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Non-extremal Martingale with Brownian Filtration

Sakrani Samia

abstract: Let (Bt)t≥0 be the filtration of a Brownian motion (Bt)t≥0 on (Ω,B,P). An example is given
of an non-extremal martingale which generates the filtration (Bt)t≥0. We also discuss a property of pure
martingales, we show here that it is a property of a filtration rather than a martingale.
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1. Introduction

Among the series of questions asked at the end of the chap.V of [12]) (or also in [13] and [15]) is the
following question: a filtration being given on a probability space, how to recognize if it is generated by
a Brownian motion or not? This question is especially of interest for a weakly Brownian filtration (there
exists an F-Brownian motion which has the predictable representation property (PRP) with respect to
F, see [11] for application of this important property). In all generality, there are weakly Brownian
filtrations, which are not Brownian, as it is shown in [6], paper that was followed by other examples of
non-Brownian filtrations given in [4], [7], [14]. These works are important progress that raises many new
questions, including how to establish the non-Brownian character of a weakly Brownian filtration?

In all the works above, it is the notion of non-cosiness (introduced by Tsirel’son in [14] and that
we will not discuss in this paper) of these filtrations which serves as a criterion to show that they are
non-Brownian, see [4], [10] for different types of cosiness: I-cosiness, D-cosiness and T-cosiness. One
might think that a filtration generated by a non-pure extremal martingale or non-extremal martingale
can not be Brownian. In fact we show in Section 3 that this is not true. The non-Brownian character
of a weakly Brownian filtration is much more delicate. Section 4 shows that Brownian filtration can be
generated by non-pure extremal martingale. In section 5, we discuss the following property denoted by
(*) in [1]: If M is a continuous martingale and F = FM , for every, F-stopping time T finite a.s such
that P(MT = 0) = 0,then

F
+
GT

= F
−
GT

∨ σ(MT < 0),

where GT = sup{s ≤ T,Ms = 0}, T ∈ [0,∞[. Authors of [1] have shown that property (*) is satisfied by
any pure martingale. It is understood here that (*) is a property of a filtration rather than a martingale.
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2. Preliminaries

We will only consider completed probability spaces and right continuous filtrations. We denote
∫
HdX

the stochastic integral of H with respect to X and FX the natural filtration of X . An F−continuous
local martingale X has the PRP (the predictable representation property) if for every F−continuous local
martingale M there exists an F−predictable process H such that

M = M0 +

∫
HdX,

X is called F−extremal if F0 is trivial and X has the F−PRP. If FX = F then X is called extremal
martingale. (this terminology is justified by the fact that the law of an extremal martingale is an extremal
point in the convex set of all probability measures on W = C(R+,R), which make the coordinate process
a local martingale). A continuous local martingale X with 〈X〉∞ = ∞ is pure if FX

∞ = FB
∞ where B is

the Brownian motion of Dubins-Schwartz (DDS) associated with X , which is equivalent to say that for
all t, 〈X〉t is FB

∞−measurable.
Every pure martingale is extremal but the opposite is not true. Yor has given in [15] an example of

an extremal martingale which is not pure; we will prove here that its natural filtration is Brownian.

Definition 2.1. A filtration F is said to be immersed in a filtration G( defined on the same probability
space) if any F-martingale is G-martingale.

3. Example of non-extremal martingale with Brownian filtration

We have the following characterization of extremal martingales with respect to Brownian filtration:

Lemma 3.1. If B is a Brownian motion, B its natural filtration and M is a B− martingale, then M

is B-extremal if and only if d〈M〉 is equivalent to λ a.s, where λ is the Lebesgue measure on R+.

Proof. M is a B− martingale, so there exists a B−predictable process H such that:

M = M0 +

∫
HdB and H2 =

d〈M〉
dλ

If M is B−extremal, then there exists a B−predictable process K such that B =
∫
KdM and dλ =

K2d 〈M〉 , that is d 〈M〉 is equivalent to λ. If now, d 〈M〉 is equivalent to λ, it is enough to represent B
as a stochastic integral with respect to M. We have H 6= 0, λ⊗ dP a.s so B =

∫
1
H
dM . �

Lane [9], gave partial answers to the following question [12]: If B is a Brownian motion, f is borel
function and M is the local martingale

∫
f (B) dB, under what conditions the filtration FM is Brown-

ian?.An important example is when f ≥ 0 and µ ({f = 0}) > 0 but the set {f = 0} does not contain any
interval (µ is the Lebesgue measure on R). This case was studied by knight [8] with F = {f = 0} is a
subset of [0, 1], defined by the Cantor method: removing

]
3
8 ,

5
8

[
then

]
5
32 ,

7
32

[
and

]
19
32 ,

21
32

[
and so on. We

define the set Fn by means of its complementary F c
n,

F c
1 =]

