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Full Discretization to an Hyperbolic Equation with Nonlocal Coefficient

Manal Djaghout, Abderrazak Chaoui and Khaled Zennir

ABSTRACT: We present full discretization of the telegraph equation with nonlocal coefficient using Rothe-
finite element method. For solving the equation numerically we use the Newton Raphson method, but the
nonlocal term causes difficulties because the Jacobien matrix is full. To remedy these difficulties we apply the
technique used by Sudhakar [4]. The optimal a priori error estimates for both semi discrete and fully discrete
schemes are derived in V, introduced in (1.4), and Hl(Q) and a numerical experiment is described to support
our theoretical result.

Key Words: Roth’s method, Finite element method, Telegraph equation, Nonlocal term and a priori
estimate.
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1. Introduction and Preliminaries
Let Q is a simply connected bounded domain of R?, d > 2 with Lipschitz continuous boundary 9.
Consider the following nonlocal hyperbolic problem
2 .
% + % +a(l(w))(Au) = f(z,t,u) in Q =Q x [0,7T],
u(z,0) = ug(x), ue(x,0) = ui(z) in €, (1.1)

u=0on 90 x [0,T].
Where T' < o0, a is a function depends of I(u) with

l(u) = / u(x, t)dx. (1.2)
Q
We introduce the elliptic differential operator A defined by
Au = —div(A(z)Vu) + b(z)u, (1.3)

where A(x) is a symmetric matrix with entries that are uniformly bounded and measurable, b(x) is a
bounded positive function and we assume that f, ug, u1 and A(z) are smooth enough functions.

The acoustic telegraph equation (1.1) with nonlocal term and constant coefficients is used to model the
effects of diffusion and wave propagation by introducing a term that accounts for effects of finite velocity
to standard heat or mass transport equation (see [1]). The function a in equation (1.1) is the diffusion
depends an a nonlocal quantity fQ u(z,t)dr and assumed to depend on the entire population in the
domain 2. Recent years have seen an increasing interest in studying nonlocal problems, of this type of
problems [[4], [5], [8]]-

One of the more popular methods for solving partial differential equation is the Roth method (or the
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method of lines), this method is used in the time discretization of evolution equations where the derivatives
with respect to one variable are replaced by the corresponding difference quotients that finally leads to
systems of differential equations for functions of the remaining variables. Roth’s method was introduced
by E. Roth in his the pioneer work1930, it has been adopted and developed by many authors for example
O.A. Ladyzenskaja [9], [10] and K. Rektorys [[13], [14]] for solving second order linear and quasilinear
parabolic problems. Recently Roth’s method has been studied linear and quasilinear hyperbolic equations
[[6], [15], [3]].

The purpose of this work is to combine Rothe’s method with finite element. The fully discrete scheme
for problem (1.1) gives a system of nonlinear equations, we use Newton Raphson method to solve this
system. It is known that the Newton Raphson iteration is the most popular for solving nonlinear algebraic
equations because it is fast convergent in a small number of iteration. One of the main difficulties of
using Newton’s is the fully Jacobien matrix, this difficulty can be addressed by reformulate the system
as [4].

The paper is organized as follows : In section 1, we present some basic notations needed material.
Section 2 contains the weak formulation, the discretization scheme based on Rothe’s method and a priori
estimates. In section 3 we give the fully discrete scheme and a priori error estimates. Finally, a numerical
example is presented in section 4.

Let (.,.) denote the inner product in L?(9), and let (.,.)a be the inner product of

V = {ue L3(Q), g“ e LX(Q)}, (1.4)
Ty
its norm is defined by
(u,v)a = (A(x)Vu, Vo) + (b(x)u,v) Yu,v €V, (1.5)
and the norms on L?(2), V are denoted |||, ||.||a respectively. We take C. = C(e~1) with ¢ is small.

