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Existence and Multiplicity of Solutions for Anisotropic Elliptic Equations

Abdelrachid El Amrouss and Ali El Mahraoui

abstract: In this article we study the nonlinear problem
{

−
∑N

i=1 ∂xi
ai(x, ∂xi

u) + b(x) |u|
P

+
+−2

u = λf(x, u) in Ω
u = 0 on ∂Ω

Using the variational method, under appropriate assumptions on f , we obtain a result on existence and
multiplicity of solutions.

Key Words:−→p (.)-Laplace type operator, variable exponent Lebesgue space, anisotropic space, Ric-
ceri’s variational principle.

Contents

1 Introduction 1

2 Preliminaries 4

3 Proof of main results 6

3.1 Existence of a nontrivial weak solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Existence of three solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. Introduction

Let Ω ⊂ R
N (N ≥ 3) be a bounded domain with smooth boundary. In this paper we will study the

existence and the multiplicity of weak solutions of the anisotropic problem :

(P )

{

−
∑N

i=1 ∂xi
ai(x, ∂xi

u) + b(x) |u|P
+
+ −2u = λf(x, u) in Ω

u = 0 on ∂Ω

where b ∈ L∞(Ω), f : Ω× R → R, ai : Ω × R → R are Carathéodory functions fulfilling some natural

hypotheses, and 0 < λ ∈ R. The anisotropic differential operator
∑N

i=1 ∂xi
ai(x, ∂xi

u) is a −→p (.)-Laplace
type operator, where −→p (x) = (p1(x), p2(x), ..., pN (x)) and P+

+ = max
i∈{1,2,...,N}

sup
Ω

pi(x) for i = 1, ..., N ,

we assume that pi is a continuous function on Ω. We denote by ai(x, η) the continuous derivative with
respect to η of the mapping Ai : Ω×R → R , Ai = Ai(x, η), that means ai(x, η) =

∂
∂η

Ai(x, η). We make
the following assumptions on the mapping Ai :
(A0) Ai(x, 0) = 0 for a.e. x ∈ Ω.
(A1) There exists a positive constant ci such that ai satisfies the growth condition

|ai(x, η)| ≤ ci(1 + |η|pi(x)−1),

for all x ∈ Ω and η ∈ R.
(A2) The inequalities

|η|pi(x) ≤ ai(x, η)η ≤ pi(x)Ai(x, η),

are verified for all x ∈ Ω and η ∈ R.
(A3) Assume that pi : Ω → [2,∞), and there exists ki > 0 such that

Ai(x,
η + ξ

2
) ≤

1

2
Ai(x, η) +

1

2
Ai(x, ξ)− ki|η − ξ|pi(x),
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for all x ∈ Ω and η, ξ ∈ R, with equality if and only if η = ξ.
Examples

1) If we take ai(x, η) = |η|pi(x)−2η for all i ∈ {1, ..., N}, we have Ai(x, η) = 1
pi(x)

|η|pi(x) for all i ∈

{1, ..., N}. Obviously, (A0) - (A3) are verified, and we obtain the −→p (x) -Laplace operator

△−→p (x)(u) =

N
∑

i=1

∂xi
(|∂xi

u|pi(x)−2∂xi
u).

2) If we take ai(x, η) = (1 + η2)
pi(x)−2

2 η for all i ∈ {1, ..., N}, we have Ai(x, η) =
1

pi(x)
[(1 + |η|2)

pi(x)

2 − 1]

for all i ∈ {1, ..., N}, then (A0) - (A3) are verified, and we find the anisotropic variable mean curvature
operator

N
∑

i=1

∂xi
(1 + |∂xi

u|2)
pi(x)−2

2 ∂xi
u).

