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abstract: The aim of this paper is to generalize a main theorem concerning
weighted mean summability to absolute matrix summability which plays a vital role
in summability theory by using quasi-f -power sequences.
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1. Introduction

Definition 1.1. [1] A positive sequence (bn) is said to be an almost increasing
sequence if there exists a positive increasing sequence (cn) and two positive constants
M and N such that Mcn ≤ bn ≤ Ncn.

Definition 1.2. [17] A positive sequence X = (Xn) is said to be quasi-f -power
increasing sequence if there exists a constant K = K(X, f) ≥ 1 such that KfnXn ≥
fmXm for all n ≥ m ≥ 1, where f = {fn(σ, β)} =

{

nσ(logn)β , β ≥ 0, 0 < σ < 1
}

.

If we take β = 0, then we have a quasi-σ-power increasing sequence. Every
almost increasing sequence is a quasi-σ-power increasing sequence for any non-
negative σ, but the converse is not true for σ > 0 (see [13]).

Definition 1.3. For any sequence (λn) we write that ∆2λn = ∆λn −∆λn+1 and
∆λn = λn − λn+1. The sequence (λn) is said to be of bounded variation, denoted

by (λn) ∈ BV, if
∞
∑

n=1
|∆λn| < ∞.
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Let
∑

an be a given infinite series with the partial sums (sn). By uα
n and tαn we

denote the nth Cesàro means of order α, with α > −1, of the sequence (sn) and
(nan), respectively, that is (see [8])

uα
n =

1

Aα
n

n
∑

v=0

Aα−1
n−vsv and tαn =

1

Aα
n

n
∑

v=0

Aα−1
n−vvav, (1.1)

where

Aα
n =

(α+ 1)(α+ 2)...(α+ n)

n!
= O(nα), Aα

−n = 0 for n > 0. (1.2)

Definition 1.4. [10], [12] The series
∑

an is said to be summable |C,α|k, k ≥ 1,
if

∞
∑

n=1

nk−1|uα
n − uα

n−1|
k =

∞
∑

n=1

1

n
|tαn |

k < ∞. (1.3)

If we take α = 1, then |C,α|k summability reduces to |C, 1|k summability.
Let (pn) be a sequence of positive real numbers such that

Pn =

n
∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). (1.4)

The sequence-to-sequence transformation

tn =
1

Pn

n
∑

v=0

pvsv (1.5)

defines the sequence (tn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn) generated by the sequence of coefficients (pn) (see [11]).

Definition 1.5. [2] The series
∑

an is said to be summable
∣

∣N̄ , pn
∣

∣

k
, k ≥ 1, if

∞
∑

n=1

(

Pn

pn

)k−1

| tn − tn−1 |k< ∞. (1.6)

In the special case when pn = 1 for all values of n (resp. k = 1),
∣

∣N̄ , pn
∣

∣

k

summability is the same as |C, 1|k (resp. | N̄ , pn |) summability.

2. The Known Results

The following theorems are known dealing with the
∣

∣N̄, pn
∣

∣

k
summability factors

of infinite series.
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Theorem 2.1. [14] Let (Xn) be a almost increasing sequence. If the sequences
(Xn), (λn), and (pn) satisfy the conditions

λmXm = O(1) as m → ∞, (2.1)
m
∑

n=1

nXn|∆
2λn| = O(1) as m → ∞, (2.2)

m
∑

n=1

Pn

n
= O(Pm) (2.3)

m
∑

n=1

pn

Pn

|tn|
k = O(Xm) as m → ∞, (2.4)

m
∑

n=1

|tn|
k

n
= O(Xm) as m → ∞, (2.5)

then the series
∑

anλn is summable
∣

∣N̄, pn
∣

∣

k
, k ≥ 1.

Theorem 2.2. [6] Let (Xn) be a quasi-σ-power increasing sequence. If the se-
quences (Xn), (λn) and (pn) satisfy the conditions (2.1)-(2.3), and

m
∑

n=1

pn

Pn

|tn|
k

Xk−1
n

= O(Xm) as m → ∞, (2.6)

m
∑

n=1

|tn|
k

nXk−1
n

= O(Xm) as m → ∞, (2.7)

then the series
∑

anλn is summable
∣

∣N̄, pn
∣

∣

k
, k ≥ 1.

Later on, Bor has proved the following theorem by taking quasi-f-power increas-
ing sequence instead of a quasi-σ-power increasing sequence.

Theorem 2.3. [7] Let (Xn) be a quasi-f -power increasing sequence. If the se-
quences (Xn), (λn) and (pn) satisfy all the conditions of Theorem 2.2, then the
series

∑

anλn is summable
∣

∣N̄ , pn
∣

∣

k
, k ≥ 1.

