =Apt®)]
+Pon1B(a—paya(—t*77, = (A2 /0) 1), (3.11)

where
h(t) = tailE(af,B,a),a(_taiﬁv - (AEL/Q) ta) * tailE(afﬁ,a),a(_taiﬁa _)‘nta)'

Now, we get the expression of the term a(¢). By multiplying both sides of the equation by x and
integrating the resulting equation between 0 and 1, we obtain

/01 x [CDaﬂu(x,t) 4 Déiu(x, t)} dx = /01 x [oUgy (2, t) + a(t) f(z,t)] dx.

Using (1.4), we have

alt) = <

/
- le(x,t)dx DS, g(t) +° D, g(t) + 0us (0,1)| (3.12)
(f =) | |

-1

1 1
zf(x, t)dx) [cDS@g(t) 4 D§+g(t) + g/ LUy (2, t)dx]
0

where
ug(0,t) = ZSﬂann(t)
n=1

= Z 87rn[(to‘71E(a,,3’a),a(—to‘f’B, —Ant%) ® a(t) fan(t))
n=1
+pon Bla—pa) 1 (=177, =Ant®)]. (3.13)

Let A(a(t)) := a(t), where the operator A : C([0,T]) — C([0,T]) is defined for a € C([0,T]) by

-1

Awo) = ([ 1 of(e.0ds)  [Diealt) +° DJg(t) + us(0.0)].

By (3.3) and (3.13), we obtain the Volterra integral equation

Afa(t)) = L(t) + (fo(t))_l/o K(t,7)a(r)dr, (3.14)
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where,
L(t) = (fo(t)) ™" [CD0+9( ) +¢ Dy, g(t) +Z4>\n<ﬁ2nE(a B (777 = t“)] (3.15)
and -
T) = Z 4)\nf2n(7—) {(t - ,7_)0171 E(a—B,a),a(_ (t - T)aiﬁ ’ —An (t - T)a):| . (316)

Before we proceed further, notice that under the assumptions (H2), the series >~ | 4\, fo,(¢) is uni-
formly convergent by the Weierstrass M-test because it is bounded from above by a uniformly convergent

numerical series
o 0
24/\ Fan(t _ZQWB 3 n ( <Z27r3n3 ‘f

where fQ(ffL)(t) is the coefficient of the Fourier sine series of the function f(*)(.,¢). Furthermore, by Bessel’s

inequality, we have
St ol

n=1

£2(0,1)

where ¢ is a constant independent of ¢ and n. Thus, we have

f: A fon(t) < C1, (3.17)

where (' is a constant independent of ¢ and n.
1

We select T' < (m) “, where M is from assumption (H2) of Theorem 3.1 and C' is from the
inequality (2.5).

We shall show that A : C([0,T]) — C(]0,T]) and the mapping A is a contraction.

For a € C([0,T7]), using (2.5) and assumptions (H1) and (H2), the series in the expression of u,(0,t)
(bee (3.13)) is uniformly convergent on [0, T’ and represents a continuous function. The term °Df, g(t)+
”DOJr g(t) is continuous being the difference of two continuous functions (see equation (3.12)). Hence

A(a) € C([0,TY]).
As
Al -Aw)0)| =< (r) = b(r)| dr
< Ml(JlC? Omt?gXTM( )=o),
Afa) - A(b)H —  max ’A A(b(t))‘ (3.18)
< Mlclc7 lla — b (3.19)
Since T' < (—Ml%lc) - ,
Ml(JlC% <1,

thus the mapping A is a contraction for ¢ € [0, T]. This ensures the unique determination of a € C([0,T7])
by the Banach fixed point theorem.

Under assumptions (H1)— (H3) and following [1], we shall show that the series solution given by (3.2)
and the series corresponding to . (x, t) are uniformly convergent and represent continuous functions on
Q7 . Also, we shall show that the series corresponding to u(z,t) is a—differentiable and S—differentiable.
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For g € AC([0,T1]) the term °Dg, g(t) +°¢ Do+ g(t) is continuous being the difference of continuous

functions (see equation (3.12)). Furthermore, for any £ > 0 the term “Dg, g(t)+ CD0+g( ) is bounded on
the interval (¢, T]. In the estimates below, we will use this fact.
From (3.15) and (3.14) , we obtain

M.,
L] < Ma, lal| € —————= =N,
1— M CiCE

where My = M, (Ms 4 CM3), M, is a bound of °Df, g(t) +° D0+g( ),

i 4)‘71(10211 S M3

n=1

and both Ms and Mj are positive constants independent of ¢ and n.
Due to the assumptions (H1) and (H2) of Theorem 3.1, we have