We use in our work the Ricceri’s theorem which is the main tool to study the boundary problems.
We infer to some references ([ 16],[ 13],[ 21]), for example, in [21] the authors studied the operator
p(x)−Laplace, then they showed the existence of at least three solutions under appropriate conditions.
In our case, we use the more general operator which called −→p (x)-Laplace type operator with Dirichlet
boundary condition on a bounded domain under conditions more weak and obtain three solutions. The
problems related to the −→p (x)-Laplace type operator are called anisotropic problems. Let us recall some
articles wherein the authors studied this kind of problems :

In [1], the authors considered problem (P ). First, they consider the case when f(x, u) = λ(|u|q(x)−2u+
|u|γ(x)−2u) in which the parameter λ is positive and q(x), γ(x) are continuous functions on Ω, , and they
obtained the existence of two nontrivial weak solutions. Their arguments are based on the mountain pass
theorem and Ekeland’s variational principle [8]. Next, they considered f(x, u) = λ|u|q(x)−2u+µ|u|γ(x)−2u
and they established the existence of two unbounded sequence of weak solutions, their proof is based on
fountain theorem [22].
In [15], the authors established the existence and uniqueness of a weak energy solution to the following
boundary value problem :

(S)

{

−
∑N

i=1 ∂xi
ai(x, ∂xi

u) = f(x, u) in Ω
u = 0 on ∂Ω

In [18], the authors considered (S) where f = λ|u|q(x)−2u, and established the existence of a con-
tinuous spectrum in several distinct situations. But in [17], the authors took the same problem with λ
depends on the variable x, using the mountain-pass theorem of Ambrosetti and Rabinowitz [2] and the
Ekeland’s variational principle, they proved that under suitable conditions, problem (S) has two nontriv-
ial weak solutions. In [5], Boureanu proved that problem (S) has a sequence of weak solutions by means
of the symmetric mountain-pass theorem.

Given Ω ⊂ R
N , we set

C+(Ω) = {h ∈ C(Ω)|min
x∈Ω

h(x) > 1}.

For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Let p ∈ C+(Ω), then Lp(x)(Ω) is called variable exponent Lebesgue space which is defined as follow

Lp(x)(Ω) =

{

u :
u is a measurable real-valued function such that

∫

Ω
|u(x)|p(x) dx < ∞

}

,
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endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{µ > 0 :

∫

Ω

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1}

is a separable and reflexive Banach space (see [12]).
We say that p is logarithmic Hölder continuous if

|p(x)− p(y)| ≤ −
M

log(|x− y|)
∀x, y ∈ Ω such that |x− y| ≤ 1/2. (1.1)

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ [Lp(x)(Ω)]N}.

For all u ∈ W 1,p(x)(Ω), we have ‖u‖1,p(x) = |u|p(x) + |∇u|p(x). If p satisfies (1.1), the space W
1,p(x)
0 (Ω)

is the closure of C∞
0 (Ω) in W 1,p(x)(Ω) under the norm ‖u‖1,p(x). For u ∈ W

1,p(x)
0 (Ω), we can define an

equivalent norm ‖u‖p(x) = |∇u|p(x).

Now, we introduce a natural generalization of the function space W
1,p(x)
0 (Ω), which will allow us to study

the problem (P ), which is called anisotropic variable exponent Sobolev spaceW
1,−→p (x)
0 (Ω). If −→p : Ω → R

N ;
−→p (x) = (p1(x), p2(x), ..., pN (x)), and for each i ∈ {1, 2, ..., N}, we have pi ∈ C+(Ω), and satisfy (1.1), the

anisotropic variable exponent Sobolev space W
1,−→p (x)
0 (Ω) is the closure of C∞

0 (Ω) under the norm

‖u‖ = ‖u‖−→p (.) =
N
∑

i=1

|∂xi
u|pi(.),

and it’s a reflexive Banach space (see[9, 18]). From now on, we put X = W
1,−→p (x)
0 (Ω).

In order to study the problem (P ) we have to introduce the vectors
−→
P +,

−→
P − ∈ R

N which are defined in
the following way

−→
P + = (p+1 , p

+
2 , ..., p

+
N ),

−→
P − = (p−1 , p

−
2 , ..., p

−
N ),

and the positive real numbers P+
+ , P+

− , P−
− as the following

P+
+ = max{p+1 , ..., p

+
N}, P+

− = max{p−1 , ..., p
−
N}, P−

− = min{p−1 , ..., p
−
N}.

Throughout this paper, we assume that
N
∑

i=1

1

p−i
> 1. (1.2)

Define P ∗
−, P−,∞ ∈ R

+ by

P ∗
− =

N
∑N

i=1
1
p
−

i

− 1
, P−,∞ = max{P+

− , P ∗
−}.

