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Irregular Stable Sampling and Interpolation in Functional Normed Spaces ∗

José Alfonso López Nicolás

abstract: We define the concepts of stable sampling set and stable interpolation set, uniqueness set and
complete interpolation set for a normed space of functions. In addition we will show some relationships between
these concepts. The main relationships arise when one wants to reduce an stable sampling set or to extend
an stable interpolation set. We will prove that for Banach spaces verifying certain conditions, the complete
interpolation sets are precisely the minimal stable sampling sets and are also the maximal stable interpolation
sets. Finally we illustrate these results applying them to Paley-Wiener spaces, where we use a result by B.
Matei, Yves Meyer and J. Ortega-Cerdá based on the celebrated Fefferman theorem.
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1. Introduction

The aim of this paper is to establish general results in irregular stable sampling and interpolation
theory in functional normed spaces and the connection between the main concepts of this theory. We
also apply some of these results to Paley-Wiener spaces.
We denote by F (Rn, C) (respectively, F (Cn, C)) the set of the complex functions defined in Rn (respec-
tively Cn).

We also denote by H(Cn) (respectively, M(Cn)) the vector space of holomorphic (respectively, mero-
morphic) functions whose domain is Cn.

We will work mainly with normed vector subspaces of F (Rn, C) and Λ ⊆ Rn, but all the results and
definitions are analogously extended for normed vector subspaces of F (Cn, C) and Λ ⊆ Cn.
We also denote the cardinal of a set A by Card(A).

Definition 1.1 (Uniformly discrete set). Let Λ ⊆ Cn be infinite countable. We say that Λ is uniformly
discrete (briefly u.d.) if

δ(Λ) := inf
λ, λ′∈Λ, λ6=λ′

‖λ− λ′‖ > 0.

The constant δ(Λ) is called the separation constant of Λ.
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Definition 1.2 (Uniqueness set). Let K ∈ {R, C}, and let E be a K-vector subspace of F (Rn, C). Let
Λ ⊆ Rn be uniformly discrete. We say that Λ is a uniqueness or complete set (briefly, US) for E if for
every f ∈ E we have that

(∀λ ∈ Λ f(λ) = 0) ⇒ f = 0.

Definition 1.3 (Sequence space lp(Λ)). Let Λ ⊆ R
n be u.d.

1. Let p ∈ [1, +∞). We define the set

lp(Λ) :=

{

(aλ)λ∈Λ ∈ C
Λ |

∑

λ∈Λ

|aλ|
p < ∞

}

.

The mapping ‖ ‖p : lp(Λ) → R given by
∥

∥(aλ)λ∈Λ

∥

∥

p
:=

(
∑

λ∈Λ |aλ|
p)

1

p , is a norm for lp(Λ). With

this norm lp(Λ) is a complete space.

2.

l∞(Λ) :=

{

(aλ)λ∈Λ ∈ C
Λ | sup

λ∈Λ
|aλ| < ∞

}

.

The mapping ‖ ‖∞ : l∞(Λ) → R defined by
∥

∥(aλ)λ∈Λ

∥

∥

∞
:= supλ∈Λ |aλ| is a norm for l∞(Λ) which

make this space a Banach space.

Definition 1.4. Let (E, ‖ ‖) be a normed space, verifying E ⊆ F (Rn, C). Let p ∈ [1, +∞] and Λ ⊆ Rn

be a uniformly discrete set. Assume that

(f(λ))λ∈Λ ∈ lp(Λ) for all f ∈ E.

• The C-linear mapping S : (E, ‖ ‖) → (lp(Λ), ‖ ‖p) given by f → (f(λ))λ∈Λ is called the p-sampling
operator of (E, ‖ ‖) with respect to Λ. Observe that Λ is a uniqueness set for E if and only if S is
injective.

• We say that Λ verifies the p-Plancherel-Polya condition (briefly p-P.P.C.) for (E, ‖ ‖) if S is
continuous, this is, if there exists a constant C > 0 such that

‖(f(λ))λ∈Λ‖p ≤ C ‖f‖ for each f ∈ E.

We also say that Λ is p-besselian for (E, ‖ ‖).

• Λ is said to be a p-interpolation set (in short, p-IS) for (E, ‖ ‖) if S is surjective. (Thus, to be
a p-IS does not depend on neither the norm of E nor on ‖ ‖p.). Given c = (cλ)λ∈Λ ∈ lp (Λ) and
f ∈ E, we say that f interpolates c (over Λ) if f(λ) = cλ for all λ ∈ Λ.

• Λ is said to be a p-stable interpolation set (briefly, p-SIS) for (E, ‖ ‖) if S is surjective, and has a
continuous inverse by right.

• We say that Λ is a p-stable sampling set (briefly, p-SS) for (E, ‖‖) if S is a topological isomorphism
over its image, this is, if there exist constants c, C > 0, c ≤ C, such that

c ‖(f(λ))λ∈Λ‖p ≤ ‖f‖ ≤ C ‖(f(λ))λ∈Λ‖p

for each f ∈ E. That is, if S is continuous, injective and has a continuous inverse by left.

• Λ is called a p-complete interpolation set (in short, p-CIS) for (E, ‖ ‖) if S is bijective; this is, if
Λ is a US and a p-IS for E.