3

8
,
5

8
[, F c

2 = F c
1∪]

5

32
,
7

32
[∪] 19

32
,
21

32
[ ,

F c
n = F c

n−1 ∪
2n−1⋃

k=1

Ak
n, n ≥ 2,

where Ak
n =]akn, b

k
n[ are disjoint intervals of length 1

4n . Finally

F c =
⋃

n

F c
n =

⋃

n≥1

ℓn⋃

k=1

Ak
n,

with ℓn =
∑n−1

k=0 2
k = 2n − 1. Hence µ(F c) = lim

n→∞
µ(F c

n) =
∑∞

n=1
2n−1

4n = 1
2 .
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Theorem 3.2. Let B be a Brownian motion, B its natural filtration and M the martingale defined by

M = c
′

∫
1{B<0}dB + c′′

∫
1{B>1}dB +

∑

n≥1

ℓn∑

k=n

ckn

∫
1Ak

n
(B)dB,

where the numbers (ckn), n ≥ 1, k ∈ {1, ..., ℓn}, c′ and c′′ are strictly positive and all different. The
martingale M is not extremal and we have FM = B.

Remark 3.3. In order not to burden the proof of Theorem 1, at the end of this paper (in the appendix)
we have gathered some non-detailed points.

Proof. The processes B− and (B−1)+ are FM−adapted (Point 1), it remains to show that Bt 1{0<Bt<1}

is FM−adapted. We consider the martingales

Mk
n =

∫
1Ak

n
(B)dB

(Mk
n) are also FM−adapted (Point 1). The stopping times {(Sk

n)
r, (T k

n )
r}r≥1 of the successive entries

and exits of B in the set Ak
n are F

Mk

n

∞ −measurable because these are the moments where ∆Ck
n > 0, with

Ck
n the inverse of ≺ Mk

n ≻.
Fix n ∈ N∗, k ∈ {1, ..., ℓn} and for every r ∈ N∗

Sr := (Sk
n)

r , T r := (T k
n )

r , Ak
n =]a, b[ , N := Mk

n and α := ckn.

(Attention! a, b,N and α depend on k and n).
Let us show that the sequence (BSr , BT r)r≥1 is FM

∞ - measurable.We have, Nt = 0 until S1 and
BS1 = a. If t ∈ [S1, T 1], then

Nt =

∫ t

S1

dBs = Bt − a.

So, we know BT 1 and for every r ≥ 1 and t ∈ [Sr, T r] we have

Mt −MSr = α(Nt −NSr) = α(Bt −BSr) (1)

Therefore
Mt −MSr = α(BT r −BSr)

Then, if we know M and BT r , we can know BSr (and the inverse is true).
If MT r −MSr > 0 then BT r = b and BSr = a. If MT r −MSr < 0 then BT r = a and BSr = b.

It remains the case where MT r −MSr = 0 so BT r = b (and then BT r = BSr).Remark that

BT r = BSr+1 (2)

Indeed, if B is above ]a, b[ after T r, then BT r = b = BSr+1 , and if B is below ]a, b[ after T r, then
BT r = a = BSr+1 .

Suppose we know M until time t, since we know BT 1 , then, from (2), we can know BS2 and BT 3 and
so on, we can know the sequence (BT r , BSr ) for T r, Sr ≤ t.

To finish the proof, let t0 ≤ t, the set {Bt0 ∈ F c} is FM
t0
-measurable (Point 2). If Bt0 ∈ F c,then there

exists n and k such that Bt0 ∈ Ak
n and so, there exists r such that t0 ∈]Sr, T r[. We have

Bt0 = Bt0 −BSr +BSr .

and equality (1) gives

Bt0 =
1

α
(Mt0 −MSr) +Bsr

Since F c is dense in [0, 1] (Point 3), we have

Bt1{0<Bt<1} = lim
s↓t

supBs1{Bs∈F c} and F
M = B.

It remains to establish that M is non-extremal. This follows easily from Lemma 1, since λ(F ) > 0. �
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4. Examples of extremal non-pure martingales with Brownian filtrations

We will now show that the filtration of the extremal non-pure martingale given in [15] is Brownian.

Theorem 4.1. Brownian filtration is generated by a non-pure extremal martingale.

Proof. Let B be a Brownian motion and B its natural filtration. We start by considering the stochastic
equation

dXt = ϕ(Xt)dBt , X0 = 0,

where ϕ(x) = 1√
2+ x

1+|x|

. We easily check that:

|ϕ(x)− ϕ(x′)|2 ≤ c

∣∣∣∣
1

ϕ(x)
− 1

ϕ(x′)

∣∣∣∣
2

≤ c

∣∣∣∣
x

1 + |x| −
x′

1 + |x′|

∣∣∣∣

and
1√
3
≤ ϕ(x) ≤ 1, ∀x, x′ ∈ R.