Suppose that the Carathéodory function f : Ω× R → R satisfies the conditions :

(F1) |f(x, t)| ≤ c(x) + d|t|α(x)−1, for all (x, t) ∈ Ω × R where c is in Lα
′

(x)(Ω) with 1
α(x) +

1
α

′ (x)
= 1 ,

d ≥ 0 is a constant, α(x) ∈ C+(Ω) such that α+ = sup
x∈Ω

α(x) < P−
− < P−,∞, and P−

− > N .

(F2) there exists a constant 0 < θ < 1, for 0 < t < 1, we have F (x, tu) > tθ|u|θ.

(F3) f(x, t) < 0, when |t| ∈ (0, 1), f(x, t) ≥ m > 0, when t ∈ (t0,∞), t0 > 1.
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And assume that
(B) b ∈ L∞(Ω) and there exist b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.
We give now the main results of this paper .

Theorem 1.1. Under the assumptions (A0)− (A3), (B), (F1) and (F2), the problem (P ) has at least one
nontrivial weak solution in X.

Theorem 1.2. If (A0) − (A3), (B), (F1) and (F3) hold, then there exists an open interval Λ ⊂ (0,∞)
and a positive real number ρ > 0 such that each λ ∈ Λ, (P ) has at least three solutions whose norms are
less than ρ > 0.

This paper is divided into two sections. In the first section we will give some known results, in the
second we will give the proof of our main results.

2. Preliminaries

First, we recall some important definitions and proprieties of the Lebesgue and Sobolev spaces with

variable exponent Lp(x)(Ω) and W
1,p(x)
0 (Ω), where Ω is a bounded domain in R

N .

Proposition 2.1. (see [6, 12, 11])

1. The space (Lp(x)(Ω), |u|p(x)) is a separable, uniformly convex Banach space and its dual space is

Lq(x)(Ω), where 1
p(x) +

1
q(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

q−

)

|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x)

2. If p1(x), p2(x) ∈ C+(Ω), p1(x) ≤ p2(x), ∀x ∈ Ω, then Lp2(x)(Ω) →֒ Lp1(x)(Ω) and the embedding is
continuous.

Proposition 2.2. (see[10]) Denote ρp(x)(u) =
∫

Ω |u(x)|p(x) dx. Then for u ∈ Lp(x)(Ω), (un) ⊂ Lp(x)(Ω)
we have

1. |u|p(x) < 1(= 1;> 1) ⇔ ρp(x)(u) < 1(= 1;> 1),

2. |u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x),

3. |u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x),

4. |u|p(x) → 0(→ ∞) ⇔ ρp(x)(u) → 0(→ ∞),

5. limn→∞ |un − u|p(x) = 0 ⇔ limn→∞ ρp(x)(un − u) = 0.

We recall now some results which concerning the embedding theorem.

Proposition 2.3. (see[18]) Suppose that Ω ⊂ R
N (N > 3) is a bounded domain with smooth boundary

and relation ( 1.2) is fulfilled.

1. For any q ∈ C(Ω) verifying

1 < q(x) < P−,∞ ∀x ∈ Ω,

the embedding

W
1,−→p (x)
0 (Ω) →֒ Lq(x)(Ω)

is continuous and compact.



Multiplicity of Solutions for Anisotropic Elliptic Equations 5

2. Assume that P−
− > N , then the embedding

W
1,−→p (x)
0 (Ω) →֒ C(Ω)

is continuous and compact.

If Ai satisfies the conditions (A0), (A1), (A2), and (A3) we have the proposition below .

Proposition 2.4. (cf.[15, 17, 5]) Let

Ai(u) =

∫

Ω

Ai(x, ∂xi
u) dx

For i ∈ {1, 2, ..., N}, we have :

• Ai is well defined on X,

• the functional Ai ∈ C1(X,R) and

〈A
′

i(u), ϕ〉 =

∫

Ω

ai(x, ∂xi
u)∂xi

ϕdx,

for all u, ϕ ∈ X : In addition A
′

i is continuous, bounded and strictly monotone.

• Ai is weakly lower semi-continuous.