1 1o . IR
Pon = 167.(.4,”4 /0 <P( ) (Z‘) S (27”7“7;) dr = 167_(_74714(20277,7
— #/1 (4)() (2 )d—#(‘l)
e T A T Ee e
1 4
fgn(t) = 167-(-4n4 / J) t bln (2777133‘) dr = mfén) (t),
fono1(t) = 167r4n4 / f(4) (z,t) x cos (2mnz) do = 167r4n4 an (),

where goén) 1 gpgi) and fz(i) (1), (4)( t) are the coefficients of the Fourier cosine and the Fourier sine

series of the functions ¢® (z) and f(4)( t), respectively. These functions are bounded by virtue of
Bessel’s inequality.
Then the sum of the series (3.2) is bounded above by
2n >

TO(
2@wm§ﬁmm) ]%W(}
- c

Ta
+— (N Hfé;?_lH oM, C‘(p(4)

(4)
)« b),
where 8(a, «) is the Euler beta function.
By the Weierstrass M-test the series (3.2) is uniformly convergent. Similarly, we can show that the
series corresponding to . (z, ) is uniformly convergent and represents a continuous function.
Let us show that the series (3.2) corresponding to u(x,t)

2uo(t) + Z Uop—1(t)4 cos (2mnx) + Z uon (t)4 (1 — x) sin (27nzx) ,

n=1 n=1

is a—differentiable and f—differentiable.
We need to show that the series

oo

(°D§+uon—1(t)) 4 cos (2mnx) Z D uan(t)) 4 (1 — z)sin (27n) , (3.20)
1 n—1

NE

2CD8£+ U (t) +

n
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and

[M]8

20D5+UO (t)+ Z (cDg+uQn,1(t)) 4 cos (2mnz) + (CDg+ U2 (t)) 4 (1 — z)sin (2mnz) (3.21)

n=1 n

1

are uniformly convergent.
For this, we first calculate ug(t), ub, (t) and uj, ,(t), then, we estimate D¢, uo(t), *Df uon—1(t) and
°D§ uzn(t) on [e,T] for all € > 0. We have

wh) = o ([ Bapa(~17)) x alt)fo(t)]
+¢0 [1 = t* P Ea_pitra-p(—t*?)]]

= [t Eazpa-1(=t""7)) xa(®) fo(t)] — ot* 7 Bampa—p(~t"7).

Using the fact that

||
Eoz— a),a\L, S CS Ca
TBa—p.a).al®y) S 70
we have
1 " Jup(r)l
‘D¢ <
Dy < e [
C t o [ TE 1
< Y _ _
< paea | =07 (T lalllal + ol 7 ) e
Cllall [ foll /t o _a-1
< —_— _
S Goori-a ), -7 7
Cllpoll /t o1
+F(1—o¢) ; (t—7) "7 dr.
Therefore,
C B(1-a,a) _
c o < s al .
Do) < e | g lal ol + Dol (3.22)
Also
d o— o— «
U'/Qn(t) = E [[(t 1E(a7,8,a),a(_t 67_/\nt )) *a(t)an(t)]
+0an [1— taiﬁE(a—ﬁ,a),l+a—ﬁ(_taiﬁa —Ant®)
—)\ntO‘E(a,B’a)’1+a(—tO[—B, —)\nta):H
= [(t*Ela—pa)a-1 (=", =Xat®)) * a(t) fan(t)]
—Pon [taiﬁilE(a—ﬁ,a),a—ﬁ(_taiﬁa _)\nta)
At E g )0 (77 =Mt ™)]
and
1 b Jub, (1)
CDOL n < n ~
Dol < gy [, G

C”a” Han” t o Toz—l
< Sl (f e )

C”@Qn” (/t —a _—1 /t -« —1 )
+—" t—r T0dT + A t—r T T ) .
T—a) U, (t—7) ; (t—7)
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T

