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Three Methods to Solve Two Classes of Integral Equations of the Second Kind

Hassna Chebbah, Abdelaziz Mennouni and Khaled Zennir

abstract: Three methods to solve two classes of integral equations of the second kind are introduced in
this paper. Firstly, two Kantorovich methods are proposed and examined to numerically solving an integral
equation appearing from mathematical modeling in biology. We use a sequence of orthogonal finite rank
projections. The first method is based on general grid projections. The second one is established by using
the shifted Legendre polynomials. We present a new convergence analysis results and we prove the associated
theorems. Secondly, a new Nyström method is introduced for solving Fredholm integral equation of the second
kind.
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1. Introduction

Over the last decades, lots of important problems in applied mathematics, science, physics, engineering
, biology, electrodynamics, mechanics, economics and other different fields of computer, science and
engineering are written and modeled in the form of integral equations. However, there are many obstacles
to directly solve these equations . Thus, we should solve these equations by using numerical methods.
Recently, several numerical results have been developed for solving integral equations. Among the most
approximation schemes, Kantorovich method is the most efficient.

More recently, Mennouni established an improved convergence analysis via Kulkarni method (cf. [7])
to approximate the solution of integro-differential equation in L2([−1, 1],C) by using the Legendre poly-
nomials. In [8], the author introduced an efficient Galerkin method for a class of Cauchy singular integral
equations of the second kind with constant coefficients in L2([0, 1],C), the author used a sequence of or-
thogonal finite rank projections. The aim of [6] is to applied the Kulkarni method and a Galerkin method
for solving second kind noncompact bounded operator equations. Moreover, the author used a sequence
of orthogonal finite rank projections to approximate the solution of singular integral equations of the
second kind with Cauchy kernel. The main idea of [10] is to propose a collocation method for solving
singular integro-differential equations with logarithmic kernel using airfoil polynomials. The goal of [9]
is to numerically solve the Cauchy integro-differential equations using the projection method based on
the Legendre polynomials.
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In this paper, we introduce three methods to solve two classes of integral equations of the second
kind. The first main idea of this work is to extend and improve the results of previous works via two
Kantorovich methods for solving an integral equation arising from a problem in mathematical biology.
The second one is to develop new Nyström method to solve a Fredholm integral equation of the second
kind. In the first Kantorovich method we use a general grid projections. In the second one we exploit the
shifted Legendre polynomials in our approach. The convergence analysis and new results are presented
in this work.

2. Two Kantorovich methods for solving an integral equation appearing from

mathematical modeling in biology

2.1. Integral equation appearing from mathematical modeling in biology

Let us consider the following integral equation of the second kind

x(s)

∫ 1

0

k(s− t)dt =

∫ 1

0

x(τ )k(τ − s)dτ + g(s), 0 ≤ s ≤ 1, (2.1)

where k(·, ·) is a Fredholm kernel, and g is a known function.
Equation (2.1) reads as

x(s) −
∫ 1

0

x(τ )k(τ − s)dτ
∫ 1

0
k(s− t)dt

= f(s), 0 ≤ s ≤ 1, (2.2)

where

f(s) :=
g(s)

∫ 1

0 k(s− t)dt
.

Define the integral operator T :

Tx(s) :=

∫ 1

0

x(τ )k(τ − s)dτ
∫ 1

0
k(s− t)dt

, 0 ≤ s ≤ 1.

Set H := L2 [0, 1]. Suppose that k ∈  L1 [0, 1], k > 0 almost everywhere. We recall that for each f ∈ H, T
is compact from H into itself, ( see [4]). Hence, the integral equation (2.1) has a unique solution x ∈ H.

Let I denote the identity operator on H. Eq. (2.2) can be rewritten in operator form as follows:

(I − T )x = f.

The purpose of this work is to approximate x through the solution xn of the Kantorovich equation

(I − πnT )xn = f. (2.3)

2.2. Projection approximations using general grids

Let (sn,j)
n
j=0 be a grid on [0, 1] such that

0 < sn,0 < sn,1 < . . . < sn,n < 1.

Set

hn,i := sn,i − sn,i−1, i ∈ [[1, n ]], hn := (hn,1, hn,2, . . . , hn,n).

Let us consider (πn)n≥1, a sequence of bounded projections each one of finite rank, such that

πnx :=

n∑

j=1

〈x, en,j〉 en,j ,
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where

en,j :=
φn,j√
hn,j

, φn,j(s) :=

{
1 for s ∈]sn,j−1, sn,j [,
0 otherwise.

Let

Jn := {sn,j, j ∈ [[0, n ]]} .

Define the modulus of continuity of the function ψ ∈ H relative to hn as follows:

ω2(ψ, Jn) := sup
0≤δ≤hn

(∫ 1

0

|ψ(τ + δ) − ψ(τ )|2 dτ
) 1

2

.

