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Applications of the Jack’s Lemma for the Meromorphic Functions at

the Boundary

Tuğba Akyel and Bülent Nafi Örnek

abstract: In this paper, a boundary version of the Schwarz lemma for classes
N(β) is investigated. For the function f(z) = 1

z
+ a0 + a1z + a2z

2 + ... defined in
the punctured disc E such that f(z) ∈ N(β), we estimate a modulus of the angular

derivative of the function zf ′(z)
f(z)

at the boundary point c with cf ′(c)
f(c)

= 1−2β
β

.

Moreover, Schwarz lemma for class N(β) is given.
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derivative.
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1. Introduction

Let A denote the class of functions

f(z) =
1

z
+ a0 + a1z + a2z

2 + ..

which are analytic in the punctured disc E = {z : 0 < |z| < 1}. Also, let N(β) be
the subclass of A consisting of all functions f(z) which satisfy

∣

∣

∣

∣

1 +
zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

∣

∣

∣

∣

< 1− β, (1.1)

where 1
2 ≤ β < 1.

To present our main results, we need the following lemma called Jack’s Lemma
[6] and Schwarz lemma [5].

Lemma 1.1 (Schwarz lemma). Let D be the unit disc in the complex plane C.

Let f : D → D be an analytic function with f(0) = 0. Under these conditions,

|f(z)| ≤ |z| for all z ∈ D and |f ′(0)| ≤ 1. In addition, if the equality |f(z)| = |z|
holds for any z 6= 0, or |f ′(0)| = 1, then f is a rotation, which means f(z) = zeiγ,

where γ is real.
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Lemma 1.2 (Jack’s Lemma). Let f(z) be a non-constant and analytic function

in the unit disc D with f(0) = 0. If |f(z0)| = max {|f(z)| : |z| ≤ |z0|}, then there

exists a real number k ≥ 1 such that

z0f
′(z0)

f(z0)
= k.

Let f(z) ∈ N(β) and consider the function

φ(z) =
β (1 +m(z))

1− β
, (1.2)

where m(z) = zf ′(z)
f(z) . Clearly, φ(z) is analytic function in D and φ(0) = 0. Now

let us show that the function |φ(z)| is less than 1 in the unit disc D. From (1.1)
and (1.2), we have

∣

∣

∣

∣

1 +
zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

∣

∣

∣

∣

= (1− β)

∣

∣

∣

∣

zφ′(z)

(1− β)φ(z)− β

∣

∣

∣

∣

< (1− β) .

We suppose that there exists a point z0 ∈ D such that max
|z|≤|z0|

|φ(z)| = |φ(z0)| = 1.

Thus, φ(z0) = eiθ. From the Jack’s lemma, we obtain

φ(z0) = eiθ and
z0φ

′(z0)

φ(z0)
= k.

Using the last equality, we take by the elementary calculations

∣

∣

∣

∣

1 +
z0f

′′(z0)

f ′(z0)
−

z0f
′(z0)

f(z0)

∣

∣

∣

∣

= (1− β)

∣

∣

∣

∣

z0φ
′(z0)

(1− β)φ(z0)− β

∣

∣

∣

∣

= (1− β)

∣

∣

∣

∣

k

(1− β) eiθ − β

∣

∣

∣

∣

= (1− β)

∣

∣

∣

∣

ke−iθ

(1− β)− βe−iθ

∣

∣

∣

∣

= (1− β)

∣

∣

∣

∣

k

(1− β)− βe−iθ

∣

∣

∣

∣

≥ (1− β)
1

|(1− β)− βe−iθ|
.

Therefore, we obtain

∣

∣

∣

∣

1 +
z0f

′′(z0)

f ′(z0)
−
z0f

′(z0)

f(z0)

∣

∣

∣

∣

≥
1− β

|1− β − β (cos θ − i sin θ)|

=
1− β

√

(1− β − β cos θ)
2
+ β2 sin2 θ

and
∣

∣

∣

∣

1 +
z0f

′′(z0)

f ′(z0)
−
z0f

′(z0)

f(z0)

∣

∣

∣

∣

≥
1− β

√

(1− β)
2
+ β2 − 2β (1− β) cos θ

. (1.3)
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Since the right hand side of (1.3) takes its minimum value for cos θ = −1, we take

∣

∣

∣

∣

1 +
z0f

′′(z0)

f ′(z0)
−
z0f

′(z0)

f(z0)

∣

∣

∣

∣

≥
1− β

√

(1− β)
2
+ β2 + 2β (1− β)

= 1− β.