• Let

A(u) =

∫

Ω

N
∑

i=1

Ai(x, ∂xi
u) dx,

then A
′

is an operator of type (S+).

The main theorem that we use here is the one which proved by Ricceri in [19, 20, 14, 4]. Based on
[3], it can be equivalently stated as follows

Lemma 2.5. Let X be a reflexive real Banach space, Φ : X → R is a continuous Gâteaux differentiable
and sequentially weakly lower semi-continuous functional whose Gâteaux derivative admits a continuous
inverse on X∗; Ψ : X → R is a continuous Gâteaux differentiable functional whose Gâteaux derivative is
compact, assume that :

1. lim
‖u‖X→∞

(Φ(u) + λΨ(u)) = ∞ ∀λ > 0,

2. there exist r and u0, u1 ∈ X such that Φ(u0) < r < Φ(u1),

3. inf
u∈Φ−1(−∞,r]

Ψ(u) > (Φ(u1)−r)Ψ(u0)+(r−Φ(u0))Ψ(u1)
Φ(u1)−Φ(u0)

,

then there exist an open interval Λ ⊂ (0,∞) and a positive constant ρ > 0 such that for any λ ∈ Λ the
equation Φ

′

(u) + λΨ
′

(u) = 0 has at least three solutions in X whose norms are less than ρ.

And we have also the known following result.

Lemma 2.6. (see[7]) Let f : Ω × R −→ R be a Carathéodory function with primitive F (x, u) =
∫ u

0
f(x, t) dt. If f satisfies (F1) : then,

Ψ(u) = −

∫

Ω

F (x, u) dx ∈ C1(X,R)

and

〈Ψ′(u), ϕ〉 = −

∫

Ω

f(x, u)ϕdx,

furthermore the operator Ψ′ : X −→ X∗ is compact.
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3. Proof of main results

We are interested to prove the existence of weak solutions. Let us define the functional I associated
with the problem (P ) then I : X −→ R

I(u) =

∫

Ω

[

N
∑

i=1

Ai(x, ∂xi
u) +

b(x)

P+
+

|u|P
+
+ − λF (x, u)

]

dx,

where F (x, t) =
∫ t

0 f(x, s) ds. Using the notations of the Lemma (2.5), Φ and Ψ are defined as following :

Φ(u) =

∫

Ω

[

N
∑

i=1

Ai(x, ∂xi
u) +

b(x)

P+
+

|u|P
+
+

]

dx,

Ψ(u) = −

∫

Ω

F (x, u) dx,

and
I(u) = Φ(u) + λΨ(u).

It should be noticed that, in this present paper, we have

P−,∞ = max{P+
− , P ∗

−} = P ∗
− andP+

+ < P ∗
−, (3.1)

then the compact embedding W
1,−→p (x)
0 (Ω) →֒ Lp

+
+(Ω) holds. Under the conditions (A0) − (A3), Φ ∈

C1(X,R) and

〈Φ′(u), ϕ〉 =

∫

Ω

[

N
∑

i=1

ai(x, ∂xi
u)∂xi

ϕ+ b(x)|u|P
+
+ −2uϕ

]

dx.

and we have already

〈Ψ′(u), ϕ〉 = −

∫

Ω

f(x, u)ϕdx.

Then, I is well defined and I ∈ C1(X,R), so let us now give the definition of a weak solution.

Definition 3.1. A function u is a weak solution of the problem (P ) if and only if

∫

Ω

[

N
∑

i=1

ai(x, ∂xi
u)∂xi

ϕ+ b(x)|u|P
+
+ −2uϕ− λf(x, u)ϕ

]

dx = 0,

for all ϕ ∈ X.

Obviously the weak solutions of (P ) are the critical points of I.

3.1. Existence of a nontrivial weak solution

In this section, we prove our result Theorem1.1.

Lemma 3.2. Under the conditions (Ai), i = 0, 1, 2, 3 and (F1) the functional I is weakly lower semi-
continuous, and coercive.