• We say that Λ is a p-stable complete interpolation set (abreviado, p-SCIS) for (E, ‖ ‖) if S is a
topological isomorphism; that is, if Λ is p-IS and p-SS for (E, ‖ ‖). Observe that Λ is a p-SCIS for
E if and only if Λ is a US and a p-SIS for E.
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Observe that every p-SS for (E, ‖ ‖) is a US. Besides, the following statements are equivalent:

1. Λ is p-SCIS for (E, ‖ ‖).

2. Λ is p-SIS and p-SS for (E, ‖ ‖).

3. S is continuous, Λ is a US and a p-SIS for (E, ‖ ‖).

Λ is a p-SS for (E, ‖ ‖) if and only if there exists a vector subspace of (lp(Λ), ‖ ‖p) topologically iso-
morphic to (E, ‖ ‖) through the sampling mapping, and this is a representation of (E, ‖ ‖) as a subspace
of (lp(Λ), ‖ ‖p).

In addition, Λ is a p-SS for (E, ‖ ‖) if and only if Λ allows to build a norm in E equivalent to ‖ ‖.
This is exactly the content of the next result.

Lemma 1.5. Let (E, ‖ ‖) be a normed space, being E ⊆ F (Rn, C). Let p ∈ [1, +∞] and Λ ⊆ Rn be a
uniformly discrete set. The following statements are equivalent:

1. Λ is a p-SS for (E, ‖ ‖).

2. The function ‖ ‖Λ, p : E → R defined by ‖f‖Λ, p := ‖(f(λ))λ∈Λ‖p for all f ∈ E, is a norm in E
equivalent to ‖ ‖.

In the rest of this article we will omit the norm of E, except if it was necessary, and will refer to the
normed space (E, ‖ ‖) simply as E.

2. Characterizations and transference.

In this section we will obtain some results that allow us to establish certain relationships between the
concepts of stable sampling set, stable interpolation set and the rest of the concepts defined in definition
1.4.
First observe that given p ∈ [1, +∞] and a normed space E verifying E ⊆ F (Rn, C), if a u.d. set Λ ⊆ Rn

is a US (respectively, a p-SS) for E, then Λ is also a US (respectively, a p-SS) for every vector subspace
of E. If a u.d. set Λ ⊆ R

n is a p-IS for E, then Λ is also a p-IS for each vector extension of E.

2.1. Characterizations

We have the following result for Banach spaces verifying the Plancherel-Polya condition.

Proposition 2.1. Let E be a Banach space such that E ⊆ F (Rn, C). Let p ∈ [1, +∞] and Λ ⊆ Rn be
uniformly discrete. Suppose that Λ verifies the p-C.P.P. for E. Then we have:

• The following statements are equivalent:

1. Λ is a p-IS for E.

2. Λ is a p-SIS for E.

• The next statements are equivalent:

1. Λ is a p-CIS for E.

2. Λ is a p-SCIS for E.

3. Λ is a p-SIS and p-SS for E.

4. Λ is a US and p-SIS for E.

• If Im(S) is of second category of Baire in (lp(Λ), ‖ ‖p), then Λ is a p-SIS for E.

• Assume that Λ is a US for E. Then the following conditions are equivalent:

1. Λ is a p-SS for E.
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2. (Im(S), ‖ ‖p) is complete.

3. Im(S) is closed in (lp(Λ), ‖ ‖p).

4. S−1 : (Im(S), ‖ ‖p) → (E, ‖ ‖) is continuous.

5. S is open over its image.

6. S is closed over its image.

• Suppose that Λ is a US for E. The two following statements are equivalent:

1. Λ is a p-SIS for E ⇔ Λ is a p-SS for E.

2. S is open ⇔ S is open over its image.

Proof. This result is an immediate consequence of the Banach open mapping and homomorphism theo-
rems and because of (lp(Λ), ‖ ‖p) is complete. �

2.2. Transference

In this subsection we will show how we may obtain new sampling, interpolation or uniqueness sets
based on others.
Let p ∈ [1, +∞]. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆ F (Ω, C). Let
g : Ω → Ω be a function and Λ ⊆ Ω be uniformly discrete. Suppose that:

1. f ◦ g ∈ E for all f ∈ E.

2. g(Λ) is uniformly discrete.

Then we have the following results:

Proposition 2.2. Suppose that g is surjective. If Λ is a US for E, then g(Λ) is a US for E.

Proof. Suppose that Λ is a US for E. Veamos that g(Λ) is a US for E. g(Λ) = {g(λ) : λ ∈ Λ}. Let f ∈ E
such that f(g(λ)) = 0 for each λ ∈ Λ. We will show that f = 0. Define h := f ◦ g ∈ E. We have that
h(λ) = 0 for all λ ∈ Λ. Since Λ is a US for E, then h = 0, that is, f◦g = 0. In addition, since g is surjective,
then g has got an inverse by right. Thus: f = f ◦1Ω = f ◦ (g ◦g−1) = (f ◦g)◦g−1 = h◦g−1 = 0◦g−1 = 0.
So that f = 0. �

Lemma 2.3. Suppose that Λ verifies the p-C.P.P. for E and that the two following conditions are verified:

1. There exists a constant R > 0 such that ‖f ◦ g‖ ≤ R · ‖f‖ for all f ∈ E.

2. g|Λ is injective.

Then, g(Λ) verifies the p-C.P.P. for E.

Proof. Since Λ verifies the p-C.P.P. for E, then there exists a constant C > 0 such that

‖(f(λ))λ∈Λ‖p ≤ C ‖f‖ for all f ∈ E.

