Three Nontrivial Solutions of Boundary Value Problems for Semilinear Δ_γ–Laplace Equation *

Duong Trong Luyen and Le Thi Hong Hanh

ABSTRACT: In this paper, we study the multiplicity of weak solutions to the boundary value problem

$$\Delta_\gamma u + f(x, u) = 0 \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega,$$

where Ω is a bounded domain with smooth boundary in \mathbb{R}^N ($N \geq 2$) and Δ_γ is the subelliptic operator of the type

$$\Delta_\gamma := \sum_{j=1}^{N} \partial_{x_j} \left(\gamma_j^2 \partial_{x_j} \right), \quad \gamma_j := \frac{\partial}{\partial x_j}, \quad \gamma = (\gamma_1, \gamma_2, ..., \gamma_N),$$

the nonlinearity $f(x, \xi)$ is subcritical growth and may be not satisfy the Ambrosetti-Rabinowitz (AR) condition.

We establish the existence of three nontrivial solutions by using Morse theory.

Key Words: Semilinear degenerate elliptic equations, Morse theory, Three solutions, Multiple solutions.

Contents

1 Introduction 1
2 Preliminary results 2
3 Proof of the main result 5

1. Introduction

In the last decades, the boundary value problem for semilinear elliptic equations

$$-\Delta u = f(x, u), \quad x \in \Omega, \quad u \in H^1_0(\Omega),$$

has been studied by many authors, see, for example [1,20] and the references therein. The following (AR) condition introduced in [1]

(AR) For some $\theta > 2$ and $R > 0$, we have

$$\theta F(x, \xi) \leq f(x, \xi)\xi, \quad \forall \ |\xi| \geq R, \quad \forall \ x \in \Omega,$$

where $F(x, \xi) = \int_0^\xi f(x, \tau)\, d\tau$, plays an important role in their studies. Boundary value problems for nonlinear degenerate elliptic differential equations were treated in [10] and then subsequently in [8,5]. In [25,26], the critical exponent phenomenon was observed for a model of the Grushin type operators. The results were then generalized in [23] to a large class of semilinear degenerate elliptic differential equations. Recently, in [23,24] the second author of this paper and his collaborator have extended the research to a more complicated class of nonlinear degenerate elliptic differential operators. Very recently, the authors of [11] investigated the Δ_γ–Laplace operator under the additional assumption that the operator is homogeneous of degree two with respect to a semigroup of dilations in \mathbb{R}^N. Many aspects of the theory of degenerate elliptic differential operators are presented in monographs [27,28] (see also some recent results in [2,3,11,12,13,14,15,16,17,18,19,22,24,26]).

* This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02–2017.21.

2010 Mathematics Subject Classification: Primary 35L80; Secondary 35L10, 35L71, 35L99.

Submitted December 13, 2018. Published April 05, 2019

1 Typeset by BS_PSPM style. © Soc. Paran. de Mat.
In this paper, we study multiplicity of weak solutions to the following problem

\[
\begin{align*}
\Delta \gamma u + f(x, u) &= 0 & \text{in} & & \Omega, \\
u &= 0 & \text{on} & & \partial \Omega,
\end{align*}
\]

where \(\Omega\) is a bounded domain with smooth boundary in \(\mathbb{R}^N\), \(\Delta\gamma\) (see the definition of this function space below) and \(f(x, \xi) : \Omega \times \mathbb{R} \rightarrow \mathbb{R}\) such that \(f(x, 0) = 0\).

Let \(F(x, \xi) = \int_0^\xi f(x, \tau)d\tau\) and suppose that the non-linearity \(f\) satisfies the following conditions:

(A1) \(f \in C(\bar{\Omega} \times \mathbb{R})\) with \(f(x, 0) = 0\) and satisfies the improved subcritical polynomial growth condition, i.e.

\[\lim_{|\xi| \to \infty} \frac{f(x, \xi)}{|\xi|^{2\gamma^*} - 1} = 0\]

uniformly for \(x \in \Omega\),

where \(2^* := 2\bar{N}/(\bar{N} - 2)\);

(A2) \(\lim_{|\xi| \to 0} \frac{f(x, \xi)}{|\xi|} = p(x)\), uniformly for \(x \in \Omega\), where \(p \in L^\infty(\Omega)\) satisfies \(p(x) \leq \lambda_1\) for all \(x \in \Omega\) and \(p(x) < \lambda_1\) on some \(\Omega_0 \subset \Omega_1\) with \(|\Omega_0| > 0\), where \(\Omega_1 := \{x \in \Omega : \phi_1(x) \neq 0\}\) and \(\lambda_1 > 0\) that has an associated eigenfunction \(\phi_1\) is the first eigenvalue of \(-\Delta\gamma\) with homogeneous Dirichlet boundary data;

(A3) \(f(x, \xi)\) is superlinear at infinity, i.e.