The function x
1+|x| is strictly increasing, we apply theorem 3.5(iii), chap.IX of [12] and we get FX = B.

We have, 〈X〉 =
∫
ϕ2(Xt)dt, since ϕ2 is continuous and strictly decreasing

F〈X〉 = FX

We define the martingale
Mt =

∼
γ〈X〉t

where
∼
γt =

∫ t

0 sgnγsdγs and γ is the DDS Brownian motion associated to X . We have 〈X〉 = 〈M〉 then

F〈M〉 = FM = B.

It remains to show that M is extremal but non-pure. Since ϕ is strictly positive, d〈M〉 is equivalent
to Lebesgue measure and FM is a Brownian filtration, therefore, using Lemma 1, we deduce that M is
extremal. M is non-pure because

F
∼
γ
∞ $ Fγ

∞ = FM
∞ .

�

Here is an other example of non-pure extremal martingale with Brownian filtration :

Theorem 4.2. Let B be a Brownian motion. There exists a strictly positive predictable process H such
that Nt =

∫ t

0
H(Bu, u ≤ s)dBs is non-pure extremal martingale.

Proof. Let (Tt) be absolutely continuous and strictly increasing time change of Theorem 4.1 of [7]. Then

Mt := (BTt
) generates non-Brownian filtration. We have Mt =

∫ t

0 f(Mu, u ≤ s)dγs (see Proposition 3.8,
Chap V of [12]), for γ a Brownian motion and f predictable process which can be choose strictly positive.

Since M is pure by construction (so FM
C = FB), Bt =

∫ t

0 g(Bu, u ≤ s)dγCs
, where g is FB−predictable

process and C the inverse of T , so

γCt
=

∫ t

0

HsdBs,

with H = 1
g
. Since the filtration of M is non Brownian, FM 6= Fγ and the martingale N = γC is not

pure. But FN = FB and H is strictly positive, then N is extremal by Lemma 1. �

Remark 4.3. Theorem 3 responds affirmatively to the following question asked at the end of Chap V
of [12]: is there a strictly positive predictable process H such that the martingale Nt =

∫ t

0
HsdBs is not

pure?
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5. A martingale class that satisfy property (⋆)

In [1], authors discussed a property (⋆) verified by all pure martingales and gave some examples of
non-pure extremal martingales and non-extremal martingales that nevertheless satisfy property (⋆) . In
[2], we better understand this property that we reset here: Let M be a continuous martingale and F =
FM , for every, F-stopping time T finite a.s such that P(MT = 0) = 0, we have

F
+
GT

= F
−
GT

∨ σ(MT < 0),

where GT = sup{s ≤ T,Ms = 0}, T ∈ [0,∞[. The example given in [1] of non-pure extremal martingale
satisfying property (⋆) is in fact the example of Yor [15]. We have shown that its filtration is Brownian
and therefore, it is obvious that this martingale satisfies (⋆) using Barlow’s property proven in [2]. In
the same way, our non-extremal martingale of Theorem 1, satisfies (⋆).

In general, the following proposition can be stated:

Proposition 5.1. Let F be a filtration such that all F-martingales are continuous and SpMult[F] ≤ 2
(see the definition below), then all martingales generating F satisfy property (⋆).

Before proving the proposition, we recall the following definition:

Definition 5.2. Let (Ω,A,P) be probability space and T a sub-field of A. Let Q be the set of all finite
measurable partitions of (Ω,A), for Q ∈ Q, | Q |is the cardinal of Q. The conditional multiplicity of A
with respect to T is the random variable with values in N∗ ∪ {∞}

Mult[A | T] = ess sup
Q. ∈Q

| Q | 1SB(Q)

where SB(Q.) = {∀A ∈ Q,P (A | T) > 0}. The splitting multiplicity of a filtration F, SpMult[F] is the
smallest integer n such that: Mult[FL+ | FL] ≤ n, for any honest time L of F.

Proof. Using proposition 1 of [1], it is enough to show (⋆) for T = t.
Let A = {Mt > 0}, we have E[Mt | FGt

] = 0 a.s, because MGt
= 0 a.s (by Theorem XX-35 of [5]).

Then a.s

E[Mt1A | FGt
] = −E[Mt1Ac | FGt

]. (3)

We define the sets C1 = {P(A | FGt
) = 0} and C2 = {P(Ac | FGt

) = 0} which are in FGt
. We have

P(A ∩ C1) = 0 and P(Ac ∩ C2) = 0.
And for every n ∈ N :

E[1C1
Mt1{0<Mt<n} | FGt

] ≤ nP(A ∩ C1 | FGt
) = 0,

then
1C1

E[Mt1A | FGt
] = 0

and from (3), we have
1C1

E[Mt1Ac | FGt
] = 0.