Proof. The functional I is obviously weakly lower semi-continuous. Let us prove that I is coercive. For
u ∈ X such that ‖u‖ ≥ 1, we have

Φ(u) =

∫

Ω

[

N
∑

i=1

Ai(x, ∂xi
u) + b(x)

|u|P
+
+

P+
+

]

dx.
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From (A2) we deduce

Φ(u) ≥

N
∑

i=1

∫

Ω

|∂xi
u|pi(x)

pi(x)
dx+

b0

P+
+

∫

Ω

|u|P
+
+ dx

≥

N
∑

i=1

∫

Ω

|∂xi
u|pi(x)

P+
+

dx

Let for i ∈ {1, 2, ..., N}

ri =

{

P+
+ if |∂xi

u|pi(x) ≤ 1.

P−
− if |∂xi

u|pi(x) > 1.

Using the Proposition (2.2), we obtain

N
∑

i=1

∫

Ω

|∂xi
u|pi(x) dx ≥

N
∑

i=1

|∂xi
u|ri

pi(x)

≥

N
∑

i=1

|∂xi
u|

p
−

−

pi(x)
−

∑

i:ri=p
+
+

(

|∂xi
u|

p
−

−

pi(x)
− |∂xi

u|
p
+
+

pi(x)

)

≥

N
∑

i=1

|∂xi
u|

p
−

−

pi(x)
−N.

Applying the Jensen inequality to the convex function g : R
+ → R

+ which is defined as following

g(t) = tP
−

− , P−
− ≥ 2, we find that

N
∑

i=1

∫

Ω

|∂xi
u|pi(x) dx ≥

‖u‖P
−

−

NP
−

−
−1

−N, (3.2)

so,

Φ(u) ≥
1

P+
+

(

‖u‖P
−

−

NP
−

−
−1

−N

)

,

On the other hand we have for u ∈ X such that ‖u‖ ≥ 1, by the Hölder inequality and the embedding
theorem, we have

Ψ(u) = −

∫

Ω

F (x, u) dx ≤

∫

Ω

[c(x)|u(x)| +
d

α(x)
|u|α(x)] dx,

≤ 2|c|α′ (x)|u|α(x) +
d

α−

∫

Ω

|u|α(x) dx,

≤ 2M |c|α′(x)‖u‖+
d

α−

∫

Ω

|u|α(x) dx,

By the embedding theorem, we have u ∈ Lα(x)(Ω); therefore,
∫

Ω

|u|α(x) ≤ max{|u|α
+

α(x), |u|
α−

α(x)} ≤ M
′

‖u‖α+.

Then

|Ψ(u)| ≤ 2M |c|α′ (x)‖u‖+
d

α−
M

′

‖u‖α+.

From relation (3.2) above , we have

Φ(u) ≥
1

P+
+

(

‖u‖P
−

−

NP
−

−
−1

−N

)

,
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this implies that for any λ > 0 that

Φ(u) + λΨ(u) ≥
1

P+
+

(

‖u‖P
−

−

NP−

−
−1

−N

)

− 2λM |c|α′(x)‖u‖ −
λdM

′

α−
‖u‖α+.

Under the condition 1 < α+ < P−
− , we obtain

lim
‖u‖→∞

(Φ(u) + λΨ(u)) = ∞.

finally the functional I is coercive. �

In order to demonstrate Theorem 1.1, it remains to verify that the solution is not trivial, because
we have already proved that I is weakly lower semi-continuous, and coercive. Since I is weakly lower
semi-continuous functional and coercive in X which is a reflexive Banach space, then I admits a global
minimum. As it’s differentiable, this minimum is a critical point, then a weak solution of (P ). Let’s
prove that this solution is nontrivial. In the fact, it’s sufficient to prove that there exists a function u1

such that I(u1) < 0 because I(0) = 0. To get this result, we use the assumption (F1). By (A0) and (A1),
we have

Ai(x, η) =

∫ 1

0

ai(x, tη) dt ≤ C

(

|η|+
|η|pi(x)

pi(x)

)

,∀x ∈ Ω, x ∈ R, C = max
i∈{1,2,...,N}

ci.

Then
∫

Ω

N
∑

i=1

Ai(x, ∂xi
u) dx ≤ C

N
∑

i=1

∫

Ω

(

|∂xi
u|+

|∂xi
u|pi(x)

pi(x)

)

dx.