For m > 0, we use H™(Q) to denote the Sobolev space on  of order m with the norm
0%w 2\ =
ke = (32 I3 1)
Along this work we shall always assume the following assumptions:
L. (H) v eV, u' e L3(Q)
2. (H2) f: Q2 x[0,T] x R — R is Lipschitz continuous in the sense
1f(2,t,8) = fla, ', s < C{It = '[(|s] + |s'| +]s = s'])}, (1.6)
and satisfies the condition of growth
£t Ol < CO+ e, Viwt,€) € Qx [0,T] x R. (1.7)
3. (H3) a: R — R is Lipschitz continuous with the Lipschitz constant Ly, this means
la(l(u)) —a(l(v))] < Laflu—v|, Yu,veV. (1.8)
and satisfies

0<m<a(s) <M<oo, VseR. (1.9)
4. (H4) A(x) is symmetric matrix satisfies:

(A,€) > Cli€lf*. (1.10)

and let (.,.) 4 be a bounded, coercive and symmetric bilinear form according to choose the coefficients
A(z), i.e.,

(w,v)al < ClluflallV]a, (w,u)a 2 Cllullh, Yu,veV. (1.11)



FuLL DISCRETIZATION TO AN HYPERBOLIC EQUATION

Definition 1.1. A function u is said a weak solution of (1.1) if
Du:Q=Qx[0,T] =R and u € H'([0,T],L*(Q)) N L*([0,T],V)such that,

vo € H'([0,T); L*(€2)) N L2([0,T], V) with v(z,T) =0,

u(x,0) = up(x), ue(z,0) = uy(x)

2. Time Discretization

2) — f[O,T] (Ou, Ov) — (w1, v(.,0)) + f[om (Opu,v) + f[07T] a(l(u))(u,v) , = f[O,T] (fv),

We divide the interval [0, T] into n subintervals of length 7 = % and denote u’ = u(t;, x), t; = iT,i =

0,1,...,n. Let u=! be defined as
ul(z) = u’(2) - Tu (2),

the recurrent approximation scheme for i = 1, ..., n becomes

Find v = u(.,t;) € V,i = 1,2,...,n,such that,

(52ui,v) + (0u’,v) + a(l(ui))(ui,v)A = (f%v)

We define the Roth’s functions by a piecewise linear interpolation with respect to the time ¢,

u = w4 (= tq)ou, Vt € [tii,ti], 1<i<n)

ou” = dut Tl 4 (t — ti_1)8%u, Vi€ [tio1,t], 1<i<n,
together with the step function
ut t € tio,ti,i=1,...,n,
u® tel-7,0.
We denote by f™ the function
fi te [tifl,ti],i =1,...,n,
0 t=0.
Then, the problem (2.1) can be takes the form:
Vo € HY([0,T); L*(22)) N L*([0,T),v) with v(z,T) = 0.
(8ebu™,v) + (Dpu™,v) + a(l(@™))(a",v) , = (f,v).
By integrating the above equation over [0,T], we get

Vo € H'([0,T]; L*(€2)) N L2([0,T],v) with v(z,T) = 0.

(2.2)

(2.3)

(2.4)

— Jo.m (6u™, Opw) — (6u™(0),v(.,0)) + Jo.my (Opu™,v) + Jo.m a(l(@m)(a",v) , = Jior (f™,v)

Lemma 2.1. For 1 <i < s <n, the estimates
S S
6w+ 16w’ = su' M2+ > 7llou’]® + mljut|%
i=1 i=1

S
+m Y fut —u L < O
=1

(2.7)
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Proof. Choose v = du’ in the equation (2.1), we get
(6u’ — dut™1 ou) + 7||0ut||? + m(ut,ut — w4 < 7 ||| 0ul.
Using Young, we obtain
0wl = w2 + 18w — bui 2+ 52+ (i — I+ = 0 < S
Taking summation from i = 1 to s, we get
S S
1> = [[6uC]® + D 16w’ — 6w 1>+ Y 7l|du’ (> + mlju®|% — ml[u’]%
i=1 i=1
S S
+m Yyt =R <Y T 6w
i=1 i=1