\(\lim_{|\xi| \to +\infty} f(x, \xi)/|\xi| = +\infty\)

uniformly for all \(x \in \Omega\);

(A4) There exist \(\theta \geq 1\) and \(C(x) \in L^1_+(\Omega)\) such that \(\theta \mathcal{F}(x, \xi) \geq \mathcal{F}(x, s\xi) - C(x)\) for \((x, \xi) \in \Omega \times \mathbb{R}\) and \(s \in [0, 1]\), where \(\mathcal{F}(x, \xi) = f(x, \xi) - 2F(x, \xi)\).

The condition (A4) was first introduced by L. Jeanjean [7], there are many functions which satisfy (A4), but do not satisfy the (AR) condition. An example of such function is

\[f(x, \xi) = \xi \ln(1 + |\xi|).
\]

Our main result is given by the following theorem.

Theorem 1.1. Assume conditions (A1)-(A4) hold. Then the problem (1.1)-(1.2) has at least three nontrivial solutions.

The structure of our note is as follows: In Section 2, we give some preliminary results. In Section 3, we proved Theorem 1.1.

2. Preliminary results

First of all, let us collect some concepts and results of Morse theory that will be used below. For the details, we refer to [4]. Let \(X\) be a real Banach space and \(\Phi \in C^1(X, \mathbb{R})\). \(K = \{u \in X : \Phi'(u) = 0\}\) is the critical set of \(\Phi\). Let \(u \in K\) be an isolated critical point of \(\Phi\) with \(\Phi(u) = c \in \mathbb{R}\), and \(U\) be an isolated neighborhood of \(u\), i.e. \(K \cap U = \{u\}\). The group

\[C_m(\Phi, u) = H_m(\Phi^c \cap U, \Phi^c \cap U \setminus \{u\}), \quad m = 0, 1, 2, \ldots,
\]

is called the \(m\)-th critical group of \(\Phi\) at \(u\), where \(\Phi^c = \{u \in X : \Phi(u) \leq c\}\).

\(H_m(\cdot, \cdot)\) is the singular relative homology group of \(\Phi\) at infinity is defined by

\[C_m(\Phi, \infty) = H_m(X, \Phi^c), \quad m = 0, 1, 2, \ldots.
\]

We denote

\[P(u, t) = \sum_i \text{rank} \, C_i(\Phi, u)t^i, \quad P(\infty, t) = \sum_i \text{rank} \, C_i(\Phi, \infty)t^i.
\]
Let $\alpha < \beta$ be the regular values of Φ and set
\[
P(\alpha, \beta, t) = \sum_i \text{rank} C_i(\Phi, \infty) t^i.
\]
If $K = \{u_1, u_2, \ldots, u_k\}$, then there is a polynomial $Q(t)$ with nonnegative integer as its coefficients such that
\[
\sum_j P(u_j, t) = P(\infty, t) + (1 + t)Q(t),
\]
and for every γ_j.

By Definition 2.1.
\[
\sum_{\alpha < \Phi(u_j) < \beta} P(u_j, t) = P(\alpha, \beta, t) + (1 + t)Q(t).
\]