So, E[Mt1c1∩Ac ] = 0 and C1 ⊂ {Mt = 0}.
Similarly, we have C2 ⊂ {Mt = 0} Applying hypothesis P{Mt = 0} is null, we get P(C1 ∪C2) = 0 So

F
+
Gt

= FGt
∨ σ(Mt > 0),

according to proposition 3 of [2] (see also Lemma 4.3 ,Chap . I of [3]). �

Here is an example of a filtration with SpMult ≤ 2.

Definition 5.3. A filtration generated by a pure martingale is called pure filtration.
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Proposition 5.4. Let F be a filtration, C = (Ct) time change for F and F̂ = (FCt
). We have:

(a) SpMult(F) ≤ SpMult(F̂). If moreover C is strictly increasing, we have: SpMult(F) = SpMult(F̂).
In particular, if F is pure(non trivial), then SpMult(F) = 2.

(b) Let F be the natural filtration of a continuous martingale M and C the inverse of 〈M〉.we suppose

that 〈M〉 is strictly increasing and 〈M〉∞ = ∞. If F̂ is Brownian, then M is extremal and F is
pure.

Proof. (a) Suppose SpMult(F̂) = n ∈ N∗.

Let M be F-spider martingale of multiplicity n+ 1, bounded and M0 = 0. Then Mc = E[M∞ | F̂] is
F̂-spider martingale of multiplicity n+ 1 vanishing at the origin, Proposition 13 of [2] gives M∞ = 0 a.s

and SpMult(F) ≤ n. If C is strictly increasing and if τ is its inverse, then by Lemma 5.9 of [13], we have

F̂τ = FCτ
= F.

If F is pure, then there exists a time change which we also note C, such that Fc is Brownian, then
SpMult(F̂) = 2 and SpMult(F) ≤ 2.

(b) Let W be a Brownian motion that generates F̂ and X the martingale W〈M〉 (by construction, X
is pure ).

Let us show that M is extremal: let B be the DDS Brownian motion of M , B is F̂− Brownian motion
that has F̂− PRP (because F̂ is Brownian ), as FC0

is trivial, F0 is too, and M is extremal. Notice now
that

FX
∞ = FW

∞ = F̂∞ = F∞. (4)

and

Mt =

∫ t

0

ε〈M〉sdXs,

with εt = d〈B,W 〉t
dt

. Hence X is F-extremal (and since it is extremal), Proposition 7.1 of [13], gives us
that FX is immersed in F. So we have F = FX using (4). �

The next question naturally arises: The reciprocal of proposition 1 is it true? i.e if all the martingales
that generate a filtration F satisfy the property (⋆), do we have SpMult(F) = 2?

For now, we do not have a general answer to this question. In any case, let us note that the following
example given in [1] section 6, does not give a negative answer, let

Mt =

∫ t

0

XsdYs − YsdXs

(X2
s + Y 2

s )
α

,

where (Xt + iYt) is a planar Brownian motion starting from z ∈ C∗ and α ∈] − ∞, 1
2 ]. Let F be the

filtration of M , C the inverse of 〈M〉 and F̂ = (FCt
)t≥0, F̂ is Brownian, so F is pure and according to

proposition 1, M satisfy property (⋆).

6. Appendix

Point 1. We have ∫
1{B<0}dB =

1

c′

∫
1{B<0}dM

and ∫
1{B>1}dB =

1

c′′

∫
1{B>1}dM.

Hence, by applying Skorokhod’s Lemma (Lemma 2.1 , Chap.VI of [12]) it is sufficient to see that the sets
{Bt < 0} and {Bt > 1} are FM

t − measurable:

{Bt < 0} = {d〈M〉
dt

(t) = c′} and {Bt > 1} = {d〈M〉
dt

(t) = c
′′},
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and similarly for martingales (Mk
n), n ≥ 1, k ∈ {1, ..., ℓn}.

Point 2 . According to Point 1, the martingale
∫
1F c(B)dB =

∑
n

∑
k M

k
n is FM−adapted, so that’s

its quadratic variation.
Point 3 . We will only show that 0 ∈ F c, more precisely inf F c = 0.
Let xn = inf F c

n. We have

xn =
xn−1

2
− 1

2× 4n
, n ≥ 2

and x1 = 3
8 .

Hence

xn =
x1

2n−1
−

n∑

k=2

1

2n+1−k × 4k
.

But
n∑

k=2

1

2−k × 4k
=

1

2n × 4
(1 − (

1

2
)n−1),

and then

lim
n→∞

xn = lim
n→∞

1

2n+1
(1− 1

2n
) = 0.
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