Applying the Abel’s summing formula, we obtain

s S S
16w |I? 4+ llu’ = 6u' = P+ Y wlout| + mllu |G +m Y lu = u
i=1 i=1 i=1
S

SC+ey 7l fIP+C Y rllsu’l?,
i=1

=1
s 1—1 s
< e(1+;g:172||5u’"||2) +06;T||5uf||2. (2.9)

Using the Gronwall’s Lemma (see, e.g. [11]) inequality and choosing € = 7 to get

S S S
16w 4D [16u’ — 6uH|P + D wllou’||® + mljutF +m Yyl —u TG < Cr
i=1

i=1 i=1
O
Corollary 2.2. There exists a positive constant C' such that
10u™ 122 10,7200y < Cs 1™ 220,790 < € (2.10)
n =T C
[u" —u ||2L2([0,T];V) < Ev (2.11)
n —=N C n =T C
[u" = @[3 p0,17,12(02)) < R [u™ = @272 10.17:02(02)) < poR (2.12)
n n|2 c
||(5’U, - 8tu ||L2([O,T];L2(Q)) < g (213)

We denote by e, = u —u™ and ey = f — f™.

Theorem 2.3. [1] Under the assumptions (H1)-(H4), we have

lewllZo.13:220)) + mlleullZzomvy < C(F2 + 7). (2.14)
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3. Full Discretization

At each time t¢;, 0 < i < n, we consider a triangulation T}; made of triangles T such that no nodes of
every triangle lies in the interior of a side of another triangle. Let V}! be the discrete space of V* defined
by

Vi = {<I>h € C%(Q) tel que @y,

ri is polynomial of degree one VT € T}L}

Let {p;}}, be interior nodes of T}, et {®;(x)}}L; be the basic functions for the space V} such that any
function will be the pyramid form in V}! and which takes the value 1 at {p;}/*, and vanishes at exterior
nodes. We can write the solution u} as

N
ul () = Zo@(bj(x) c Vi

j=1
Let X be a Banach space, we use the following norm in discrete version.

[ullLo (0,77 x) = 1?35 HUmHX, (3.1)

J
lall220rmey =7 3 [l %

m=1
Then, the fully discrete scheme for problem (1.1) reads as
Find u} € V}i(2) such that :

up(0) = uf), upe(0) = u}, and u;, ' = uf — ru},

. (3.2)
and, Vv € V}!,
(52u§1,vh) + (6ujy, vn) + a(l(u})) (uz,vh)A = (", on).
We introduce the orthogonal projection operator IT; : H} () — V(Q)
such that :
(Vw, Vo) = (VITLw, Vv) Yw € Hi(Q),v € V;i(Q). (3.3)

From fully discrete weak formulation of (3.2), we have
Find u} € V;(Q) such that :
up(0) = uf, upe(0) = up and u;, " = uf) — Tu},

and, Yo € V/,

i i i—1
uy, — I uy,

R S i—1 _ pi—1, i—2 ‘ ‘ ,
(uh iy, 1, yon) + Ta(l(uy,)) (uh,vn) , = 7(f", 0n).
(3.4)

T T won) +7(

This implies,
Find u}, € V;}(2) such that :

up(0) = uf, upe(0) = up and u;, b = uf) — Tu},

and, Yv € V},

(I1+7) (uz,vh) + TQa(l(uﬁL)) (uz,vh)Af =72 (fi,vh) + ((1 +7) ﬁluﬁl_l + (ui_l — Hz_luz_z),vh).
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The problem (3.5) give as a system of nonlinear algebraic equations by using finite element, then can be
given this system as follows :

Fj(a') = Fj(uj) =0 1<j <N, (3.6)
where &' = [ad,ad, ..., aly], and
Fj(up) = (1+7) (up, Uh) + 72a(l(up)) (uh, vn) o — 72 (f*5 vn) (3.7)
—((1+ )My + (w1 =10 g ?), op).

We use Newton-Raphson method to solve (3.5), but the presence of nonlocal term in the equation destroys
the sparsity of Newton-Raphson method.