By applying the change of variable s = 7 in the calculation of the integrals

t t
/ (t—7) 7ot and / (t—71) 77 tdr,
0 0

we find
. _ Clalll] s0-aa)
D uan(®] = 16740 T (1 —a) 11—«
il 1 PR
+167T4TL4F(1 a)( nB(1—aa)+ )
Also
d o— o— (e}
U'/anl(t):a[[(t 1E(a76,a),a(_t Ba_ (/\fz/g)t )) * (a(t)an—l(t))}
+[2Anh(t) * a(t) f2n ()]
+[2)‘n(p2nta71E(a7,8,a),a(_t ( /Q)t )*E(a B,a),l(_t _)‘ﬂta)]
+ Qo 1[1_ta7'8E(a Ba) 1+0z B(_ta 'B ( /Q)ta)
(AQ/Q)taE(a B,a), 1+oz( ( /Q) )]]
=[(t*"*Ba—p.ayar (=277, — ( n/g) %))  (a(t) fon-1(t))]
+2X 1 (t) * a(t) fan (1)
+[2>\n302n E(a B,a),a— 1( [ a (AQ/Q) )*E(a—ﬁ,a),l(_t _)\nta)}
—Pon 1 [t*7P E(a 8,0),0—p(—t" -, (AQ/Q)ta)
+(A/0) 7 Blapay,a (-7, = (A0 /0) )]
where
B (t) =t*"2E_paya1(—t*P = (N2 /0) t%) % t* " E(a—p.a).a(—t* 7, = Ant®).
We have
t
< [ @-n et
0
Therefore,
, l o= 1
b )] < 270 llal | fon / W) dr +C al [ Funl -
) afl
+ ||301n|| (Ct™"+ (X2 /o) Ct*7)
t s
< o\ —2 _a-1
< ol ||] /0/0(5 72 20 gr s
+C llal || £
2 ta ! 2 a—1
+20,C }sozn — O[] ¢+ (20 ).

(3.23)
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As

t s
/ / (s — 1) 27 Ydrds
o Jo

11

/Ot rot (/Tt (s—7)*2 ds> dr

1 ¢ a—1
= a—l/o (-1 dr
2a—1
- ! — 1B(a a),
we get the estimate
: )] < ! —7 C
|u2n—1( )| — 167’(’4 4[ (OZ O[)-l— H
+9) 02‘ @| ! CH -1 22 a—1
nC? || | 7= T C || @i +(\/o)t )]-
Similarly
1 ! (7)]
D\ tgn_1 (t)] < v
DOl Spa 0y fy o
1 B(a,a) ! —a _2a-1
<l _ a
STortniT(1 —a) 2 1 ”’ 1-a /0 (t—r) " dr
t
@] 4 o @y _¢ / oy a1
+ (el 2] + 20 |ef2]]) y=5 | @
ool [w=n @t (2 ) arl
0

T

By applying the change of variable s = %

/Ot (t—71)" 72
[e-n6

and

we estimate

1
|“Dgruzn—1(t)]

IN

+ (llal | 5
+CH<pYZ)
1

IN

+(I

+C Hwﬁ)

16740 T (1 —

1674nAT(1 —

in the integrals

t
Ldr, / (t—71) 7 lar
0

by (Ai/g) T 71) dr,

12 al Hf2 —8(@.0) 8(1 - a,20)
—|—2/\nCH<p2n )1faﬁ(1—a,a)
+(A\2/0) B(1—,0))]

)[m [ C L (,0) 8(1 - a, 20)

)%B(l—a,a)

+ ()\n/g) B(1—a,)l.

(3.24)

Consequently, by (3.22),(3.23) and (3.24) the series (3.20) and (3.21) are uniformly convergent by
the Weierstrass M-test. Hence the series (3.2) corresponding to u(z,t) is a-differentiable and alike (-
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differentiable with respect to the time variable and the relations

[M]8

‘Dgiu(z,t) = 2°Dghuo(t) + (“Dgyuan—1(t)) 4 cos (2mnx)

Il
-

n

Z D uan(t)) 4 (1 — z) sin (27nz) ,
and

(CDg+ Uap—1(t))4 cos (2mnx)

NE

CD0+U( t) = 2CD()+U0()+

Il
—

n

Z +uQn )4 (1 — ) sin (27nx)

hold true. Similarly, we can show that the series corresponding to . (x,t) is uniformly convergent and
represents a continuous function.

2-Uniqueness of the solution. Let {u(x,t),a(t)} and {v(z,t),b(t)} be two solution sets of the inverse
problem then

u(z,t) —v(z,t) = 2 (uo(t) —vo(t Z Uop—1(t) — vop—1(t)) 4 cos (2mnx)

+ Z Ugp(t) — v (1)) 4 (1 — x) sin (27nx)

= [(t"‘ 1Ea*ﬁ,a(_t0‘ 7)) * (alt) — fo(®)]
+ [t Ela—pay.a(—t*F, =2 t“)) (a(t) = b(t)) fan(t)]
+ (T Bla—paya(—t*77, = (\h/0) t)) * (a(t) = b(t)) fon—1(t)]
22t T B0 g 0),0(— " B, (A2 /0) t*)
2 7 B o o). —17 72, =2 t) 5 (a(t) = b(1)) fan(1)], (3.25)

and

alt) — b(t) /Ktr — b(r)) dr.

