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Non-extremal Martingale with Brownian Filtration

Sakrani Samia

ABSTRACT: Let (Bt);>0 be the filtration of a Brownian motion (Bt)¢>o on (€2, B,P). An example is given
of an non-extremal martingale which generates the filtration (B¢);>o. We also discuss a property of pure
martingales, we show here that it is a property of a filtration rather than a martingale.
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1. Introduction

Among the series of questions asked at the end of the chap.V of [12]) (or also in [13] and [15]) is the
following question: a filtration being given on a probability space, how to recognize if it is generated by
a Brownian motion or not? This question is especially of interest for a weakly Brownian filtration (there
exists an F-Brownian motion which has the predictable representation property (PRP) with respect to
F, see [11] for application of this important property). In all generality, there are weakly Brownian
filtrations, which are not Brownian, as it is shown in [6], paper that was followed by other examples of
non-Brownian filtrations given in [4], [7], [14]. These works are important progress that raises many new
questions, including how to establish the non-Brownian character of a weakly Brownian filtration?

In all the works above, it is the notion of non-cosiness (introduced by Tsirel’son in [14] and that
we will not discuss in this paper) of these filtrations which serves as a criterion to show that they are
non-Brownian, see [4], [10] for different types of cosiness: I-cosiness, D-cosiness and T-cosiness. One
might think that a filtration generated by a non-pure extremal martingale or non-extremal martingale
can not be Brownian. In fact we show in Section 3 that this is not true. The non-Brownian character
of a weakly Brownian filtration is much more delicate. Section 4 shows that Brownian filtration can be
generated by non-pure extremal martingale. In section 5, we discuss the following property denoted by
(*) in [1]: If M is a continuous martingale and F = FM | for every, F-stopping time T finite a.s such
that P(Mr = 0) = 0,then

?gT =%, Vo(Mr <0),

where Gp = sup{s < T, M, = 0}, T € [0, 00[. Authors of [1] have shown that property (*) is satisfied by
any pure martingale. It is understood here that (*) is a property of a filtration rather than a martingale.
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2. Preliminaries

We will only consider completed probability spaces and right continuous filtrations. We denote [ HdX
the stochastic integral of H with respect to X and FX the natural filtration of X. An F—continuous
local martingale X has the PRP (the predictable representation property) if for every F—continuous local
martingale M there exists an F—predictable process H such that

M:M0+/HdX,

X is called F—extremal if Fy is trivial and X has the F—PRP. If FX = F then X is called extremal
martingale. (this terminology is justified by the fact that the law of an extremal martingale is an extremal
point in the convex set of all probability measures on W = C(RT'R), which make the coordinate process
a local martingale). A continuous local martingale X with (X)., = oo is pure if FX = F2 where B is
the Brownian motion of Dubins-Schwartz (DDS) associated with X, which is equivalent to say that for
all t, (X); is T2 —measurable.

Every pure martingale is extremal but the opposite is not true. Yor has given in [15] an example of
an extremal martingale which is not pure; we will prove here that its natural filtration is Brownian.

Definition 2.1. A filtration F is said to be immersed in a filtration G( defined on the same probability
space) if any F-martingale is G-martingale.

3. Example of non-extremal martingale with Brownian filtration
We have the following characterization of extremal martingales with respect to Brownian filtration:

Lemma 3.1. If B is a Brownian motion, B its natural filtration and M is a B— martingale, then M
is B-extremal if and only if d(M) is equivalent to X a.s, where \ is the Lebesgque measure on RT.