We compute the Jacobian matrix J To get the value of a§ by Newton’s method, every element of the
Jacobian matrix takes the form

OF; (ut ) ) . .
Fg(i;h) = (1+7')(¢]5¢l) + 7 (/QQSJ)CL (Z(’u,h)) (uh7¢l)A
+r2a(l(u}) (65, 01) 4 — 7 (F(uh)85: 41)- (3.8)

In order to ensure the sparsity of the Jacobian matrix we modify the scheme (3.5) according to the technic
used by Chaudhary in [4]. Then the problem (3.5) can be rewritten as follows :
Find d € R, and uj, € V} such that

l(ul) —d=0. (3.9)
(1 +T)(u2,vh) +72a(l(u2)) (uh,vh) (f vh) ((1 +7) huz !
+(u "t = Iy 2),0p) =0 Yoy, € Vi (3.10)

Take vy, = ¢, and reformulate the equations (3.9)-(3.10) as follows:
Fj(UZ,d) =(1+ T)(uﬁuﬁbl) + TQa(d) (uiuﬁbl)A - Tz(fiaﬁbl) - ((1 =+ T)HZU;L b ( Hl fup” 2) ¢l)

Fiyq = l(up) —d. (3.11)

This implies

J = ) = , , 3.12
5= e [ ]=]AL (312
where A = Axxn, b = byx1 and ¢ = ¢« n take the form

Ay = (1+T)(¢j,¢z)+72a(d)(¢ja¢z)A—TQ(f/(Uz)ﬁijﬁbl),

bip = 7%d(d)(up, 1) ,
iy = (/Qﬁbj)a
o = —1,

and &' = [ad,ad, ..., a7, F' = [F}, Fi, ..., Fi]T.

The matrix system (3.12) can be solved by using the Sherman-Morrison Woodbury formula and block
elimination with one-refinement algorithm in [8], [7].

We introduce the orthogonal projection to get an optimal convergence between u’, u}. Therefor, we can
take the error as follows.

e=ut —ul = u' -y 4+ 1 — o
= pL+0;. (3.13)
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Theorem 3.1. [12] : There exists a positive constant C, independent of h such that

o —oll; < ChYlloll; Yve H'NHy j=0,1;i=1,2 (3.14)
e = Myvell; < CRYlvells Vo€ H'NHy j=0,13i=1,2 (3.15)
[vee — Mjveell; < Chbllowelli Yo € H'NHy j=0,1;i=1,2 (3.16)
Lemma 3.2. The estimates o
|VIL i < C (3.17)
T4 <c (3.18)

Proof:
For w = v’ in (3.2), we have

(Vu', Vo) = (VITLu', Vo).

Choosing vy, = T} u’, to get

IVILu']? = (Vu', VIT,u')
< Ve[| VITu'||.
Thus,
IVILu'l| = ||V
< C.
Further

I3 = (T, ).
(AVITu', VIIu") + (a(x)IT;u", I, u’)
C(|IVI,u'[|* + ||, u’[[?).

N

Using Poincaré inequality, we obtain

T, " 4 C(IVIT,u']))

c.
where ¢ and C' are some positive constants.

Lemma 3.3. Let u% S V,? and u,ll S V,? and for 1 <i < s <mn, then the solution uﬁl S Vhi of the problem
(3.2) satisfied

(6w 172 0.7:L2() T m””i“%%O,T;V) <C. (3.19)
(

We use the same proof in Lemma 2.1 to obtain the existence of u}l and a priori estimates.

S S S
I6uh P + 3 10wk = ui ™ I + 3 rllduhl® + milut &+ m > Juh - i~ < O

i=1 i=1 i=1
This means
[[6up |1 + mllu]|% < C.