This is contradictory to our condition (1.1). This means that there is no point
z0 ∈ D such that |φ(z0)| = 1. Therefore, |φ(z)| < 1 for |z| < 1. By the Schwarz
Lemma, we obtain

|φ′(0)| ≤ 1

|a0| ≤
1− β

β
.

Thus, the following lemma is obtained.

Lemma 1.3. If f(z) ∈ N(β), then

|a0| ≤
1− β

β
. (1.3)

Since the area of applicability of Schwarz Lemma is quite wide, there exist
many studies about it. Some of these studies, which is called the boundary version
of Schwarz Lemma, are about being estimated from below the modulus of the
derivative of the function at some boundary point of the unit disc. The boundary
version of Schwarz Lemma is given as follows: if f extends continuously to some
boundary point c with |c| = 1, and if |f(c)| = 1 and f ′(c) exists, then |f ′(c)| ≥ 1.
R. Also, Osserman [13] has given the inequalities which are called the boundary
Schwarz lemma. He has first shown that

|f ′(c)| ≥
2

1 + |f ′(0)|
≥ 1 (1.4)

under the assumption f(0) = 0 where f is an analytic function mapping the unit
disc into itself and c is a boundary point to which f extends continuously and
|f(c)| = 1. Many studies have been carried out for the boundary Schwarz Lemma
in the last 15 years (see, [1], [3], [4], [7], [8], [14], [15], [16], and references therein).
Some of them are about the estimates from below for the modulus of the derivative
of the function at the boundary points which satisfy the condition |f(c)| = 1.

For our main results we need the following lemma known as Julia-Wolff lemma
[17].

Lemma 1.4 (Julia-Wolff lemma). Let f be an analytic function in D, f(0) = 0
and f(D) ⊂ D. If, in addition, the function f has an angular limit f(c) at c ∈ ∂D,

|f(c)| = 1, then the angular derivative f ′(c) exists and 1 ≤ |f ′(c)| ≤ ∞.

Corollary 1.5. Let f be an analytic function in D, f(0) = 0 and f(D) ⊂ D. Also,

the analytic function f has a finite angular derivative f ′(c) if and only if f ′ has

the finite angular limit f ′(c) at c ∈ ∂D.
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D. M. Burns and S. G. Krantz [9] and D. Chelst [2] studied the uniqueness
part of the Schwarz Lemma. For more general results and relevant estimates, see
also ( [10], [11], [12] and [13]). Also, M. Jeong [7] got some inequalities at a
boundary point for a different form of analytic functions and showed the sharpness
of these inequalities. Also, M. Jeong found a necessary and sufficient condition
for an analytic map having fixed points only on the boundary of the unit disc
and compared its derivatives at fixed points to get some relations among them
[8]. We refer to [1] for a more detailed explanation of the Schwarz Lemma and its
applications on the boundary of the unit disc.

2. Main Results

In this section, for the function f(z) = 1
z
+ a0 + a1z + a2z

2 + ... defined in the
punctured disc E such that f(z) ∈ N(β), we estimate a modulus of the angular

derivative zf ′(z)
f(z) function at the boundary point c with cf ′(c)

f(c) = 1−2β
β

.

Theorem 2.1. Let f(z) ∈ N(β). Suppose that for some c ∈ ∂D, f ′ has an angular

limit f ′(c) at c, cf ′(c)
f(c) = 1−2β

β
. Then

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=c

∣

∣

∣

∣

∣

≥
1− β

β
. (2.1)

Proof. Let us consider the following function

φ(z) =
β (1 +m(z))

1− β
,

where m(z) = zf ′(z)
f(z) .

Then φ(z) is an analytic function in the unit disc D and φ(0) = 0. By the
Jack’s lemma and since f(z) ∈ N(β), we have |φ(z)| < 1 for |z| < 1. Also, we have
|φ(c)| = 1 for c ∈ ∂D. That is,

|φ(c)| =
β

1− β
|1 +m(c)| =

β

1− β
|1 +m(c)| =

β

1− β

∣

∣

∣

∣

1 +
1− 2β

β

∣

∣

∣

∣

= 1.

It is clear that

φ′(z) =
β

1− β
m′(z)

and

φ′(c) =
β

1− β
m′(c).

From (1.4) we get

1 ≤ |φ′(c)| =
β

1− β
|m′(c)|

and

|m′(c)| ≥
1− β

β
.

�
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The inequality (2.2) can be strengthened as below by taking into account a0
which is first coefficient in the expansion of the function f(z).

Theorem 2.2. Under the hypothesis of the Theorem 1. Then

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=c

∣

∣

∣

∣

∣

≥
2 (1− β)

2

β (1− β + β |a0|)
. (2.3)

Proof. Let φ(z) be as in the above Theorem 1. Therefore, from (1.4),

2

1 + |φ′(0)|
≤ |φ′(c)| =

β

1− β
|m′(c)| .