Let f ∈ E. Since g|Λ is injective and f ◦ g ∈ E, we have:

‖(f(µ))µ∈g(Λ)‖p = ‖(f(g(λ)))λ∈Λ‖p ≤ C · ‖f ◦ g‖ ≤ C ·R · ‖f‖.

Hence g(Λ) verifies the p-C.P.P. for E. �

Proposition 2.4. Suppose that g(Λ) verifies the p-C.P.P. for E and the next two conditions are verified:

1. There exists a constant D > 0 such that ‖f‖ ≤ D · ‖f ◦ g‖ for all f ∈ E.



Irregular Stable Sampling and Interpolation 5

2. There exists a constant M = M(g, Λ) ∈ Z+ such that Card(g−1(µ)) ≤ M for each µ ∈ g(Λ).
(Observation: for p = +∞ this condition is not necessary.).

If Λ is a p-SS for E, then g(Λ) is also a p-SS for E.

Proof. Suppose that Λ is a p-SS for E, that is, there exists a constant C > 0 such that

‖f‖ ≤ C ‖(f(λ))λ∈Λ‖p for all f ∈ E.

We will prove that g(Λ) is also a p-SS for E. Let f ∈ E. Then f ◦ g ∈ E, and therefore:

D−1 ‖f‖ ≤ ‖f ◦ g‖ ≤ C‖((f ◦ g)(λ))λ∈Λ‖p = C‖((f(g(λ)))λ∈Λ‖p ≤ C ·M
1

p ‖((f(µ))µ∈g(Λ)‖p.

Hence
‖f‖ ≤ D · C ·M

1

p ‖((f(µ))µ∈g(Λ)‖p .

Conclusion: g(Λ) is a p-SS for E. �

Proposition 2.5. Suppose that g is bijective. If g(Λ) is a p-IS for E, then Λ is also a p-IS for E.
Obviously, if f ◦ g−1 ∈ E for all f ∈ E, then the reciprocal statement is true.

Proof. Suppose that g(Λ) is a p-IS for E. Let us show that Λ is also a p-IS for E.
Let b = (bλ)λ∈Λ ∈ (lp(Λ), ‖ ‖p). We define ag(λ) := bλ for all λ ∈ Λ. Then a = (aγ)γ∈g(Λ) ∈
(lp(g(Λ)), ‖ ‖p) (and besides ‖b‖p = ‖a‖p). Since g(Λ) is a p-IS for E, then there exists f ∈ E such
that bλ = ag(λ) = f(g(λ)) = (f ◦ g)(λ) for each λ ∈ Λ. Since h := f ◦ g ∈ E, we have that h(λ) = bλ for
each λ ∈ Λ. Conclusion: Λ is a p-IS for E. �

Corollary 2.6. Let E be a normed space such that E ⊆ F (Rn, C). Suppose that E is invariant by
translations (that is: τxf ∈ E for each f ∈ E, x ∈ Rn, where τxf(y) := f(y − x) for each y ∈ Rn). Let
p ∈ [1, +∞].

1. Let x ∈ Rn. The following statements are equivalent:

(a) Λ is a US for E.

(b) x+ Λ is a US for E.

2. Let x ∈ Rn. The following statements are equivalent:

(a) Λ is a p-IS for E.

(b) x+ Λ is a p-IS for E.

3. Suppose that E is isometric by translations (that is, E is invariant by translations and verifies that
‖τxf‖ = ‖f‖ for each f ∈ E and for each x ∈ Rn). Let x ∈ Rn. The next statements are equivalent:

(a) Λ is a p-SS for E.

(b) x+ Λ is a p-SS for E.

In particular we may apply this result to every invariant by translations subspace of (Lp(Rn) ∩
C(Rn), ‖ ‖p), with p ∈ [1, +∞], because these subspaces are isometric by translations.

Finally we will finish this section with a result of transference of uniqueness for meromorphic functions.

Proposition 2.7. Let E a normed space, with E ⊆ M(Cn). Suppose that there exists a non constant
function g ∈ M(Cn) such that f ◦ g ∈ E for each f ∈ E. Let Λ ⊆ Cn be uniformly discrete. If Λ is a US
for E, then g(Λ) is a US for E.

Proof. Take f ∈ E such that f(g(λ)) = 0 for each λ ∈ Λ. We will prove that f = 0. Suppose that f 6= 0,
and we will obtain a contradiction. f is an meromorphic function and is not constant (if f was constant,
it would have to be a constant equals to 0 because of once at least it takes the value 0, but this is not
possible because of our assumption), whereupon f is an open mapping. We define h := f ◦ g ∈ E what
is also an open mapping because h is a composition of two open mappings. We have that h(λ) = 0 for
each λ ∈ Λ. Since Λ is a US for E, then h = 0. But this is a contradiction with the fact consisting of
that h is an open mapping. Conclusion: f = 0. �
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3. Refinement and extension of SS and IS.

It is evident that if we extract one or several elements of an IS (respectively, SIS), the resultant set is
also an IS (respectively, SIS); and if we add one or several elements to a uniqueness set, the resultant set
is also a uniqueness one. Similarly, if we add one or several elements to an SS, the set that we obtain is
an SS provided that this extended set verifies the Plancherel-Polya condition (which happens if the set
of elements what have been added verifies the condition of Plancherel-Polya).
The main question is to know what happens if we do the inverse action. That is, we wish to know what
happens if we do a refinement of an SS (respectively, of a US) and an extension of an IS (respectively,
SIS). We also wonder what happens if we do whichever action of those ones over a CIS.
In this section we will answer these questions, and it allows us to establish the essential relationship
between the interpolation sets, the stable sampling sets and the complete interpolation sets.