We integrate from 0 to 7', to obtain

||5'U'ZH%2(O,T;L2(Q)) + m||Ui||2L2(0,T;V) <C
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Theorem 3.4. We assume that mmir;(b(z)) > 1663;12LM where ¢ is given in Eq.(3.18). Then, there exists
a positive constant C such that

[|lu — ug}yL2(07T7T7H1(Q)) < C(h+1h?). (3.20)

Proof:
From equations (2.1), (3.1), we have

(2000, 0) + (248, 0n) + a, (og,vh)A
— (@0t vn) + (Tt on ) + af, (ngui,vh)A
—(v0uhvn) = (Beuhvn) — ai (whon) |
= —(fi,vh) + (8t5H§Lui,vh) + (8tﬂgui,vh)
+al (H;‘Lui, vh)A
= (0w’ vn) = (', — o (uf,vh)A
+ (2Tl on ) + (1T} 00 ) + ai, (H;uwh)A
o (Tu', ) = o' (Tu', o)
=~ (a6 (u’ = Tu'), o) = (9 (' = '), )
—a'((u' =) on) + (af, — o) (Wi on) |
Thus,
(00063 v0) + (9163 vn) +ah (61 v1) | = = (DWdphson) = (Guphson)
—a (p;;,vh)A + (a}, — d) (n;;ui,vh)A. (3.21)
Choosing v, = 7266} in (3.21), we obtain
72 (atzsa;;, 592) 42 (at i 592) + r%g( i 592)A
= 12 (atap;;, 59;;) — 72 (atp;;, 59;;)
24 (p;‘“ 59;)A +72(al, — ai)( i, 592)/{. (3.22)
New left-hand side of (3.22) can be estimated as follows.
2 (atéeg,(se;;) s (at 2,59;) + TQa;'L( g,éeg)A

> 7224 |+ 12964 + 7m0,

> Toan | oo+ Tl — o).
> Toaw | 7 oo+ Tl — Sl (3.29

To estimate the right-hand side of (3.22), we need the following steps.
Stepl. We estimate | — 72 (8155/)};, 592) — 72 (atp;;, 592) ’
Using Cauchy-schwarz, we get

| = 7220k 003,) — 72 (9upi 003, )| < Tllowop 7603 + 7l|usi | 1063
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Thus,
| =% (2u6p1,501) — 72 (01}, 603 | <

Step2. We estimate

%Hataphu + 72503 + = Hatphu (3.24)
} — TQai(pZ,(SH ) + 7 (a —a )(ngi,aeg)A}.
Applying Cauchy-schwarz inequality and Using the inequality

<
ab 2a—|—2b

with w = 2, we obtain

8
| =72 (4, 063)  +72(ah, — o) (Wi, 003,) | < Drllo | 105 — 657
+er|aj, — a'||0}, — Gzl}u
< ol - o7+
2 i — a4 - 07
< 2Ll + 2 1), - o

m ; j— 2
+5 71Oy + 1162710
Using Lipschitz continuity of a, we have

laj, — a'| Lagfuj, — '
LMHuﬁL — HﬁLui + HﬁLui — u1||

L (163 + i)

IA A

IN

Thus,
’ — 724! (pz, 592)14 + 72 (aﬁL — ai) (Hiui, 502)14‘
AM? 2 A i
<+ 2, (o)
SN2 . .
Hlehl) "+ F 6k ]y + 163110 (3.25)

From (3.23), (3.24) and (3.25), we get

SR A LA e LA Zm||9’ I = mllei 11

S%||6‘t5ph|l + 7256, * + 5 ||5‘tﬂhH
AM? . 4c? ; ;
+ m bl + ETL%(H%HHIth)

S A PR [ 8

This implies,
0,06} |* + 75 03]

8M?
S L e T e A

8 i i i—
5z (1ol + ) + Tueh 3
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Taking sum from 7 =1 to n to get

720,603 + 7= ZIIG I
<T2Z||at5phu +722H3tph|| +

TZH hHA
=1 =1
+—TL IZ(|ohH+||ph||) ane I

Now applying Gronwall’s inequality, we get

L Tzne I+ Zeliop
eB(TQZHatészWZ||atpz||2
rznphnA m%z(w 1+ 1ill)):