Throughout the paper Ω denotes a bounded domain with smooth boundary in $\mathbb{R}^N, N \geq 2$. As in [11], we consider the operators of the form
\[
\Delta_\gamma := \sum_{j=1}^{N} \partial_{x_j} \left(\gamma_j^2 \partial_{x_j} \right), \quad \partial_{x_j} := \frac{\partial}{\partial x_j}, j = 1, 2, \ldots, N.
\]
Here, the functions $\gamma_j : \mathbb{R}^N \to \mathbb{R}$ are assumed to be continuous, different from zero and of class C^1 in $\mathbb{R}^N\setminus \Pi$, where
\[
\Pi := \left\{ x = (x_1, x_2, \ldots, x_N) \in \mathbb{R}^N : \prod_{j=1}^{N} x_j = 0 \right\}.
\]
Moreover, we assume the following properties:
i) There exists a semigroup of dilations $\{\delta_t\}_{t>0}$ such that
\[
\delta_t : \mathbb{R}^N \to \mathbb{R}^N, \delta_t(x_1, \ldots, x_N) = (t^{\varepsilon_1} x_1, \ldots, t^{\varepsilon_N} x_N), 1 = \varepsilon_1 \leq \varepsilon_2 \leq \cdots \leq \varepsilon_N,
\]
such that γ_j is δ_t--homogeneous of degree $\varepsilon_j - 1$, i.e.,
\[
\gamma_j(\delta_t(x)) = t^{\varepsilon_j-1} \gamma_j(x), \forall x \in \mathbb{R}^N, \forall t > 0, j = 1, \ldots, N.
\]
The number
\[
\vec{N} := \sum_{j=1}^{N} \varepsilon_j
\]
is called the homogeneous dimension of \mathbb{R}^N with respect to $\{\delta_t\}_{t>0}$.

ii) $\gamma_1 = 1, \gamma_j(x) = \gamma_j(x_1, x_2, \ldots, x_{j-1}), j = 2, \ldots, N$.

iii) There exists a constant $\rho \geq 0$ such that
\[
0 \leq x_k \partial_{x_k} \gamma_j(x) \leq \rho \gamma_j(x), \forall k \in \{1, 2, \ldots, j-1\}, \forall j = 2, \ldots, N,
\]
and for every $x \in \mathbb{R}^N := \{(x_1, \ldots, x_N) \in \mathbb{R}^N : x_j \geq 0, \forall j = 1, 2, \ldots, N\}$.

iv) Equalities $\gamma_j(x) = \gamma_j(x^*)$ $(j = 1, 2, \ldots, N)$ are satisfied for every $x \in \mathbb{R}^N$, where
\[
x^* = (|x_1|, \ldots, |x_N|) \text{ if } x = (x_1, x_2, \ldots, x_N).
\]

Definition 2.1. By $S^p_\gamma(\Omega)$ $(1 \leq p < +\infty)$ we will denote the set of all functions $u \in L^p(\Omega)$ such that $\gamma_j \partial_{x_j} u \in L^p(\Omega)$ for all $j = 1, \ldots, N$. We define the norm in this space as follows
\[
\|u\|_{S^p_\gamma(\Omega)} = \left\{ \int_\Omega \left(\left| u \right|^p + \sum_{j=1}^{N} \left| \gamma_j \partial_{x_j} u \right|^p \right) dx \right\}^{\frac{1}{p}}.
\]
If $p = 2$ we can also define the scalar product in $S^2_\gamma(\Omega)$ as follows

$$(u, v)_{S^2_\gamma(\Omega)} = (u, v)_{L^2(\Omega)} + \sum_{j=1}^N (\gamma_j \partial_{x_j} u, \gamma_j \partial_{x_j} v)_{L^2(\Omega)}.$$

The space $S^p_{\gamma,0}(\Omega)$ is defined as the closure of $C^1_0(\Omega)$ in the space $S^p_\gamma(\Omega)$.

Set

$$\nabla_\gamma u := (\gamma_1 \partial_{x_1} u, \gamma_2 \partial_{x_2} u, \ldots, \gamma_N \partial_{x_N} u),$$

$$|\nabla_\gamma u| := \left(\sum_{j=1}^N |\gamma_j \partial_{x_j} u|^2 \right)^{\frac{1}{2}}.$$

From Proposition 3.2 and Theorem 3.3 in [11], we have the following embedding result.

Proposition 2.1. Assume that $\tilde{N} > 2$. Then $S^2_{\gamma,0}(\Omega) \hookrightarrow L^p(\Omega)$, where $1 \leq p \leq \frac{2\tilde{N}}{N - 2}$. Moreover, the number $2^*_\gamma = \frac{2\tilde{N}}{N - 2}$ is the critical Sobolev exponent of the embedding $S^2_{\gamma,0}(\Omega) \hookrightarrow L^p(\Omega)$ and when $1 \leq p < 2^*_\gamma$, the embedding is compact.