3.1. Restrictions on the refinement and on the extension.

Theorem 3.1. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆ F (Ω, C). Let p ∈ [1, +∞]
and Λ ⊆ Ω be uniformly discrete.

1. Suppose that Λ is a p-SS for E. If Λ may be refined as p-SS (this is, there exists Γ ⊂ Λ non empty
proper subset such that Λ \ Γ is a p-SS for E), then Λ is not a p-IS for E.

2. Suppose that Λ is a US for E. If Λ may be refined as a US, (that is, there exists Γ ⊂ Λ non empty
proper subset such that Λ \ Γ is a US for E) then Λ is not a p-IS for E.

3. Assume that Λ is a p-CIS for E. Then Λ cannot be refined as a p-CIS, that is, no proper subset
of Λ is a p-CIS for E. As a consequence, neither may we extend Λ to a p-CIS for E (this is, for
every non empty Γ ⊆ Rn \ Λ we have that Λ ∪ Γ is not a p-CIS).

4. Suppose that Λ is a p-SCIS for E. Then Λ cannot be refined as a p-SCIS, this is, no proper subset
of Λ is a p-SCIS for E. As a consequence, we may not extend Λ to a p-SCIS for E.

Proof.
1. Suppose that Λ is a p-SS for E and that Λ may be refined as a p-SS We will show that Λ is not a

p-IS for E.
Suppose that Λ is a p-IS for E, and we will obtain a contradiction. By our assumption, there exists

Γ ⊂ Λ non empty proper subset such that Λ \ Γ is a p-SS for E. Let λ0 ∈ Γ. Then Λ \ {λ0} ⊇ Λ \ Γ,
therefore Λ \ {λ0} is a p-SS for E. Consider eλ0

:= (δλ0 λ), being

δλ0 λ =

{

1, if λ = λ0

0, if λ 6= λ0.

Since Λ is a p-IS for E, then Λ \ {λ0} is also a p-IS for E. Hence we have that the sampling operators

SΛ : (E, ‖ ‖) → (lp(Λ), ‖ ‖p)

given by: f → (f(λ))λ∈Λ, and

SΛ\{λ0} : (E, ‖ ‖) → (lp(Λ \ {λ0}), ‖ ‖p)

given by: f → (f(λ))λ∈Λ\{λ0}, are bijective (in fact, are topological isomorphisms). Since eλ0
:= (δλ0 λ) ∈

lp(Λ) and SΛ is bijective, we have that there exists an unique f ∈ E such that f(λ) = eλ0
(λ) = δλ0 λ for

each λ ∈ Λ. So that f(λ0) = 1, and f(λ) = 0 for all λ ∈ Λ \ {λ0}.
Consider now 0 = (0)λ∈Λ\{λ0} ∈ lp(Λ \ {λ0}). Since SΛ\{λ0} is bijective, there exists an unique

g ∈ E such that g(λ) = 0 for each λ ∈ Λ \ {λ0}. Obviously g = 0. Besides g(λ) = 0 = f(λ) for every
λ ∈ Λ \ {λ0}. Λ \ {λ0} is a US for E (because is a p-SS), and thus f = g = 0. But this is a contradiction
with f(λ0) = 1 6= 0. Hence Λ is not a p-IS for E.

2. It is the same proof as before taking US instead of p-SS.
3. This is an immediate consequence of the previous item.
4. It is an immediate consequence of the first item (even of the second one). �
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Corollary 3.2. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆ F (Ω, C). Let
p ∈ [1, +∞] and Λ ⊆ Ω be uniformly discrete. If a p-IS (respectively, p-SIS) Λ may be extended (strictly,
adding an element at least) to a p-IS (respectively p-SIS), then Λ is not a US for E, and thus neither is
a p-SS for E.

Proof. Suppose that Λ is a p-IS (respectively, p-SIS). Assume that Λ is a US. We will obtain a con-
tradiction. The extended set Λ′ ⊃ Λ is both a p-IS (respectively p-SIS) and a US, whereupon Λ and
Λ′ are p-CIS (respectively p-SCIS). Hence, Λ is a refinement of Λ′, and this is false because of p-CIS
(respectively, p-SCIS) cannot be refined (neither extended). Hence, Λ is not a US. �

3.2. Refinement of SS

In this subsection we will show when an stable sampling set may be refined.

Theorem 3.3. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆ F (Ω, C). Let Λ ⊆ Ω be
uniformly discrete and p ∈ [1, +∞). Suppose that E is complete. Suppose that Λ verifies the p-C.P.P.
for E and that it is a p-SS but is not a p-IS for E. Then:

1. There exists λ0 ∈ Λ such that Λ \ {λ0} is a p-SS for E.

2. Assume that there is no CIS for E. Then for every r ∈ Z+ there exist λ1, ..., λr ∈ Λ such that
Λ \ {λ1, ..., λr} is a p-SS for E.

Proof.
1. Consider the sampling operator

SΛ : (E, ‖ ‖) → (lp(Λ), ‖ ‖p)

given by: f → (f(λ))λ∈Λ, what is continuous exactly because of Λ verifies the p-C.P.P. for E. In fact S
is a topological isomorphism over its image (in particular, S is injective) because Λ is a p-SS. But it is
not surjective because Λ is not a p-IS.