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero di-
agonal entries. Then A defines the sequence-to-sequence transformation, mapping
the sequence s = (sn) to As = (An(s)), where

An(s) =

n
∑

v=0

anvsv, n = 0, 1, ... (2.8)

Definition 2.4. [16] The series
∑

an is said to be summable |A, pn|k, k ≥ 1, if

∞
∑

n=1

(

Pn

pn

)k−1

|An(s)−An−1(s)|
k
< ∞, (2.9)
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If we take pn = 1 for all values of n, then we have |A|k summability (see [18]).
And also if we take anv = pv

Pn

, then we have
∣

∣N̄ , pn
∣

∣

k
summability. Furthermore, if

we take anv = pv

Pn

and pn = 1 for all values of n, then |A, pn|k summability reduces
to |C, 1|k summability (see [10]).

3. The Main Results

Recently some papers have been done concerning absolute matrix summability
of infinite series and Fourier series (see [3]- [5], [15], [19]- [27]). The aim of this
paper is to generalize Theorem 2.3 for |A, pn|k summability method for these series
by taking quasi-f-power increasing sequence instead of a quasi-σ-power increasing
sequence.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv)
and Â = (ânv) as follows:

ānv =

n
∑

i=v

ani, n, v = 0, 1, ... (3.1)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (3.2)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) =

n
∑

v=0

anvsv =

n
∑

v=0

ānvav (3.3)

and

∆̄An(s) =

n
∑

v=0

ânvav. (3.4)

Using this notation we have the following theorem.

Theorem 3.1. Let (Xn) be a quasi-f -power increasing sequence. Let k ≥ 1 and
A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (3.5)

an−1,v ≥ anv, for n ≥ v + 1, (3.6)

ann = O

(

pn

Pn

)

(3.7)

n−1
∑

v=1

1

v
ân,v+1 = O(ann). (3.8)

If the sequences (Xn), (λn) and (pn) satisfy all the conditions of Theorem 2.3, then
the series

∑

anλn is summable |A, pn|k, k ≥ 1.
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It may be remarked that if we take A = (N̄ , pn), the conditions (3.5)-(3.7) are
satisfied automatically and the condition (3.8) is satisfied by the condition (2.3).
We need the following lemmas for the proof of our theorem.

Lemma 3.2. [3] Under the conditions of Theorem 2.1 we have that

nXn|∆λn| = O(1) as n → ∞, (3.9)
∞
∑

n=1

Xn|∆λn| < ∞. (3.10)

4. Proof of Theorem 3.1

Let Xn be a be a quasi-f -power increasing sequence and (In) denotes the A-
transform of the series

∑∞
n=1 anλn. Then, we have

∆̄In =

n
∑

v=1

ânvavλv.

Applying Abel’s transformation to this sum, we have that

∆̄In =
n
∑

v=1

ânvavλv

v

v
=

n−1
∑

v=1

∆(
ânvλv

v
)

v
∑

r=1

rar +
ânnλn

n

n
∑

r=1

rar

=
n−1
∑

v=1

∆(
ânvλv

v
)(v + 1)tv + ânnλn

n+ 1

n
tn

=
n−1
∑

v=1

∆̄anvλvtv
v + 1

v
+

n−1
∑

v=1

ân,v+1∆λvtv
v + 1

v

+
n−1
∑

v=1

ân,v+1λv+1
tv

v
+ annλntn

n+ 1

n

=In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to
show that

∞
∑

n=1

(

Pn

pn

)k−1

| In,r |k< ∞, for r = 1, 2, 3, 4. (4.1)

First, by applying Hölder’s inequality with indices k and k′, where k > 1 and
1
k
+ 1

k′
= 1, we have that

m+1
∑

n=2

(

Pn

pn

)k−1

| In,1 |k≤

m+1
∑

n=2

(

Pn

pn

)k−1
{

n−1
∑

v=1

|
v + 1

v
|
∣

∣∆̄anv
∣

∣ |λv||tv|

}k

= O(1)

m+1
∑

n=2

(

Pn

pn

)k−1 n−1
∑

v=1

∣

∣∆̄anv
∣

∣ |λv|
k|tv|

k ×

{

n−1
∑

v=1

∣

∣∆̄anv
∣

∣

}k−1

,
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using

∆ânv = ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv − an−1,v,

and from (3.5) and (3.6) we have

n−1
∑

v=1

|∆̄anv| =

n−1
∑

v=1

|anv − an−1,v| =

n−1
∑

v=1

(an−1,v − anv)