We now give some examples of the Δ_γ–Laplace operator. We use the following notations: we split \mathbb{R}^N into

$$\mathbb{R}^N = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \times \mathbb{R}^{N_3},$$

and write

$$x = (x^{(1)}, x^{(2)}, x^{(3)}), \quad x^{(i)} = (x_1^{(i)}, x_2^{(i)}, \ldots, x_{N_i}^{(i)}) \in \mathbb{R}^{N_i},$$

$$|x^{(i)}|^2 = \sum_{j=1}^{N_i} |x_j^{(i)}|^2, \quad i = 1, 2, 3.$$

We denote the classical Laplace operator in \mathbb{R}^{N_i} by

$$\Delta_{x^{(i)}} := \sum_{j=1}^{N_i} \partial_{x_j^{(i)}}^2.$$

Example 2.2. Let α be a real positive number. The operator

$$\Delta_\gamma := \Delta_{x^{(1)}} + |x^{(1)}|^{2\alpha} (\Delta_{x^{(2)}} + \Delta_{x^{(3)}}),$$

where

$$\gamma = \underbrace{(1, 1, \ldots, 1)}_{N_1 \text{--times}}, \underbrace{|x^{(1)}|^{\alpha}, \ldots, |x^{(1)}|^{\alpha}}_{(N_2 + N_3) \text{--times}},$$

is called the Grushin operator (see [6]).

Example 2.3. Let α, β be nonnegative real numbers. The operator

$$\Delta_\gamma := \Delta_{x^{(1)}} + \Delta_{x^{(2)}} + |x^{(1)}|^{2\alpha} |x^{(2)}|^{2\beta} \Delta_{x^{(3)}},$$

where

$$\gamma = \underbrace{(1, 1, \ldots, 1)}_{(N_1 + N_2) \text{--times}}, \underbrace{|x^{(1)}|^{\alpha} |x^{(2)}|^{\beta}, \ldots, |x^{(1)}|^{\alpha} |x^{(2)}|^{\beta}}_{N_3 \text{--times}},$$

is called the strongly degenerate elliptic operators (see [24, 28]).
Definition 2.4. A function $u \in S^2_{\gamma,0}(\Omega)$ is called a weak solution of the problem \((1.1)-(1.2)\) if the identity
\[
\int_{\Omega} \nabla_{\gamma} u \cdot \nabla_{\gamma} \varphi \, dx - \int_{\Omega} f(x, u) \varphi \, dx = 0,
\]
holds for every $\varphi \in C_0^{\infty}(\Omega)$.

Definition 2.5. Let X be a real Banach space with its dual space X^* and $\Phi \in C^1(X, \mathbb{R})$. The functional Φ is said to satisfy Cerami condition at level $c \in \mathbb{R}$ \((C)_c\) condition for short) if for any sequence \(\{x_m\}_{m=1}^{\infty} \subset X\) with
\[
\Phi(x_m) \to c \quad \text{and} \quad (1 + \|x_m\|_X) \|\Phi'(x_m)\|_{X^*} \to 0,
\]
then there exists a subsequence \(\{x_{m_k}\}_{k=1}^{\infty}\) that converges strongly in X. Φ satisfies the \((C)_c\) condition if Φ satisfies \((C)_c\) condition at every $c \in \mathbb{R}$.

3. Proof of the main result

First, we observe that the problem \((1.1)-(1.2)\) has a variational structure. Indeed it is the Euler-Lagrange equation of the functional $\Phi : S^2_{\gamma,0}(\Omega) \to \mathbb{R}$ defined as follows:
\[
\Phi(u) = \frac{1}{2} \int_{\Omega} |\nabla_{\gamma} u|^2 \, dx - \int_{\Omega} F(x, u) \, dx,
\]
By the hypotheses on f, we can see that the functional Φ is Fréchet differentiable in $S^2_{\gamma,0}(\Omega)$ and for any $\varphi \in S^2_{\gamma,0}(\Omega)$,
\[
\langle \Phi'(u), \varphi \rangle = \int_{\Omega} \nabla_{\gamma} u \cdot \nabla_{\gamma} \varphi \, dx - \int_{\Omega} f(x, u) \varphi \, dx.
\]
Thus, critical points of Φ are solutions of problem \((1.1)-(1.2)\).