Since

φ(z) =
β
(

1 + zf ′(z)
f(z)

)

1− β
=

β

1− β

(

1 +
− 1

z
+ a1z + 2az2 + ...

1
z
+ a0 + a1z + a2z2 + ...

)

=
β

1− β

a0 + 2a1z + 3a2z
2 + ...

1
z
+ a0 + a1z + a2z2 + ...

=
β

1− β

(

a0z +
(

2a1 − a20
)

z2 + ...
)

and

φ′(0) =
β

1− β
a0,

it is clear that

|φ′(0)| =
β

1− β
|a0| .

Then
2

1 + β
1−β

|a0|
≤ |φ′(c)| =

β

1− β
|m′(c)|

and

|m′(c)| ≥
2 (1− β)

2

β (1− β + β |a0|)
.

Hence, we get the desired inequality (2.3) �

The inequality (2.3) can be strengthened as below by taking into account a1
which is second coefficient in the expansion of the function f(z).

Theorem 2.3. Let f(z) ∈ N(β). Suppose that for some c ∈ ∂D, f ′ has an angular

limit f ′(c) at c, cf ′(c)
f(c) = 1−2β

β
. Then

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=c

∣

∣

∣

∣

∣

≥
1− β

β

(

1 +
2 ((1− β)− β |a0|)

2

(1− β)
2
− β2 |a0|

2
+ β (1− β) |2a1 − a20|

)

. (2.4)
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Proof. Let φ(z) be the same as in proof of Theorem 1. Let us consider the function

h(z) =
φ(z)

υ(z)
,

where υ(z) = z. The function h(z) is analytic in D. According to the maximum
modulus princible, we have |h(z)| < 1 for each z ∈ D. From equality of h(z), we
have

h(z) =
φ(z)

z
=

β(1+m(z))
1−β

z
=

1
α

(

1
1+c2z+(2c3−c2

2
)z2+...

− 1
)

z

=

β
1−β

(

a0z +
(

2a1 − a20
)

z2 + ...
)

z

=
β

1− β

(

a0 +
(

2a1 − a20
)

z + ...
)

Thus, we have

|h(0)| =
β

1− β
|a0| ≤ 1

and

|h′(0)| =
β

1− β

∣

∣2a1 − a20
∣

∣ .

Moreover, it can be seen that

cφ′(c)

φ(c)
= |φ′(c)| ≥ |υ′(c)| =

cυ′(c)

υ(c)
.

Let

ψ(z) =
h(z)− h(0)

1− h(0)h(z)
.

This function is analytic in D, |ψ(z)| ≤ 1 for |z| < 1, ψ(0) = 0, and |ψ(b)| = 1 for
c ∈ ∂D. From (1.4),

2

1 + |ψ′(0)|
≤ |ψ′(b)| =

1− |h(0)|
2

∣

∣

∣
1− h(0)h(c)

∣

∣

∣

2 |h′(c)|

≤
1 + |h(0)|

1− |h(0)|
{|φ′(c)| − |υ′(c)|} .

Since

ψ′(z) =
1− |h(0)|

2

(

1− h(0)h(z)
)2 h

′(z),

ψ′(0) =
h′(0)

1− |h(0)|
2 ,
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and

|ψ′(0)| =

β
1−β

∣

∣2a1 − a20
∣

∣

1−
(

β
1−β

|a0|
)2 = β (1− β)

∣

∣2a1 − a20
∣

∣

(1− β)
2
− β2 |a0|

2 ,

we get

2

1 + β (1− β)
|2a1−a2

0|
(1−β)2−β2|a0|

2

≤
1 + β

1−β
|a0|

1− β

1−β
|a0|

{

β

1− β

∣

∣m
′(c)

∣

∣− 1

}

,

2
(

(1− β)2 − β2 |a0|
2
)

(1− β)2 − β2 |a0|
2 + β (1− β) |2a1 − a2

0|
≤

1− β + β |a0|

1− β − β |a0|

{

β

1− β

∣

∣m
′(c)

∣

∣− 1

}

,

2 ((1− β)− β |a0|)
2

(1− β)2 − β2 |a0|
2 + β (1− β) |2a1 − a2

0|
≤

β

1− β

∣

∣m
′(c)

∣

∣− 1

and

|m′(c)| ≥
1− β

β

(

1 +
2 ((1− β)− β |a0|)

2

(1− β)
2
− β2 |a0|

2
+ β (1− β) |2a1 − a20|

)

.

The last inequality is the desired inequality. �
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