=

n−1
∑

v=0

an−1,v − an−1,0 −

n
∑

v=0

anv + an0 + ann

= 1− an−1,0 − 1 + an0 + ann ≤ ann,

and using
∑m+1

n=v+1 |∆̄anv| ≤ avv we have,

m+1
∑

n=2

(

Pn

pn

)k−1

| In,1 |k=O(1)

m+1
∑

n=2

(

Pn

pn

)k−1

ak−1
nn

{

n−1
∑

v=1

|∆̄anv||λv|
k|tv|

k

}

=O(1)

m
∑

v=1

|λv|
k−1|λv||tv|

k

m+1
∑

n=v+1

|∆̄anv|

=O(1)

m
∑

v=1

1

Xk−1
v

|λv||tv|
kavv

=O(1)

m−1
∑

v=1

∆|λv|

v
∑

r=1

arr
|tr|

k

Xk−1
r

+O(1)|λm|

m
∑

v=1

avv
|tv|

k

Xk−1
v

=O(1)

m−1
∑

v=1

|∆λv|Xv +O(1)|λm|Xm

=O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1. Also, we have that

m+1
∑

n=2

(

Pn

pn

)k−1

| In,2 |k≤
m+1
∑

n=2

(

Pn

pn

)k−1
{

n−1
∑

v=1

|
v + 1

v
||ân,v+1||∆λv||tv|

}k

= O(1)

m+1
∑

n=2

(

Pn

pn

)k−1
{

n−1
∑

v=1

ân,v+1|∆λv||tv|
Xv

Xv

}k

= O(1)

m+1
∑

n=2

(

Pn

pn

)k−1
{

n−1
∑

v=1

ân,v+1|∆λv|Xv

1

Xk
v

|tv|
k

}

×

{

n−1
∑

v=1

ân,v+1|∆λv |Xv

}k−1
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= O(1)
m+1
∑

n=2

(

Pn

pn

)k−1

ak−1
nn

{

n−1
∑

v=1

ân,v+1|∆λv|Xv

1

Xk
v

|tv|
k

}

×

{

m−1
∑

v=1

|∆λv|Xv

}k−1

= O(1)
m
∑

v=1

v|∆λv|
1

Xk−1
v

1

v
|tv|

k

m+1
∑

n=v+1

ân,v+1 = O(1)
m
∑

v=1

v|∆λv|
1

vXk−1
v

|tv|
k

= O(1)

m−1
∑

v=1

∆(v|∆λv |)

v
∑

r=1

|tr|
k

rXk−1
r

+O(1)m|∆λm|

m
∑

r=1

|tr|
k

rXk−1
r

= O(1)

m−1
∑

v=1

|∆(v|∆λv |)|Xv +O(1)m|∆λm|Xm

= O(1)

m−1
∑

v=1

vXv|∆
2λv|+O(1)

m−1
∑

v=1

Xv|∆λv|+O(1)m|∆λm|Xm

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1. Furthermore, as in
In,1, we have

m+1
∑

n=2

(

Pn

pn

)k−1

| In,3 |k≤

m+1
∑

n=2

(

Pn

pn

)k−1
{

n−1
∑

v=1

|ân,v+1||λv+1|
|tv|

v

}k

= O(1)

m+1
∑

n=2

(

Pn

pn

)k−1
{

n−1
∑

v=1

|ân,v+1||λv+1|
k |tv|

k

v

}

×

{

n−1
∑

v=1

1

v
ân,v+1

}k−1

= O(1)

m+1
∑

n=2

(

Pn

pn

)k−1

ak−1
nn

n−1
∑

v=1

|λv+1||λv+1|
k−1 |tv|

k

v
ân,v+1

= O(1)

m
∑

v=1

|tv|
k

v

1

Xk−1
v

|λv+1|

m+1
∑

n=v+1

ân,v+1

= O(1)

m
∑

v=1

|tv|
k

v

1

Xk−1
v

|λv+1|

m+1
∑

n=v+1

ân,v+1

= O(1)
m
∑

v=1

1

Xk−1
v

|λv+1|
|tv|

k

v

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1. Again, as in In,1, we
have that

m
∑

n=1

(

Pn

pn

)k−1

|In,4|
k = O(1)

m
∑

n=1

(

Pn

pn

)k−1

aknn|λn|
k|tn|

k
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= O(1)

m
∑

n=1

(

Pn

pn

)k−1

ak−1
nn ann|λn|

k−1|λn||tn|
k

= O(1)

m
∑

n=1

ann
1

Xk−1
n

|λn||tn|
k = O(1) as m → ∞,

by virtue of hypotheses of the Theorem 3.1 and Lemma 3.1. This completes the
proof of Theorem 3.1.