Let
\[
f_\pm(x, \xi) = \begin{cases} f(x, \xi), & \xi > 0, \\ 0, & \xi \leq 0; \end{cases}
\]
\[
\Phi_\pm(u) = \frac{1}{2} \int_{\Omega} |\nabla_{\gamma} u|^2 \, dx - \int_{\Omega} F_\pm(x, u) \, dx,
\]
where $F_\pm(x, \xi) = \int_0^\xi f_\pm(x, \tau) \, d\tau$. Now, we prove the following compactness condition for Φ and Φ_\pm.

Lemma 3.1. Let \((A1)-(A4)\) be satisfied. Then the functionals Φ and Φ_\pm satisfies the \((C)\) condition on $S^2_{\gamma,0}(\Omega)$.

Proof. We only give the proof for Φ_+, the cases of Φ and Φ_- are similar. Let \(\{u_n\}_{n=1}^{\infty} \subset S^2_{\gamma,0}(\Omega)\) be a sequence such that
\[
\Phi_+(u_n) \to c, \quad \left(1 + \|u_n\|_{S^2_{\gamma,0}(\Omega)}\right) \|\Phi'_+(u_n)\|_{(S^2_{\gamma,0}(\Omega))^*} \to 0, \quad \text{as } n \to \infty. \tag{3.1}
\]
The proof of this lemma, we divide two steps:

Step 1. We first prove that \(\{u_n\}_{n=1}^{\infty}\) is bounded in $S^2_{\gamma,0}(\Omega)$. Let $u_n^+ = \max\{u_n, 0\}$, $u_n^- = \min\{u_n, 0\}$. From (3.1), we obtain
\[
||\Phi'_+(u_n), \varphi|| \leq \epsilon_n ||\varphi||_{S^2_{\gamma,0}(\Omega)} \quad \text{for any } \varphi \in S^2_{\gamma,0}(\Omega),
\]
where $\epsilon_n \to 0$ as $n \to \infty$, then the boundedness of u_n^- can be directly obtained. For the case of u_n^+, by contradiction, we assume that $||u_n^+||_{S^2_{\gamma,0}(\Omega)} \to \infty$ as $n \to \infty$. Let $v_n = ||u_n^+||^{-1}_{S^2_{\gamma,0}(\Omega)} u_n^+$, then
∥v_n∥_{S^2_{γ,0}(Ω)} = 1. By Proposition 2.1, up to a subsequence, we have

\[v_n \rightharpoonup v \quad \text{weakly in } S^2_{γ,0}(Ω) \text{ as } n \to ∞, \]

\[v_n \to v \quad \text{strongly in } L^q(Ω) \text{ as } n \to ∞, \]

\[v_n \to v \quad \text{a.e. in } Ω \text{ as } n \to ∞. \]

Case 1. If \(v \neq 0 \) then the Lebesgue measure of \(Ω_0 = \{x \in Ω : v(x) \neq 0\} \) is positive. Using (3.1), we obtain

\[\langle Φ'_+(u_n), u_n^+ \rangle = o(1), \]

which implies that

\[\int Ω \frac{f_+(x, u_n^+)}{|u_n^+|^2} dx = \int Ω \frac{f_+(x, u_n^+)}{|u_n^+|^2} |v_n|^2 dx = 1 + o(1). \] (3.3)

By (A3), there is a constant \(M > 0 \) such that

\[f_+(x, u_n^+) > 0, \quad \text{as } |u_n| > M, \]

then we have

\[\int Ω,Ω_0 \frac{f_+(x, u_n^+)}{(u_n^+)^2} |v_n|^2 dx \geq -C. \] (3.4)

On the other hand, for \(x \in Ω_0, u_n^+ \to ∞ \) as \(n \to ∞ \). Then by the Fatou’s lemma and (A3) we have

\[\int Ω_0 \frac{f_+(x, u_n^+)}{(u_n^+)^2} |v_n|^2 dx \to ∞, \quad \text{as } n \to ∞. \]

Combining this with (3.4) gives

\[\int Ω \frac{f_+(x, u_n^+)}{(u_n^+)^2} |v_n|^2 dx \to ∞, \quad \text{as } n \to ∞. \] (3.5)

This contradicts (3.3). Then this case is impossible.