All functions are extended by 0 outside [0, 1]. We recall that

ω2(ψ, Jn) → 0 as n→ ∞ for all ψ ∈ H,

and that, for all ψ ∈ H (cf. [2]),

‖(I − πn)ψ‖ ≤ ω2(ψ, Jn). (2.4)

2.3. First Kantorovich method via general grids

We have

πnTx :=

n∑

j=1

〈Tx, en,j〉 en,j .

Applying T to both sides of equation (2.3), and performing the inner product with en,i to both sides of
this equation, we get

〈Txn, en,i〉 −
n∑

j=1

〈Txn, en,j〉 〈Ten,j, en,i〉 = 〈Tf, en,i〉 ,

or, equivalently,

(In −An)Xn = bn, (2.5)

where

Xn(j) := 〈Txn, en,j〉 ,

and

An(i, j) := 〈Ten,j, en,i〉 ,

bn(i) := 〈Tf, en,i〉 .

Hence

An(i, j) :=
1√

hn,jhn,i

∫ si

si−1

∫ sj

sj−1

k(τ − s)
∫ 1

0
k(s− t)dt

dτds,

bn(i) :=
1√
hn,i

∫ si

si−1

∫ 1

0

f(τ)k(τ − s)
∫ 1

0 k(s− t)dt
dτds.
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2.4. Convergence analysis of the first Kantorovich method

For all x ∈ H,
lim
n→∞

‖πnTx− Tx‖ = 0,

and since T is compact,

lim
n→∞

‖ (πnT − T )T ‖ = 0, lim
n→∞

‖ (πnT − T )πnT ‖ = 0.

Theorem 2.1. There exists a positive constant M , such that

‖xn − x‖ ≤M [ω2(x, Jn) + ω2(f, Jn)] .

Proof. In fact
πnx = πnTx+ πnf.

Since

x− πnx = x− xn + xn − πnx

= x− xn + (πnTxn + f) − (πnTx+ πnf)

= x− xn + πnT (xn − x) + (I − πn) f

= (I − πnT ) (x− xn) + (I − πn) f.

Hence
x− xn = (I − πnT )

−1
[(I − πn) x− (I − πn) f ] ,

and since T is compact, the
M := sup

n≥N

∥∥(I − πnT )−1
∥∥ ,

is finite. Using (2.4), we get the desired result. �

2.5. Second Kantorovich method via shifted Legendre polynomials

The aim of this section is to use Kantorovich method for solving (2.1) via shifted Legendre polynomials.
For this purpose, let (Ln)n≥0 denote the sequence of Legendre polynomials. The Shifted Legendre

Polynomial L̃n(s) is defined as

L̃n(s) := Ln(2s− 1).

Let us consider
ẽn,j :=

√
2j + 1 L̃j ,

the corresponding normalized sequence. Let (πn)n≥0 be the sequence of bounded finite rank orthogonal
projections defined by

πnx :=

n−1∑

j=0

〈x, ẽn,j〉 ẽn,j .

Hence, for y ∈ H,
lim
n→∞

‖πny − y‖ = 0.

We recall that (cf. [3]) there exists C > 0 such that, for all y ∈ Hr([0, 1],C),

‖(I − πn)y‖ ≤ Cn−r‖y‖r. (2.6)

It follows from (2.3) that

(In − Ãn)X̃n = b̃n,
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where

Ãn(i, j) :=
√

2j + 1
√

2i+ 1

∫ 1

0

∫ 1

0

L̃j(τ )k(τ − s)dτ
∫ 1

0 k(s− t)dt
L̃i(s)dtds,

b̃n(i) :=
√

2i+ 1

∫ 1

0

∫ 1

0

f(τ)k(τ − s)dτ
∫ 1

0
k(s− t)dt

L̃i(s)dtds.

Once the above system is solved, xn is recovered as

xn =
n−1∑

j=0

X̃n(j)
√

2j + 1L̃j + f.

2.6. Convergence analysis of second Kantorovich method

Theorem 2.2. Assume that f ∈ Hr([0, 1],C) for some r > 0. Then, there exists α > 0 such that

‖xn − x‖
‖x‖r

≤ α‖T ‖n−r.

Proof. We have

xn − x =
[
(I − πnT )

−1
f − (I − T )

−1
f
]

= (I − πnT )
−1

[(πn − I)Tx] ,

and hence

‖xn − x‖ ≤MC0n
−r‖Tx‖r, for some positive constant C0,

so that
‖xn − x‖
‖x‖r

≤ α‖T ‖n−r, α := MC0.

�

Theorem 2.3. Assume that f ∈ Hr([0, 1],C) for some r > 0. Then, there exists β > 0 such that

‖xn − x‖ ≤ βn−r [‖x‖r + ‖f‖r]

Proof. Recall that

πnx = πnTx+ πnf.