Thus,
0,063 +—TZH9 I
< (72 ZHat5ph|| +TQZ||5tPhH - TZH il
16¢2 in2 i N2
A S (Il + ).
i=1
Again,
72&5"59 H +—TZ§||V9 || —|——m1n (x))TZHG}LHQ
i=1
<e(= 3 i
+T Z\Ié‘th + 8 TZHﬂhHA
16 16 ,
—CLQITZH@ —CL%TZH%HQ)-
i=1
So,

AL S LS S P
=1 =1
(23 adal® + 723 lonh
=1 =1
73 [l + 73 k-
=1 =1
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Integrating inequality from 0 to T', we have
A A RS UA |
i=1 =1
< 72068 + ¢ (= X |jaudi |
n 2 n 2 n 2
72 ol + 3l + 3 i)
i=1 i=1 i=1
This implies

[ Pl 17 el G ZH@MH?+TQZ|I8%HQ

ol + 7 3 Iei): (3.20
i=1 i=1
We have
) 1 [t
805, = - Ons(s)ds
ti—1
1 2
ool < 2 [ oncola
Jowil* < [ oo as
Thus,
e N RO

If we take uy = II9u", then
1615 O]

195 (TThu” — )|
195 (TTh® = w®) || + (105 (w” — ) |
Ch?||u

IN A

0||H2(Q (3.27)
So,
2 012 41],.0]2
(1005 ]]" < Ch* [ |2 -

Again, we note that
1
o=~ [ Opnle)ds
T Jtiy
This shows

in2 1 2
[60ep3||” < ;thtt||L2(t,;_1,t,;;L2(Q))’

and

IN

- 2
T Z ||phtt||L2(ti,1,ti;L2(Q))’

i=1

n
> |l |
=1

IN

2
THPhttHL2(0,T;L2(Q))’

IN

2
Ch47||uhtt ||L2(0,T;H2(Q))'
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Thus,
2 2 A el T . (3.28)
Further
(L2 = 7
O SETRENS W A P
72i||3t02“2 < TCh4H“htHQLz(o,T,T;Hz(Q))'
So,
=S 0kl < Ol (329
Also
loill” < CR?|fublle ),
T;HP;LHQ = Ch4T;||“2HiJ2(Q)’
OIS T A— (3.30)
Finally
ol = (AVPL, Vo) + (b(x)ph p}),
< C(Ivoill” +llil)
T;HPZHA < CT;HPZH;(Q)
= Cth||iz(o,T,T;H1(Q))v
< Ch2HuhH;(QTmHm)). (3.31)
New using the estimates (3.27)-(3.31) in (3.26), we get
TZH%HMQ) C(h* + h?).
So,
||9h||L20TTH1(Q)) C(h? +1Y).
Where ¢ is is constant depending on Huh||L2(OTTH2(Q Huhtt||L2(0TH2(Q))’ H“htHLz (0,T,7;H2(Q))’
el oy @0 16811 m - W conclude
Ju — uh||L2(OTTH1(Q)) o(h+ h?).
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4. Numerical experiment

In this section, we set up a numerical experiment to find an approximate solution of problem (1.1), if
we use Roth’s approximation in time discretization and finite element scheme in the spatial discretization
in which we prescribe the computational domain Q = (0, 1), the time interval (0,1) i.e. T =1 and we
take A(z) = b(z) = 1.

In order using Newton’s we take initial guess u” and u' as follows

and
1, at interior node

0, at boundary node

The tolerance for stopping iteration is defined to be 107'%, we have considered the step length h =
15, 355 395 75 and 7 = 0.001. We plot the error in log log-plot. ]
We choose f(z,t,u) according to test solution u(z,t) = z(1 — x)te™" and a(l(u)) = 1 + cos(l(u)). The

table below gives the numerical errors.

h | e’ = w0
T 9.8689¢ — 003
L | 5.6454c — 003
1 3.979¢ — 003
L[ 3.0748¢ — 003

Fig 1. Log-ing piat of the H' namm arror at 4T

Il Tr=afl
N

h

Figure 1: The results of error in log log-plot.
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