Let 0 6= ϕ ∈ C∞
0 (Ω), and 0 < θ < 1. For t > 0 is small enough, we have

I(tϕ) =

∫

Ω

{

N
∑

i=1

Ai(x, ∂xi
(tϕ)) +

b(x)

P+
+

|tϕ|P
+
+ − λF (x, tϕ)

}

dx,

≤ C

N
∑

i=1

∫

Ω

(

|∂xi
(tϕ)|+

|∂xi
(tϕ)|pi(x)

pi(x)

)

dx+
tP

+
+

P+
+

∫

Ω

b(x)|ϕ|P
+
+ dx

−

∫

Ω

λF (x, tϕ) dx,

≤ C

N
∑

i=1

∫

Ω

(

t|∂xi
ϕ|+

tP
−

− |∂xi
ϕ|pi(x)

pi(x)

)

dx+
tP

+
+

P+
+

∫

Ω

b(x)|ϕ|P
+
+ dx

−

∫

Ω

λF (x, tϕ) dx,

≤ t

{

C
N
∑

i=1

∫

Ω

(

|∂xi
ϕ|+

|∂xi
ϕ|pi(x)

P−
−

)

dx+
1

P+
+

∫

Ω

b(x)|ϕ|P
+
+ dx

}

−λtθ|ϕ|θ,

< 0.

3.2. Existence of three solutions

In this section, we prove our result Theorem 1.2 by using Lemma 2.5. First we need to verify that
the precondition of Φ in Lemma 2.5 are fulfilled.

Lemma 3.3. Under the conditions (A0) − (A3) and the assumption (3.1), Φ is weakly lower semi-
continuous, moreover Φ

′

admits a continuous inverse.
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Proof. Under the conditions (A0)− (A3) and the assumption above (3.1), the functional Φ is well defined
and it’s of class C1(X,R), moreover it’s weakly lower semi-continuous. The condition (A3) means that
Φ

′

is uniformly monotone. Moreover Φ
′

is coercive . Let’s prove the coercivity of Φ
′

. For u ∈ X such
that ‖u‖ ≥ 1, we have

〈Φ
′

(u), u〉 =

∫

Ω

[

N
∑

i=1

ai(x, ∂xi
u)∂xi

u+ b(x)|u|P
+
+

]

dx,

by (A2) and (3.2), we deduce

〈Φ
′

(u), u〉 ≥

N
∑

i=1

∫

Ω

|∂xi
u|pi(x) dx+ b0

∫

Ω

|u|P
+
+ dx

≥

N
∑

i=1

∫

Ω

|∂xi
u|pi(x) dx

so,

〈Φ
′

(u), u〉 ≥
‖u‖P

−

−

NP
−

−
−1

−N,

thus,

〈Φ
′

(u), u〉

‖u‖
≥ ‖u‖P

−

−
−1

(

1

NP−

−
−1

−
N

‖u‖P
−

−

)

,

and for ‖u‖ big enough, we have Φ
′

is coercive.
By a standard argument, we know that Φ

′

is hemicontinuous, then Φ
′

admits a continuous inverse. �

In following we need to verify that the conditions 2. and 3. in Lemma 2.5 are fulfilled because the
condition 1. of Lemma 2.5 is already verified above.
verification of the assumptions 2. and 3. of Ricceri’s theorem :

In order to prove the assumptions 2. and 3. of Ricceri’s theorem which is the main tool in this
paper, we use the condition (F2), which implies that F (x, t) is increasing for t ∈ (t0,∞) and decreasing
for t ∈ (0, 1) uniformly for x ∈ Ω, and F (x, 0) = 0 is obvious, F (x, t) → ∞ when t → ∞ because
F (x, t) ≥ mt uniformly for x. Then, there exists a real number δ > t0 such that

F (x, t) ≥ 0 = F (x, 0) ≥ F (x, τ ) ∀x ∈ Ω, t > δ, τ ∈ (0, 1)

The compact embedding from X to C(Ω) means that there exists a constant m1 which satisfies

‖u‖C(Ω) ≤ m1‖u‖,

where ‖u‖C(Ω) = sup
x∈Ω

|u(x)|. Let a, e be two real numbers such that 0 < a < min{1,m1}, we choose e > δ

satisfying eP
−

− b0|Ω| > 1. When t ∈ [0, a] we have

F (x, t) ≤ F (x, 0) = 0,

then
∫

Ω

sup
0<t<a

F (x, t) dx ≤

∫

Ω

F (x, 0) dx = 0.