In addition, we know that B = {eλ = (δλ t)t∈Λ}λ∈Λ is a total set for (lp(Λ), ‖ ‖p), that is, span(B) =
lp(Λ).

Observe that there exists λ0 ∈ Λ such that eλ0
= (δλ0 t)t∈Λ does not belong to Im(S) because S is

not surjective. Let us prove this statement.
Suppose that eλ ∈ Im(S) for every λ ∈ Λ. We will obtain a contradiction. B ⊆ Im(S) whereby
span(B) ⊆ Im(S), this is, Im(S) = lp(Λ). Since S is a topological isomorphism of E over (Im(S), ‖ ‖p)
and E, is complete, then (Im(S), ‖ ‖p) is complete, this is, Im(S) is closed in (lp(Λ), ‖ ‖p). Hence

Im(S) = Im(S) = lp(Λ), and this is a contradiction with our assumption consisting of that S is not
surjective.

Hence there exists λ0 ∈ Λ such that eλ0
= (δλ0 t)t∈Λ is not an element of Im(S). Since Im(S) is

a vector subspace of lp(Λ) and eλ0
= (δλ0 t)t∈Λ does not belong to Im(S), then for every z ∈ C \ {0}

we have that z · eλ0
does not belong to Im(S). Observe that Λ \ {λ0} is a US for E. Let us show

this. Indeed, suppose that Λ \ {λ0} is not a US for E. We will obtain a contradiction. There exists
f ∈ E \ {0} such that f(λ) = 0 for every λ ∈ Λ \ {λ0}. Since Λ is a US for E, then f(λ0) 6= 0. Therefore
S(f) = (f(λ))λ∈Λ = f(λ0) · eλ0

does not belong to Im(S), and this is obviously a contradiction.
Let us prove that Λ \ {λ0} is a p-SS for E. Consider the projection

pΛ\{λ0} : (lp(Λ), ‖ ‖p) → (lp (Λ \ {λ0}) , ‖ ‖p)

defined by: (aλ)λ∈Λ → (aλ)λ∈Λ\{λ0}. Clearly, it is continuous.
Consider the sampling operator

SΛ : (E, ‖ ‖) → (lp(Λ), ‖ ‖p)

defined by: f → (f(λ))λ∈Λ, and

SΛ\{λ0} : (E, ‖ ‖) → (lp(Λ \ {λ0}), ‖ ‖p)
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given by: f → (f(λ))λ∈Λ\{λ0}. We have that

SΛ\{λ0} = pΛ\{λ0} ◦ S.

Hence Im
(

SΛ\{λ0}

)

= pΛ\{λ0} (Im (SΛ)). We also know that SΛ\{λ0} is linear and continuous, and is
injective because Λ \ {λ0} is a US for E. Then, by the Banach homomorphism theorem the following
statements are equivalent:

1. Λ \ {λ0} is a p-SS for E.

2. S−1
Λ\{λ0}

: (Im(SΛ\{λ0}), ‖ ‖p) → (E, ‖ ‖) is continuous.

3. SΛ\{λ0} : (E, ‖ ‖) → (Im(SΛ\{λ0}), ‖ ‖p) is open.

4. (Im(SΛ\{λ0}) = SΛ\{λ0}(E) = pΛ\{λ0}(Im (SΛ) , ‖ ‖p) is complete.

Since Λ is p-SS for E, we have in the same way as before that (Im (SΛ) = SΛ(E), ‖ ‖p) is complete.
We have to prove that (pΛ\{λ0}(Im (SΛ)), ‖ ‖p) is complete. Consider

p̃Λ\{λ0} : (Im (SΛ) , ‖ ‖p) →
(

Im
(

SΛ\{λ0}

)

, ‖ ‖p
)

given by: (aλ)λ∈Λ → pΛ\{λ0}((aλ)λ∈Λ) := (aλ)λ∈Λ\{λ0}, which is a projection and is continuous, linear,
surjective and open (by the open mapping theorem). Since p̃Λ\{λ0} is surjective, then

Im
(

p̃Λ\{λ0}

)

= Im
(

SΛ\{λ0}

)

= pΛ\{λ0} (Im (SΛ)) .

Since (Im(S), ‖‖p) is complete and p̃Λ\{λ0} is open, by the Banach homomorphism theorem we obtain

(

Im(p̃Λ\{λ0}), ‖ ‖p
)

=
(

pΛ\{λ0}(Im(SΛ)), ‖ ‖p
)

is complete, and therefore Λ \ {λ0} is a p-SS for E.
2. This is a immediate consequence of the previous item.

�

The following consequence shows that if p ∈ [1, +∞), then the p-SCIS of a complete space E are
exactly the p-SS of E what cannot be refined, this is, the minimal p-SS of E.

Corollary 3.4. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a Banach space such that E ⊆ F (Ω, C). Let Λ ⊆ Ω
be uniformly discrete and p ∈ [1, +∞). Suppose that Λ verifies the p-C.P.P. for E. Also assume that Λ
is a p-SS that cannot be refined as p-SS (that is, for each λ ∈ Λ we have that Λ \ {λ} is not a p-SS for
E). Then Λ is a p-SIS for E, and therefore is a p-SCIS for E too. Besides, the reciprocal statement is
true: if Λ is a p-SCIS for E, then Λ is a p-SS for E that cannot be refined as p-SS.