Case 2. If \(v ≡ 0 \) then for any \(n \in N \) there exists \(t_n \in [0,1] \) such that

\[Φ_+(t_n u_n^+) = \max_{t \in [0,1]} Φ_+(tu_n^+). \]

For any \(R > 0 \), we assume that \(w_n = 2\sqrt{R}v_n \). Then \(w_n \to 0 \) in \(L^q(\mathbb{R}^N) \). So from conditions (A1) and (A2), for every \(ε > 0 \), we can find a constant \(C(ε) > 0 \) such that

\[F(x, w_n) \leq C(ε)(w_n)^2 + ε(w_n)^2, \] (3.6)

which implies

\[\lim_{n \to ∞} \int Ω F_+(x, w_n)dx = 0. \] (3.7)

Since \(2\sqrt{R}∥u_n^+∥_{S^2_{γ,0}(Ω)} = 0,1 \) for \(n \) large enough, by (3.7) we obtain

\[Φ_+(t_n u_n^+) \geq Φ_+(w_n) = 2R - \int Ω F_+(x, w_n)dx \geq R, \]

which implies

\[Φ_+(t_n u_n^+) \to ∞, \quad \text{as } n \to ∞. \] (3.8)
From $\Phi_+(0) = 0$ and $\Phi_+(u_n^+) \to c$ we have $t_n \in (0, 1)$, then

$$\langle \Phi'_+(t_n u_n^+), t_n u_n^+ \rangle = t_n \frac{d}{dt} \Phi_+(t u_n) = 0.$$

Then, from (A4) it follows that

$$\frac{1}{\theta} \Phi_+(t_n u_n^+) = \frac{1}{\theta} \left(\Phi_+(t_n u_n^+) - \frac{1}{2} \langle \Phi'_+(t_n u_n^+), t_n u_n^+ \rangle \right)$$

$$= \frac{1}{2} \int_{\Omega} f(x, t_n u_n^+) dx$$

$$\leq \frac{1}{2} \int_{\Omega} f(x, u_n^+) dx + \frac{1}{2\theta} \int_{\Omega} C(x) dx$$

$$= \Phi_+(u_n^+) - \frac{1}{2} \langle \Phi'_+(u_n^+), u_n^+ \rangle + c \to C.$$

This contradicts that $\Phi_+(t_n u_n^+) \to \infty$. Hence $\{u_n\}_{n=1}^{\infty}$ is bounded; that is, there exists a positive constant M such that

$$\|u_n\|_{S^2_{\gamma,0}(\Omega)} \leq M, \text{ for all } n \in \mathbb{N}.$$

Step 2. We prove $\{u_n\}_{n=1}^{\infty}$ has a convergent subsequence. In fact, we can suppose that

$$u_n \rightharpoonup u \text{ weakly in } S^2_{\gamma,0}(\Omega) \text{ as } n \to \infty,$$

$$u_n \to u \text{ strongly in } L^q(\Omega) \text{ as } n \to \infty,$$

$$u_n \to u \text{ a.e. in } \Omega \text{ as } n \to \infty.$$

Now, since Ω is a bounded set, for every $\epsilon > 0$, we can find a constant $C(\epsilon) > 0$ such that

$$f_+(x, s) \leq C(\epsilon) + |s|^{2^*_\gamma-1}, \quad \forall (x, s) \in \Omega \times \mathbb{R},$$

then

$$\left| \int_{\Omega} f_+(x, u_n)(u_n - u) dx \right|$$

$$\leq C(\epsilon) \int_{\Omega} |u_n - u| dx + \epsilon \int_{\Omega} |u_n - u|^{2^*_\gamma-1} dx$$

$$\leq C(\epsilon) \int_{\Omega} |u_n - u| dx + \epsilon \left(\int_{\Omega} |u_n|^{2^*_\gamma-1} \right)^{\frac{2^*_\gamma-1}{2^*_\gamma}} \left(\int_{\Omega} |u_n - u|^{2^*_\gamma} \right)^{\frac{1}{2^*_\gamma}}$$

$$\leq C(\epsilon) \int_{\Omega} |u_n - u| dx + \epsilon C(\Omega).$$

Similarly, since $u_n \rightharpoonup u$ in $S^2_{\gamma,0}(\Omega)$, it follows that $\int_{\Omega} |u_n - u| dx \to 0$. Since $\epsilon > 0$ is arbitrary, we can conclude that

$$\int_{\Omega} (f_+(x, u_n) - f_+(x, u))(u_n - u) dx \to 0 \quad \text{as } n \to \infty. \quad (3.9)$$