Proof. M is a B— martingale, so there exists a B—predictable process H such that:

d(M
M:MO+/HdB andH2:%
If M is B—extremal, then there exists a B—predictable process K such that B = [ KdM and d\ =
K?2d (M), that is d (M) is equivalent to \. If now, d (M) is equivalent to A, it is enough to represent B
as a stochastic integral with respect to M. We have H # 0, A\®@ dP a.s so B = [ %dM. O

Lane [9], gave partial answers to the following question [12]: If B is a Brownian motion, f is borel
function and M is the local martingale [ f(B)dB, under what conditions the filtration F is Brown-
ian?.An important example is when f > 0 and p ({f = 0}) > 0 but the set {f = 0} does not contain any
interval (u is the Lebesgue measure on R). This case was studied by knight [8] with FF = {f =0} is a
subset of [0, 1], defined by the Cantor method: removing | %, % [ then | 3%, 312 [and | é—g, % [ and so on. We
define the set F,, by means of its complementary F¢,
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Theorem 3.2. Let B be a Brownian motion, B its natural filtration and M the martingale defined by

ln
M=c /1{B<O}dB + / Lp>1dB+ YY) b / 14 (B)dB,

n>1k=n

where the numbers (cf), n > 1, k € {1,..,4,}, ¢ and " are strictly positive and all different. The

n
martingale M is not extremal and we have FM = B.

Remark 3.3. In order not to burden the proof of Theorem 1, at the end of this paper (in the appendix)
we have gathered some non-detailed points.

Proof. The processes B~ and (B—1)" are ¥ —adapted (Point 1), it remains to show that B; 1o p,<1}
is M —adapted. We consider the martingales

MF = / 14 (B)dB

(MF) are also FM —adapted (Point 1). The stopping times {(S¥)", (T%)"},>1 of the successive entries

k
and exits of B in the set A are F2" —measurable because these are the moments where ACF > 0, with
C¥ the inverse of < MPF ~.
Fix n e N* k€ {1,...,¢,} and for every r € N*

STi=(Skyr . TT=(TF)" , AL =]a,b[ , N:=M} and a:=cF

n*

(Attention! a,b, N and « depend on k and n).
Let us show that the sequence (Bgr,Brr)r>1 is EF% - measurable.We have, N; = 0 until S! and
Bgi = a. If t € [S1, T], then

t
Nt:/dBS:Bt—a.
Sl
So, we know By and for every r > 1 and t € [S”,T"] we have
Mt_MST :Oé(Nt—NSr) :Oé(Bt—BSr) (1)
Therefore
Mt — Msr = OZ(BTT — BST‘)

Then, if we know M and Bpr, we can know Bgr (and the inverse is true).
If MTT — MST >0 then BTT‘ = b and BST =aq. If MTT — MST <0 then BTT‘ =a and BST =b.
It remains the case where Mpr — Mg = 0 so By- = b (and then By = Bgr).Remark that

BTT = BST‘+1 (2)

Indeed, if B is above |a,b[ after T", then Byr = b = Bgrt1, and if B is below |a,b[ after T", then
BTr =a= Bsr+1.

Suppose we know M until time ¢, since we know Br1, then, from (2), we can know Bgz and Bps and
so on, we can know the sequence (Bpr, Bgr) for T",S™ < t.

To finish the proof, let to < ¢, the set {By, € F°} is F}/-measurable (Point 2). If By, € F°,then there
exists n and k such that By, € AF and so, there exists 7 such that ¢y €]S™, T"[. We have

Bto = Btg — Bgr + Bgr.
and equality (1) gives
By

0

1
= E(Mto — Mg+) + Byr
Since F° is dense in [0, 1] (Point 3), we have

Bilfo<pe<ny = lsii?sup Byl(p cpey and TV = B.

It remains to establish that M is non-extremal. This follows easily from Lemma 1, since A(F) > 0. O
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4. Examples of extremal non-pure martingales with Brownian filtrations
We will now show that the filtration of the extremal non-pure martingale given in [15] is Brownian.
Theorem 4.1. Brownian filtration is generated by a non-pure extremal martingale.

Proof. Let B be a Brownian motion and B its natural filtration. We start by considering the stochastic
equation

dXy = p(Xy)dB; , X0 =0,
We easily check that:

where (p(x) = \/Tﬁ

1 2

o)

|
o

lo(x) — ()]

+lz] T+ 2]

and
1

V3

The function #‘w‘ is strictly increasing, we apply theorem 3.5(iii), chap.I X of [12] and we get FX = B.

<o(r) <1,Vr,2' € R.