As above and as in [1], we have

x− πnx = (I − πnT ) (xn − x) + (I − πn) f.

Hence

xn − x = (I − πnT )
−1

[(I − πn) x+ (πn − I) f ] ,

using (2.6), we get

‖xn − x‖ ≤Mn−r [C1‖x‖r + C2‖f‖r] , for some positive constants C1, C2,

as we wanted to prove. �
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3. A new Nyström method for solving Fredholm integral equation

3.1. Nyström method

Let us consider the following Fredholm integral equation of of the second kind

u(s) −
∫ 1

−1

k(s, t)u(t)dt = f(s), s ∈ I := [−1, 1], (3.1)

We recall the quadrature formula introduced in [11] as follows

∫ 1

−1

h(s)ds ≈ ω(+)
c h(τ c) +

n∑

ν=1

ωνh(τν) + ω(−)
c h(−τc),

where

τν = cos θν , θν =
ν

n+ 1
π, ν = 1, 2, . . . , n

±τc = ± cos θc, θc =
π

2(n+ 1)
.

In this section, we introduce a new Nyström method for solving the integral equation (3.1)

ǔ(s) −
[
ω(+)
c k(s, τc)ǔ(τ c) +

n∑

ν=1

ωνk(s, τν)ǔ(τν) + ω(−)
c k(s,−τc)ǔ(−τc)

]
= f(s). (3.2)

Collocating (3.2) at τ i pour i = 1, . . . , n, we get the following linear system

ǔ(τ i) −
[
ω(+)
c k(τ i, τ c)ǔ(τ c) +

n∑

ν=1

ωνk(τ i, τν)ǔ(τν) + ω(−)
c k(τ i,−τ c)ǔ(−τ c)

]
= f(τ i),

that is

ǔ(τ i) −
[
n+1∑

ν=0

ωνk(τ i, τν)ǔ(τν)

]
= f(τ i), (3.3)

with

ω0 = ω(+)
c , τ0 = τ c,

and

ωn+1 = ω(−)
c , τn+1 = −τ c,

which is a system of n+ 2 linear equations with the unknown

ǔn := [ǔ(τ0), ǔ(τ1), . . . , ǔ(τn+1)],

f̌n := [f(τ0), f(τ1), . . . , f(τn+1)],

and

Ǎn := Ǎn (i, ν) = ωνk(τ i, τν).

Hence the following linear system

(I − Ǎn)ǔn = f̌n.
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3.2. Explicit linear system

The corresponding explicit formulae for the weights of formula is presented in [11] as follows

ων =
2

n+ 1



1 − 2

[(n−1)/2)]∑

k=1

cos 2kθν
4k2 − 1

− cos 2[(n+ 1)/2]θν
2[(n+ 1)/2] − 1



 ,

hence

ων =
2

n+ 1



1 − 2

[(n+1)/2)]∑

k=1

cos 2kθν
4k2 − 1

− cos 2[(n+ 1)/2]θν
2[(n+ 1)/2] + 1



 , ν = 1, 2, . . . , n,

where

ων =
4 sin θν
n+ 1

[(n+1)/2)]∑

k=1

sin(2k − 1)θν
2k − 1

, ν = 1, 2, · · · , n.

Moreover, the author of [11] proved that the weights ων , ω
(+)
c and ω

(−)
c are given by

ων = ων +
2 sin2 θν cos 2[(n+ 1)/2]θν

(2[n/2] + 1)(2[(n+ 1)/2] + 1) sin(θν + θc) sin(θν − θc)
,

with ν = 1, 2, . . . , n,

ω+
c = ω−

c =





sin θc
n+ 1

, if n is even,

(n+ 1) tan θc
n(n+ 2)

, if n is odd.

Equation (3.3) reads as

ǔ(τ i) −
[

n∑

ν=1

[
ων +

2 sin2 θν cos 2[(n+ 1)/2]θν
(2[n/2] + 1)(2[(n+ 1)/2] + 1) sin(θν + θc) sin(θν − θc)

]
k(τ i, τν)ǔ(τν)

]

− sin θc
n+ 1

[k(τ i, τ c)ǔ(τ c) + k(τ i,−τ c)ǔ(−τ c)]

= f(τ i) for n even,

and

ǔ(τ i) −
[

n∑

ν=1

[
ων +

2 sin2 θν cos 2[(n+ 1)/2]θν
(2[n/2] + 1)(2[(n+ 1)/2] + 1) sin(θν + θc) sin(θν − θc)

]
k(τ i, τν)ǔ(τν)

]

− (n+ 1) tan θc
n(n+ 2)

[k(τ i, τ c)ǔ(τ c) + k(τ i,−τc)ǔ(−τc)]

= f(τ i) for n odd.
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