By (3.9), we have

$$\langle \Phi'_+(u_n) - \Phi'_+(u), (u_n - u) \rangle \to 0 \quad \text{as } n \to \infty. \quad (3.10)$$

From (3.9) and (3.10), we obtain $\|u_n\|_{S^2_{\gamma,0}(\Omega)} \to \|u\|_{S^2_{\gamma,0}(\Omega)}$ as $n \to \infty$. Thus we have

$$\|u_n - u\|_{S^2_{\gamma,0}(\Omega)} \to 0, \text{ as } n \to \infty,$$

which means that Φ_+ satisfies condition (C). □
Lemma 3.2. Assume that conditions (A1), (A3), (A4) hold. Then we have

\[C_m(\Phi, \infty) = C_m(\Phi_{\pm}, \infty) = \{0\}, \quad m = 0, 1, 2, \ldots. \]

Proof. We only give the proof of \(\Phi_{+} \); the others are similar. Let \(S = \{ u \in S_{2,0}^{2}(\Omega) : \| u \|_{S_{2,0}^{2}(\Omega)} = 1, u^{+} \neq 0 \} \) and \(B^{\infty} = \{ u \in S_{2,0}^{2}(\Omega) : \| u \|_{S_{2,0}^{2}(\Omega)} \leq 1 \} \). By (A3), for any \(M > 0 \) there exists \(c > 0 \), such that \(F(x, t) \geq Mt^{2} - c \), for \((x, t) \in \Omega \times \mathbb{R} \), which implies \(\Phi_{+}(tu) \to -\infty \), as \(t \to +\infty \), for any \(u \in S \). Using (A4), we have

\[f_{+}(x, t)t - 2F_{+}(x, t) \geq -\frac{C(x)}{\theta}, \quad \text{for} \quad (x, t) \in \Omega \times \mathbb{R}. \]

Choose

\[a < \min \left\{ \inf_{u \in B^{\infty}} \Phi_{+}(u), -\frac{C_*}{2\theta} \right\}, \]

where \(C_* = \int_{\Omega} C(x)dx \). Then for any \(u \in S \), there exists \(t > 1 \) such that \(\Phi_{+}(tu) \leq a \), that is

\[\Phi_{+}(tu) = \frac{t^{2}}{2} - \int_{\Omega} F_{+}(x, tu)dx \leq a, \]

which (3.11) implies

\[\frac{d}{dt}\Phi_{+}(tu) = t - \int_{\Omega} f_{+}(x, tu)u \leq \frac{1}{t}(2a + \frac{C_*}{\theta}) < 0. \]

Therefore, by the implicit function theorem, there exists a unique \(T \in C(S, \mathbb{R}) \) such that

\[\Phi_{+}(T(u)u) = a, \quad \text{for} \quad u \in S. \]

Let \(S_1 = \{ u \in S_{2,0}^{2}(\Omega) : \| u \|_{S_{2,0}^{2}(\Omega)} \geq 1, u^{+} \neq 0 \} \). We construct a strong deformation retract \(\tau : [0, 1] \times S_1 \to S_1 \) which satisfies \(\tau(s, u) = (1 - s)u + sT\left(n\| u \|_{S_{2,0}^{2}(\Omega)}\right)\| u \|_{S_{2,0}^{2}(\Omega)} \) if \(\Phi_{+}(u) \geq a \) and \(\tau(s, u) = u \) if \(\Phi_{+}(u) < a \). Hence, It follows from the construction of \(\tau \) that \(\Phi_{+}^{a} \) is a strong deformation retract of \(S_1 \), which is homotopy equivalent to the set \(S \). By the homotopy invariance of homology group, we have

\[C_m(\Phi_{+}, \infty) = H_m(S_{2,0}^{2}(\Omega), \Phi_{+}^{a}) = H_m(S_{2,0}^{2}(\Omega), S) = H_m(S_{2,0}^{2}(\Omega), S_{2,0}^{2}(\Omega) \setminus \{0\}) = 0. \]