We have, (X) = [ ¢?(X,)dt, since ¢? is continuous and strictly decreasing
FX) = gX

We define the martingale
M = vx),

where 7, = f(f sgnydry, and ~ is the DDS Brownian motion associated to X. We have (X) = (M) then
FM) = gM = B,

It remains to show that M is extremal but non-pure. Since ¢ is strictly positive, d(M) is equivalent
to Lebesgue measure and F is a Brownian filtration, therefore, using Lemma 1, we deduce that M is
extremal. M is non-pure because

F1,CFL =FM

oo #£ Yoo

Here is an other example of non-pure extremal martingale with Brownian filtration :

Theorem 4.2. Let B be a Brownian motion. There exists a strictly positive predictable process H such
that Ny = fo (Bu,u < s)dBs is non-pure extremal martingale.

Proof. Let (T}) be absolutely continuous and strictly increasing time change of Theorem 4.1 of [7]. Then
M, := (Br,) generates non-Brownian filtration. We have M; = fg f(My,u < s)dvy, (see Proposition 3.8,
Chap V of [12]), for v a Brownian motion and f predictable process which can be choose strictly positive.
Since M is pure by construction (so F¥ = FB), fo (Bu,u < s)dyc,, where g is P —predictable
process and C' the inverse of T, so .
o, = / H,dB,,
0

with H = é. Since the filtration of M is non Brownian, ¥ # F7 and the martingale N = v, is not
pure. But IV = FB and H is strictly positive, then N is extremal by Lemma 1. ]
Remark 4.3. Theorem 3 responds affirmatively to the following question asked at the end of Chap V
of [12]: is there a strictly positive predictable process H such that the martingale Ny = fot H.,dBy is not

pure?
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5. A martingale class that satisfy property (*)

In [1], authors discussed a property (%) verified by all pure martingales and gave some examples of
non-pure extremal martingales and non-extremal martingales that nevertheless satisfy property (x). In
[2], we better understand this property that we reset here: Let M be a continuous martingale and F =
FM  for every, F-stopping time T finite a.s such that P(Mp = 0) = 0, we have

Tér = TG, V oMy < 0),

where Gp = sup{s < T,M; = 0},T € [0,00[. The example given in [1] of non-pure extremal martingale
satisfying property (x) is in fact the example of Yor [15]. We have shown that its filtration is Brownian
and therefore, it is obvious that this martingale satisfies (x) using Barlow’s property proven in [2]. In
the same way, our non-extremal martingale of Theorem 1, satisfies (%).

In general, the following proposition can be stated:

Proposition 5.1. Let F be a filtration such that all F-martingales are continuous and SpMult[F] < 2
(see the definition below), then all martingales generating F satisfy property (*).

Before proving the proposition, we recall the following definition:

Definition 5.2. Let (2, A,P) be probability space and T a sub-field of A. Let Q be the set of all finite
measurable partitions of (2, A), for Q € Q,| Q |is the cardinal of Q. The conditional multiplicity of A
with respect to T is the random variable with values in N* U {oo}

Mult[A | T] =esssup | Q | 1s,0)
Q. €9

where Sp(Q.) = {VA € Q,P(A | T) > 0}. The splitting multiplicity of a filtration F, SpMult[F) is the
smallest integer n such that: Mult[Fr+ | Fr] < n, for any honest time L of F.

Proof. Using proposition 1 of [1], it is enough to show (x) for T' = 1.
Let A = {M, > 0}, we have E[M, | F¢,] = 0 a.s, because Mg, = 0 a.s (by Theorem XX-35 of [5]).
Then a.s
E[M14 | F¢,] = —E[M1 4. | Fa,]. (3)

We define the sets C1 = {P(A | Fg,) = 0} and Cy = {P(A° | Fg,) = 0} which are in Fg,. We have
P(A N Cl) =0 and P(Ac N 02) =0.
And for every n € N :

E[lclMt1{0<JVlt<n} | EFGt] < nP(A NnCy | SrGt) =0,

then
10,E[M;1,4 | F¢,] =0

and from (3), we have
]-ClE[MtlAC | ?Gt] = O

So, E[M;1.,n4c] = 0 and C; C {M; = 0}.
Similarly, we have Cy C {M; = 0} Applying hypothesis P{M; = 0} is null, we get P(C, UC3) =0 So

F&, = Fa, Vo(M >0),
according to proposition 3 of [2] (see also Lemma 4.3 ,Chap . I of [3]). O

Here is an example of a filtration with SpMult < 2.