Proof. This is an immediate consequence of the theorems 3.3 (the direct statement) and 3.1 (the reciprocal
one). �

Theorem 3.3 allows to know when there exists a refinement of an SS of E. Now we wonder in what
situations every refinement of an SS of E is still an SS.

Lemma 3.5. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆ F (Ω, C). Let p ∈ [1, +∞]
and Λ ⊆ Ω be uniformly discrete. Let λ0, λ1 ∈ Λ, λ0 6= λ1. Suppose that there exists a surjective function
gλ0, λ1

: Ω → Ω such that:

1. gλ0, λ1
(Λ) ⊆ Λ.

2. gλ0, λ1
|Λ : Λ → Λ is bijective.

3. gλ0, λ1
(λ0) = λ1.
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4. f ◦ gλ0, λ1
∈ E for every f ∈ E.

Then:

1. If Λ \ {λ0} is a US for E, then Λ \ {λ1} is a US for E.

2. Suppose that there exist constants A = A(λ0, λ1), D = D(λ0, λ1) > 0, A ≤ B, such that

A · ‖f ◦ gλ0, λ1
‖ ≤ ‖f‖ ≤ B · ‖f ◦ gλ0, λ1

‖

for all f ∈ E. Then, if Λ \ {λ0} is a p-SS for E, we have that Λ \ {λ1} is also a p-SS for E.

Proof. g := gλ0, λ1
: Λ → Λ is a bijection such that g(λ0) = λ1 and such that f ◦ g ∈ E for every f ∈ E.

1. Suppose that Λ \ {λ0} is a US for E. Let f ∈ E. The following statements are equivalent:

• f(λ) = 0 for every λ ∈ Λ \ {λ1}.

• f(g(λ)) = 0 for each λ ∈ Λ \ {λ0}.

• (f ◦ g)(λ) = 0 for every λ ∈ Λ \ {λ0}.

• f ◦ g = 0

• f = 0

The equivalence between the first statement and the last one says that Λ \ {λ1} is a US for E.
2. Suppose that Λ \ {λ0} is a p-SS for E. There exist constants c, C > 0, c ≤ C, such that

c ‖(f(λ))λ∈Λ\{λ0}‖p ≤ ‖f‖ ≤ C ‖(f(λ))λ∈Λ\{λ0}‖p

for all f ∈ E. Let f ∈ E. Then f ◦ g ∈ E, and hence we have:

c ‖((f ◦ g)(λ))λ∈Λ\{λ0}‖p ≤ ‖f ◦ g‖ ≤ C ‖((f ◦ g)(λ))λ∈Λ\{λ0}‖p

this is:
c ‖(f(g(λ))λ∈Λ\{λ0}‖p ≤ ‖f ◦ g‖ ≤ C ‖(f(g(λ))λ∈Λ\{λ0}‖p.

This is equivalent to the inequalities

c ‖(f(λ)λ∈Λ\{λ1}‖p ≤ ‖f ◦ g‖ ≤ C ‖(f(λ)λ∈Λ\{λ1}‖p.

Considering that A · ‖f ◦ g‖ ≤ ‖f‖ ≤ B · ‖f ◦ g‖, with A, B independent of f , then Λ \ {λ1} is a p-SS for
E.

�

As a consequence, we have the following result.

Corollary 3.6. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a Banach space such that E ⊆ F (Ω, C). Let Λ ⊆ Ω be
uniformly discrete and p ∈ [1, +∞). Assume that Λ verifies the p-C.P.P. for E and is a p-SS but is not
a p-IS for E. Suppose that for all λ0, λ1 ∈ Λ, λ0 6= λ1 there exists a surjective function gλ0, λ1

: Ω → Ω
such that:

1. gλ0, λ1
(Λ) ⊆ Λ.

2. gλ0, λ1
|Λ : Λ → Λ is bijective.

3. gλ0, λ1
(λ0) = λ1.

4. f ◦ gλ0, λ1
∈ E for every f ∈ E.

Then:
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1. For each λ ∈ Λ we have that Λ \ {λ} is a US for E.

2. Suppose that for every λ0, λ1 ∈ Λ, λ0 6= λ1 there exist constants A = A(λ0, λ1), B = B(λ0, λ1) >
0, A ≤ B, such that

A · ‖f ◦ gλ0, λ1
‖ ≤ ‖f‖ ≤ B · ‖f ◦ gλ0, λ1

‖,

for every f ∈ E. Then:

(a) Λ \ {λ} is a p-SS for E for every λ ∈ Λ.

(b) If E has no p-CIS, then for every r ∈ Z+ and every λ1, ..., λr ∈ Λ we have that Λ \ {λ1, ..., λr}
is a p-SS for E.

Proof. This result is an immediate consequence of Theorem 3.3 and Lemma 3.5. �

3.3. Extension of SIS

In this subsection we will show when a SIS may be extended to other SIS. In the previous section we
proved that if p ∈ [1, +∞), then the p-SCIS of a complete space E are exactly the p-SS of E that cannot
be refined as SS, that is, the minimal p-SS of E. We will finish this section proving that if p ∈ [1, +∞],
the p-CIS of a normed space E are exactly the p-IS of E that cannot be extended as IS, that is, the
maximal p-IS of E. Observe that this implies that if p ∈ [1, +∞], the p-SCIS of a Banach space E are
exactly the p-SIS of E that cannot be extended as SIS, that is, the maximal p-SIS of E.