Proof of Theorem 1.1. By Lemma 3.1, we know that \(\Phi \) and \(\Phi_{\pm} \) satisfy the (C) condition. By conditions (A1) and (A2), we can easily prove that 0 is a local minimum of \(\Phi \) and \(\Phi_{\pm} \). So, we have

\[C_m(\Phi, 0) = C_m(\Phi_{\pm}, 0) = \delta_{m,0}G. \]

(3.12)

Using the mountain pass theorem in [21], we obtain \(\Phi_{+} \text{ (} \Phi_{-} \text{)} \) has a critical point \(u_{+} > 0 \text{ (} u_{-} < 0 \text{)} \), and \(u_{\pm} \) are also the nontrivial critical points of the functional \(\Phi \). Without loss of generality, we assume that \(u_{\pm} \) are isolated and the only nontrivial critical points of the functional \(\Phi \). Now we claim that

\[C_m(\Phi_{\pm}, u_{\pm}) = \delta_{m,1}G. \]

(3.13)

Indeed, using the methods of [9], we let \(\Phi_{+}(u_{+}) = c > 0 \). It follows from the homology exact sequence of the triple \(\Phi_{+}^{A} \subset \Phi_{+}^{B} \subset S_{2,0}^{2}(\Omega) \), we have

\[\cdots \to H_m(S_{2,0}^{2}(\Omega), \Phi_{+}^{A}) \to H_m(S_{2,0}^{2}(\Omega), \Phi_{+}^{B}) \to H_{m-1}(\Phi_{+}^{B}, \Phi_{+}^{A}) \to H_{m-1}(S_{2,0}^{2}(\Omega), \Phi_{+}^{A}) \to \cdots. \]

(3.14)
where \(A < 0 \) is a constant. Since 0 is the only critical point of \(\Phi_+ \) in the set \(\Phi_+^\delta \), by (3.12), we obtain

\[
H_m(\Phi_+^\delta, \Phi_+^\delta) = C_m(\Phi_+, 0) = \delta_{m,0} G. \tag{3.15}
\]

Similarly, since \(u_+ \) is the only critical point of \(\Phi_+ \) in the set \(\{u \in S^2_{\gamma,0}(\Omega) | \Phi_+(u) \geq \frac{c}{2} \} \), we have

\[
H_m(S^2_{\gamma,0}(\Omega), \Phi_+^\delta) = C_m(\Phi_+, u_1), \quad m = 0, 1, 2, \ldots. \tag{3.16}
\]

From Lemma 3.2, we have

\[
H_m(S^2_{\gamma,0}(\Omega), \Phi_+^\delta) = C_m(\Phi_+, \infty) = 0, \quad m = 0, 1, 2, \ldots. \tag{3.17}
\]

From (3.14) to (3.17), we deduce that

\[
C_m(\Phi_+, u_+) = C_{m-1}(\Phi_+, 0) = \delta_{m,1} G.
\]

The case for \(u_- \) is similar, that is

\[
C_m(\Phi_-, u_-) = C_{m-1}(\Phi_-, 0) = \delta_{m,1} G.
\]

Hence

\[
C_m(\Phi, u_\pm) = \delta_{m,1} G.
\]

The Morse equality (2.1) with \(t = -1 \) implies that

\[
(-1)^0 + (-1)^1 + (-1)^1 = 0,
\]

which is a contradiction. Then the problem (1.1)–(1.2) has at least three nontrivial solutions.

References

Duong Trong Luyen,
Division of Computational Mathematics and Engineering,
Institute for Computational Science,
Ton Duc Thang University,
Ho Chi Minh City,
Vietnam.
Faculty of Mathematics and Statistics,
Ton Duc Thang University,
Ho Chi Minh City,
Vietnam.
E–mail address: duongtrongluyen@tdtu.edu.vn

and

Le Thi Hong Hanh,
Department of Mathematics,
Hoa Lu University,
Ninh Nhat,
Ninh Binh city, Vietnam.
E–mail address: lthhanh@hluv.edu.vn