Definition 5.3. A filtration generated by a pure martingale is called pure filtration.
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Proposition 5.4. Let F be a filtration, C = (Cy) time change for F and F = (Fe,). We have:

~

(a) SpMult(F) < SpMult(F). If moreover C' is strictly increasing, we have: SpMult(F) = SpMult(?).
In particular, if F is pure(non trivial), then SpMult(F) = 2.

(b) Let F be the natural filtration of a continuous martingale M and C' the inverse of (M).we suppose
that (M) is strictly increasing and (M)o, = oo. If F is Brownian, then M is extremal and F is
pure.

~

Proof. (a) Suppose SpMult(F) =n € N*.

Let M be F-spider martingale of multiplicity n + 1, bounded and My = 0. Then M, = E[M | f;"] is
?—spider martingale of multiplicity n 4+ 1 vanishing at the origin, Proposition 13 of [2] gives M, = 0 a.s
and SpMult(F) < n. If C is strictly increasing and if 7 is its inverse, then by Lemma 5.9 of [13], we have

F, =Fc =7

If & is pure, then there exists a time change which we also note C, such that J. is Brownian, then
SpMult(F) = 2 and SpMult(F) < 2.

(b) Let W be a Brownian motion that generates F and X the martingale W,y (by construction, X
is pure ).

Let us show that M is extremal: let B be the DDS Brownian motion of M, B is F— Brownian motion
that has ¥ — PRP (because F is Brownian ), as F¢, is trivial, Fy is too, and M is extremal. Notice now
that

FX =W =F = F... (4)
and
t
Mt = / E(M)SdXsa
0
with ¢, = %. Hence X is F-extremal (and since it is extremal), Proposition 7.1 of [13], gives us
that ¥ is immersed in F. So we have F = ¥ using (4). O

The next question naturally arises: The reciprocal of proposition 1 is it true? i.e if all the martingales
that generate a filtration F satisfy the property (), do we have SpMult(F) = 27

For now, we do not have a general answer to this question. In any case, let us note that the following
example given in [1] section 6, does not give a negative answer, let

i XSdYG - }/sts

M, = _
! 0 (Xz _|_Y;2)a ,

where (X; 4+ iY;) is a planar Brownian motion starting from z € C* and «a €] — oo, %] Let 3 be the

filtration of M, C' the inverse of (M) and F = (Fe,)e>o0, F is Brownian, so F is pure and according to
proposition 1, M satisfy property ().

6. Appendix
Point 1. We have L
/1{B<0}dB: g/l{B@}dM
and

1
/1{B>1}dB: E/I{B>1}dM

Hence, by applying Skorokhod’s Lemma (Lemma 2.1 , Chap.VI of [12]) it is sufficient to see that the sets
{B, < 0} and {B; > 1} are M — measurable:
d{M) d(M) )

{Br < 0} = {Z22(0) = ¢} and {B; > 1} = {=2(0) = ¢},
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and similarly for martingales (MF),n > 1,k € {1,....4,,}.

Point 2 . According to Point 1, the martingale [1pc(B)dB =Y, >, MF is M —adapted, so that’s

its quadratic variation.

Point 3 . We will only show that 0 € F¢, more precisely inf F¢ = 0.
Let z,, = inf F){. We have
Tp—1

Ty = — n>2
" 2 2x4n’ =
and 1 = 3.
Hence
T 2 1
Tn=on=1 ~ > ont1—k % 4k
k=2
But .
1 1 1
> = 1=(G)",
2=k x4k 2n x4 2
k=2
and then . .
lim z, = lim —(1 — —) =0.
n—o0o n n—o00 2”"‘1( 2")
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