Definition 3.7 (see [1], p. 352). Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆
F (Ω, C). Let p ∈ [1, +∞] and Λ ⊆ Ω be uniformly discrete. For each x ∈ Ω we define

ρ(x, Λ) := sup{|f(x)| : f ∈ E, f |Λ = 0, ‖f‖ ≤ 1} ≥ 0.

Clearly ρ( , Λ) depends on Λ and E. Observe that for every x ∈ Ω we have that the next statements are
equivalent:

• ρ(x, Λ) = 0 .

• For each f ∈ E (f |Λ = 0 ⇒ f(x) = 0) .

• For each f ∈ E (f |Λ = 0 ⇒ f |Λ∪{x} = 0) .

Hence, Λ is a US for E if and only if ρ(x, Λ) = 0 for every x ∈ Ω.

First consider a property of transitivity.

Lemma 3.8. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆ F (Ω, C). Let p ∈ [1, +∞]
and Λ ⊆ Ω be uniformly discrete. Let x0, x1 ∈ Ω. Suppose that there exists a mapping gx0, x1

: Ω → Ω
such that:

1. gx0, x1
(Λ) ⊆ Λ.

2. gx0, x1
(x0) = x1 .

3. f ◦ gx0, x1
∈ E for every f ∈ E.

Then, for every f ∈ E such that f |Λ = 0 there exists hf ∈ E such that hf |Λ = 0 and hf (x0) = f(x1) .

Proof. We define g := gx0, x1
. Let f ∈ E such that f |Λ = 0. Define hf := f ◦ g. For each λ ∈ Λ we have

that hf (λ) = f(g(λ)) = 0 since f |Λ = 0. Therefore, hf |Λ = 0. In addition hf (x0) = f(g(x0)) = f(x1). �

The main result is the next one.
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Proposition 3.9. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a normed space such that E ⊆ F (Ω, C). Let
p ∈ [1, +∞] and Λ ⊆ Ω be uniformly discrete. Suppose that for every x0, x1 ∈ Ω there exists a bijective
function gx0, x1

: Ω → Ω such that:

1. gx0, x1
(Λ) ⊆ Λ.

2. gx0, x1
(x0) = x1 .

3. f ◦ gx0, x1
∈ E for every f ∈ E.

Then:

1. If Λ is not a US for E, then ρ(x, Λ) > 0 for every x ∈ Ω \ Λ.

2. If Λ is a p-IS and for E and is not a US, then Λ ∪ {x0} is a p-IS for E for every x0 ∈ Ω \ Λ.

3. If Λ is a p-IS for E and cannot be extended as p-IS (that is, for each x ∈ Ω\Λ we have that Λ∪{x0}
is not a p-IS), then Λ is a US for E.

4. If Λ is a maximal p-IS for E (that is, cannot be extended as p-IS), then Λ is a p-CIS for E. The
reciprocal statement is also true.

Proof.
1. Since Λ is not a US for E, there exists f ∈ E such that f |Λ = 0 and f 6= 0. Hence, there exists

x1 ∈ Ω such that f(x1) 6= 0. Since f |Λ = 0, then x1 is not an element of Λ. So that x1 ∈ Ω \ Λ and
f(x1) 6= 0.

Let x ∈ Ω \ Λ. We will show that ρ(x, Λ) > 0. By the previous lemma we know that there exists
hf ∈ E verifying hf |Λ = 0 and hf (x) = f(x1) 6= 0. Thus hf 6= 0, and consequently ‖hf‖ 6= 0. We define

ϕx :=
hf

‖hf‖
∈ E, what verifies ϕx|Λ = 0, ϕx(x) 6= 0, ‖ϕx‖ = 1. Hence ρ(x, Λ) ≥ |ϕx(x)| > 0.

2. Suppose that Λ is a p-IS for E but is not a US. Let x0 ∈ Ω \ Λ. We will prove that Λ ∪ {x0} is a
p-IS for E. Let a = (aλ)λ∈Λ∪{x0} ∈ lp(Λ ∪ {x0}). By hypothesis, Λ is a p-IS for E and this implies that
there exists f ∈ E such that f(λ) = aλ for every λ ∈ Λ. Since Λ is not a US for E, then there exists
l ∈ E such that l|Λ = 0 and l 6= 0. Hence there exists x1 ∈ Ω such that l(x1) 6= 0 (and thus x1 ∈ Ω \ Λ).
By the previous lemma we know that there exists hl ∈ E verifying hl|Λ = 0 and hl(x0) = l(x1) 6= 0.
Therefore ‖hl‖ 6= 0. We define ϕx := hl

‖hl‖
∈ E, what verifies ϕx0

|Λ = 0, ϕx0
(x0) 6= 0, ‖ϕx0

‖ = 1.

We define the mapping g : Ω → C by:

g(x) := f(x) +
ax0

ϕx0
(x0)

ϕx0
(x) for every x ∈ Ω.

g ∈ E because ϕx0
∈ E. We have: g(x0) = ax0

and for every λ ∈ Λ we have that g(λ) = f(λ) = aλ.
Hence g ∈ E and g interpolates a = (aλ)λ∈Λ∪{x0}.

3. This is the contrareciprocal statement of: Λ is not a US ⇒ previous item.
4. This is an immediate consequence of the previous item. �

The relationship between SS, SIS and CIS is given by the following result.