As e > δ, we have
∫

Ω

F (x, e) dx > 0,
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and

1

m
P

+
+

1

aP
+
+

eP
−

−

∫

Ω

F (x, e) dx > 0.

Which implies
∫

Ω

sup
0<t<a

F (x, t) dx ≤ 0 <
1

m
P

+
+

1

aP
+
+

eP
−

−

∫

Ω

F (x, e) dx.

Let u0, u1 ∈ X, u0(x) = 0 and u1(x) = e for any x ∈ Ω. We define r = 1

N
P

+
+

−1
P+

+

( a
m1

)P
+
+ . Obviously

r ∈ (0, 1), Φ(u0) = Ψ(u0) = 0,

Φ(u1) =

∫

Ω

b(x)

P+
+

|e|P
+
+ dx ≥

b0

P+
+

eP
−

− |Ω| >
1

P+
+

>
1

NP
+
+ −1P+

+

(
a

m1
)P

+
+ = r,

and

Ψ(u1) = −

∫

Ω

F (x, u1) dx = −

∫

Ω

F (x, e) dx < 0.

So we have Φ(u0) < r < Φ(u1). Then 2. of Ricceri’s theorem is fulfilled.
On the other hand, we have

−
(Φ(u1)− r)Ψ(u0) + (r − Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
= −r

Ψ(u1)

Φ(u1)

= r

∫

Ω F (x, e) dx
∫

Ω
b(x)

P
+
+

|e|P
+
+ dx

> 0.

Let u ∈ X be such that Φ(u) ≤ r < 1. Set

J(u) =

∫

Ω

N
∑

i=1

|∂xi
u|pi(x) dx

then

J(u)

P+
+

≤

∫

Ω

{

N
∑

i=1

|∂xi
u|pi(x)

pi(x)
+

b(x)

P+
+

|u|P
+
+

}

dx,

by (A2) we have

J(u)

P+
+

≤

∫

Ω

{

N
∑

i=1

Ai(x, ∂xi
u) +

b(x)

P+
+

|u|P
+
+

}

dx = Φ(u) ≤ r,

which means that

J(u) ≤ P+
+ r =

1

NP
+
+ −1

(
a

m1
)P

+
+ < 1,

it follows that
∫

Ω

|∂xi
u|pi(x) dx < 1.

By Proposition 2.2, we have

|∂xi
u|pi(x) < 1,

and
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J(u) =

N
∑

i=1

∫

Ω

|∂xi
(u)|pi(x) dx ≥

N
∑

i=1

|∂xi
(u)|

P
+
i

pi(x)

≥
N
∑

i=1

|∂xi
(u)|

P
+
+

pi(x)

≥ N

(

∑N
i=1 |∂xi

(u)|pi(x)

N

)P
+
+

=
‖u‖P

+
+

NP
+
+ −1

.

Consequently

‖u‖P
+
+

NP
+
+ −1

≤ J(u) ≤ P+
+ r,

it follows that
‖u‖P

+
+

NP
+
+−1P+

+

≤
J(u)

P+
+

≤ Φ(u) ≤ r,

then

|u(x)| ≤ m1‖u‖ ≤ m1(N
P

+
+ −1P+

+ r)
1

P
+
+ = a ∀u ∈ X, x ∈ Ω, Φ(u) ≤ r.

This inequality shows that

− inf
u∈Φ−1(−∞,r]

Ψ(u) = sup
u∈Φ−1(−∞,r]

−Ψ(u) ≤

∫

Ω

sup
0<u<a

F (x, u) dx ≤ 0.

Then

inf
u∈Φ−1(−∞,r]

Ψ(u) >
(Φ(u1)− r)Ψ(u0) + (r − Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
,

which means that condition 3. is obtained. Since the assumptions of lemma 2.5 are fulfilled, there ex-
ist an open interval Λ ⊂ (0,∞) and a positive constant ρ > 0 such that for any λ ∈ Λ the equation
Φ

′

(u) + λΨ
′

(u) = 0 has at least three solutions in X whose norms are less than ρ.
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