Due to the estimate (3.19), we have a = b and by substituting a = b in (3.25), we obtain u =v. O

3.2. Continuous dependence of the solution on the data.

Let F be the set of triplets {¢, f, g} where the functions ¢, f, g satisfy the assumptions of Theorem
3.1 and

||90||c4([0,1]) < Ms, ||f||C4(QT) < M, Hg”AC([QT]) < M.
For ¢ € &, we define the norm
[9ll5 == ||‘P||c4([o,T]) + ||fHC4(QT) + HQHAC([(),T]) :
Now, we present the result on the stability of the solution of the inverse problem.

Theorem 3.2. The solution {u(z,t),a(t)} of the inverse problem (1.1) — (1.4), under the assumptions
1
of Theorem 3.1, depends continuously upon the data for T < (Mlclc) °
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Proof. Let {u(z,t),a(t)}, {a(x,t),a(t)} be two solution sets of the inverse problem (1.1) — (1.4), corre-
sponding to the data ¢ = {¢, f, g}, )= {{0, 1. g}, respectively.
From (3.15), we have

L(t) = £(t) = (fo(t)) [CD3+9( )+ Dgg(t) + Z4>\n%nE(a—ﬁ,a>,1(—taﬁa—/\nta)]

n=1

- (fo(t)) [ DO*@( )+ D0+g + 24)\n902nE(a B,a), 1( Ba _Anta)‘|

n=1

= (Fo®7ol0)) " o) Dge(t) +° D} g(1)

+ Z 4An<p2nE(a76,a),1(_ta_ﬁa _)\nta))

n=1
— fo(t)(° DG+ g(t) +° Dy, gt +Z4>\nsﬂan(a B.0),1 (=177 =Xt )]
= (fo(t) ™" (°Dg+ (9 — §) (t) +° Dy (9 — §) (1)

(fO 24/\ Pan — (:OQn)E(a B,a),1 ( ta_ﬁv_/\nta)

n=1

¥ (fo(t)fo(t))_l (Fo— o) OEDE 50 +° D, a1

+ Z 4An<)~02nE(a76,a),1(_tO‘7'Ba _)‘nta)]'

Notice that

1
Pon — Pon = /0 (¢ — @) (z) sin (27nz) dz
! ' (4) (4)
= m /0 (‘P - ¢ ) (Z‘) sSin (271'77,3;‘) daj,

and
(fo - fo) (t) = /01 x (f— f) (,t)da.

We have the estimate

HL LH<N1||<P <P||c4<011>+N2Hf f‘

ca(ar) + N3 lg — g”AC([O,T]) )

where 0 < Mil < ’fole(x,t)dx‘ 0 < Mil < ’fole(x,t)dx‘, S 52425 < Mg, Ny := CM;Msg,

n=1 27313
Ny = M2 [M7( ) +CM5M8], and N3 = M, (2 _ TP )

Tl a Tl B8
= a)ru o) T A=BT(=5)

T—aT(—a) T T=AT=5)
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From (3.14), we have

a(t) — a(t) =L(t) — L(t
(fo t)
—L(t) — £ (t
+ (fo
=L(t) —

+ (fo

F. DiB AND M. KIRANE

/KtT
/Ktr

t[fo /KtT TYdr — folt /KtT )dr}

o(1) ) /Ot (K(t, Pa(r) — K, T)a(T)) dr
(n)ir ) (o) = o(0)

(fo( ol )) alt) / t (K(m) ~ K(t,7)) a(r)dr

(/Ktr ) fo())]

We have the estimate

IA

lla —all

HL - LH + My |al /Ot (K(t,7) =~ K(t,7)) dr

t t
#Mfla=al [ Ret.ryar+ 2E [ fo - o lall [ Kt.rar
0 0

IN

HL - LH + My <c la|

f2n - f~2n

T« T
— + ||a — d” 010—)
« «

I T
+M12Hfo f0H||a||C1C—

IN

T

HL zH Hf fH MiCN—(1+MiCy)

4 (Qr)

—|—||CL CLHMlchF.

Due to the estimate of HL — EH , we have

a-ceSyla-al < ||f- 7, BAONT-(+ M0+ N

Hence

+N1 [l — <P||c(01 +N3||g—g||Ac([o,T])'

T« - ~
(1= MO fla—al < Ny [~
le% F

where

T
N5 = Imax {Nl, MlCN—
«

(03

(1+ M Cy) + NQ,N?,} .
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2=

For T < (m) , we have

o=,

a—dl<— N5
| I=< 1= MO

From (3.2) a similar estimate can be obtained for u — @.
This completes the proof. O
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