Corollary 3.10. Let Ω ⊆ Rn, Ω 6= ∅, and let E be a Banach space such that E ⊆ F (Ω, C). Let
p ∈ [1, +∞) and Λ ⊆ Ω be uniformly discrete. Suppose that Λ verifies the p-C.P.P. for E and for every
x0, x1 ∈ Ω there exists a bijective function gx0, x1

: Ω → Ω such that:

1. gx0, x1
(Λ) ⊆ Λ.

2. gx0, x1
(x0) = x1 .

3. f ◦ gx0, x1
∈ E for all f ∈ E.

Then the next statements are equivalent:

1. Λ is a minimal p-SS for E.

2. Λ is a maximal p-SIS for E.

3. Λ is a p-CIS (or what is equivalent, p-SCIS) for E.
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4. Applications to Paley-Wiener spaces

We recall the definitions of Paley-Wiener and Bernstein spaces. The Fourier transform of f ∈ L1(Rn)
is defined by

f̂(ξ) =

∫

Rn

f(x)e−ix·ξ dx, ξ ∈ R
n,

with the usual extension to tempered distributions f ∈ S
′(Rn).

Definition 4.1. Let K ⊆ Rn be a compact set and p ∈ (0, +∞]. We write

Ep
K := {f ∈ S

′(Rn) : supp(f̂) ⊆ K and ‖f‖p < ∞}.

This is a closed vector subspace of (Lp(Rn), ‖ · ‖p), which we call the (p, K)-Paley-Wiener space, and is
invariant and isometric by translations. It is well known by the Paley-Wiener theorems that the elements
of Ep

K may be seen as entire functions. When p = ∞ we just write BK := (E∞
K , ‖ ‖∞), which we call the

(classical) Bernstein space with spectrum K.

We also recall the following result.

Theorem 4.2 (see [3], p. 9). Let K ⊆ Rn be a compact set such that K has some point with positive
(Gauss) curvature, and p ∈ (1, +∞), p 6= 2. The space Ep

K has no p-CIS (or what is equivalent, has no
p-SCIS).

Corollary 4.3. Let p ∈ (1, +∞), p 6= 2. Let K ⊆ Rn be a compact set such that K has some point with
positive (Gauss) curvature, and Λ ⊆ Rn be u.d. Then:

1. Assume that Λ is a p-SS for Ep
K . Then for every r ∈ Z

+ and every λ1, ..., λr ∈ Λ we have that
Λ \ {λ1, ..., λr} is a p-SS for Ep

K .

2. Assume that Λ is a p-IS for Ep
K . Then for every s ∈ Z+ and every x1, ..., xs ∈ Rn \Λ we have that

Λ ∪ {x1, ..., xs} is a p-IS for Ep
K .

Proof. This result is an immediate consequence of Theorem 4.2 and of Corollary 3.6. �

Corollary 4.3 is true in general for every Paley-Wiener space Ep
K , with p ∈ [1, +∞] and K compact

set, provided that there exists no p-CIS for it. For example, if p = ∞ and K is an n-dimensional closed
interval.

Next we adapt Corollary 3.10 to Paley-Wiener spaces.

Corollary 4.4. Let p ∈ [1, +∞] and K ⊆ Rn be a compact set such that Ep
K has some p-CIS. Let

Λ ⊆ Rn be u.d. Then the next statements are equivalent:

1. Λ is a minimal p-SS for Ep
K .

2. Λ is a maximal p-SIS for Ep
K .

3. Λ is a p-CIS (or what is equivalent, p-SCIS) for Ep
K .

Proof. This result is an immediate consequence of Corollary 3.10. �

The following result is well known in sampling and interpolation in the Hilbert spaces E2
S being

S ⊆ Rn a bounded set (see [4], Proposition 2.8, p. 16; and Proposition 4.6, p. 36).

Theorem 4.5. Let S ⊆ Rn be a bounded set and Λ ⊆ Rn be uniformly discrete. For each λ ∈ Λ consider
the function φλ : Rn → C defined by

x 7→ φλ(x) :=

{

0, if x /∈ S

eiλx, if x ∈ S
.



Irregular Stable Sampling and Interpolation 13

We also define the set E (Λ) := {φλ}λ∈Λ ⊆ L2(S). Then:

1. Λ is a 2-SS for E2
S if and only if E (Λ) is a frame for L2(S).

2. Λ is a 2-SIS for E2
S if and only if E (Λ) is a Riesz sequence for L2(S).

3. Λ is a 2-CIS for E2
S if and only if E (Λ) is a Riesz basis for L2(S).

Corollary 4.6. Let S ⊆ Rn be a bounded set such that there exists a 2-CIS for E2
S , and Λ ⊆ Rn be

uniformly discrete. For each λ ∈ Λ consider the function φλ : Rn → C defined by

x 7→ φλ(x) :=

{

0, if x /∈ S

eiλx, if x ∈ S
.

Define the set E (Λ) := {φλ}λ∈Λ ⊆ L2(S). Then the following statements are equivalent:

1. E (Λ) is a minimal frame (this is, an exact frame) for L2(S).

2. E (Λ) is a maximal Riesz sequence for L2(S).

3. E (Λ) is a Riesz basis for L2(S).

Proof. This result is an immediate consequence of Corollary 4.4 (what is consequence of Corollary 3.10)
and of Theorem 4.5. �

Observe that we can apply this result to the particular case S ⊆ R is a closed interval because the
space E2

S has a CIS (in fact, infinitely many; see [2]).
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Birkhäuser, Boston, 1989, pp. 351–365.

2. Lyubarskii, Yurii I. and Seip, Kristian, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s
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