5. An application of absolute matrix summability to Fourier series

Let f be a periodic function with period 2π and integrable (L) over (−π, π).
Without any loss of generality the constant term in the Fourier series of f can be
taken to be zero, so that

f(t) ∼

∞
∑

n=1

(ancosnt+ bnsinnt) =

∞
∑

n=1

Cn(t). (5.1)

where

a0 =
1

π

∫ π

−π

f(t)dt, an =
1

π

∫ π

−π

f(t)cos(nt)dt, bn =
1

π

∫ π

−π

f(t)sin(nt)dt.

We write

φ(t) =
1

2
{f(x+ t) + f(x− t)} , (5.2)

φα(t) =
α

tα

∫ t

0

(t− u)α−1φ(u) du, (α > 0). (5.3)

It is well known that if φ(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the
(C, 1) mean of the sequence (nCn(x)) (see [9]).
The Fourier series play an important role in many areas of applied mathematics
and mechanics. Using these series, Bor has obtained the following main result.

Theorem 5.1. [6] Let (Xn) be a quasi-σ-power increasing sequence. If φ1(t) ∈
BV(0, π), and the sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem
2.2, then the series

∑

Cn(x)λn is summable |N̄ , pn|k, k ≥ 1.

Theorem 5.2. [7] Let (Xn) be a quasi-f -power increasing sequence. If φ1(t) ∈
BV(0, π), and the sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem
2.3, then the series

∑

Cn(x)λn is summable |N̄ , pn|k, k ≥ 1.

We now apply the above theorems to the weighted mean in which A = (anv) is
defined as anv = pv

Pn

when 0 ≤ v ≤ n, where Pn = p0 + p1 + ...+ pn. Therefore, it
is well known that

ānv =
Pn − Pv−1

Pn

and ân,v+1 =
pnPv

PnPn−1
.

We can obtain new results dealing with absolute matrix summability of Fourier
series in the following manner.
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Theorem 5.3. Let A be a positive normal matrix satisfying the conditions of
Theorem 3.1. Let (Xn) be a quasi-σ-power increasing. If φ1(t) ∈ BV(0, π), and
the sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem 3.1, then the
series

∑

Cn(x)λn is summable |A, pn|k, k ≥ 1.

Theorem 5.4. Let A be a positive normal matrix satisfying the conditions of
Theorem 3.1. Let (Xn) be a quasi-f -power increasing sequence. If φ1(t) ∈ BV(0, π),
and the sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem 3.1, then
the series

∑

Cn(x)λn is summable |A, pn|k, k ≥ 1.

6. Applications

We may now ask whether there are some examples other than weighted mean
methods of matrices A that satisfy the hypotheses of Theorem 3.1. and by applying
Theorem 3.1, Theorem 5.3 and Theorem 5.4 to weighted mean so, the following
results can be easily verified.
1. If we take anv = pv

Pn

in Theorem 3.1, Theorem 5.3 and Theorem 5.4, then we
have Theorem 2.3, Theorem 5.1 and Theorem 5.2.
2. If we take pn = 1 for all values of n in Theorem 3.1, Theorem 5.3 and Theorem
5.4, then we have a new result dealing with |A|k summability.
3. If we take anv = pv

Pn

and pn = 1 for all values of n in Theorem 3.1, Theorem 5.3
and Theorem 5.4, then we have a new result concerning |C, 1|k summability.

References

1. Bari, N. K., Stec̆kin, S.B, Best approximation and differential properties of two conjugate
functions. Trudy. Moskov. Mat. Obs̆c̆. (in Russian) 5, 483-522 (1956)

2. Bor, H., On two summability methods. Math. Proc. Cambridge Philos Soc. 97, 147-149
(1985)

3. Bor, H., Quasi-monotone and almost increasing sequences and their new applications. Abstr.
Appl. Anal. Art. ID 793548, 6 PP.(2012)

4. Bor, H., On absolute weighted mean summability of infinite series and Fourier series. Filomat
30, 2803-2807 (2016)

5. Bor, H., Some new results on absolute Riesz summablity of infinite series and Fourier series.
Positivity 20, 3 599-605 (2016)

6. Bor, H., An Application of power increasing sequences to infinite series and Fourier series.
Filomat 31, 1543-1547 (2017)

7. Bor, H., Absolute weighted arithmetic mean summability factors of infinite series and trigono-
metric Fourier series. Filomat 31, 15 4963-4968 (2017)
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