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Exponential Growth of Positive Initial Energy Solutions for Coupled Nonlinear
Klein-Gordon Equations with Degenerate Damping and Source Terms

Amar Ouaoua and Messaoud Maouni

ABSTRACT: In this paper we will prove that the positive initial-energy solution for coupled nonlinear Klein-
Gordon equations with degenerate damping and source terms grows exponentially.
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1. Introduction

In this work, we consider the coupled nonlinear Klein-Gordon equations:

U — Au + miu + (|u|]C + |v|l) lue” up = fi (u, v),

, . , 1 (1.1)
Utt—AU+m2U+(|U| +|U| )|Ut| Ut:fQ(U, U)v

where p, ¢ > 1, k, [, 0, 0 >0, mq, ma >0, (z, t) € Qx (0, T) and Q is a bounded domain with smooth
boundary 9§ in R™ (n > 1), and the two functions fi (u, v) and f2 (u, v) given by

£ (u, v) = Ju+ U|2(r+1) (u+v)+ |u|ru |v|r+2’
2(r+1) 2 7 (12)
fo (u, v) = |u+v| (u+v) + |u| " |v| v.
The system (1.1) is supplemented with the following initial conditions:
((u(0),v(0))) = (uo,v0), ((ue(0),v¢(0))) = (ur,v1), z € (1.3)
and boundary conditions
u(z)=v(z) =0, z € 0. (1.4)

Some special case of the single wave equation with nonlinear damping and nonlinear source terms in the
form
U — Au+ augP " g = blul! (1.5)

with the presence of different mechanisms of dissipation, damping and for more general forms of non-
linearities has been extensively studied and results concerning existence, nonexistence and asymptotic
behavior of solutions have been established by several authors and many results appeared in the literature
over the past decades. See ([1], [5] — [8], [10], [16]). The absence of the terms m3u and m3u, equations
(1.1) take the form

wy — Au + (|u|k + |v|l) e~ ue = fi (u, v),

B (1.6)
v — Av + (|v|0 + |u|9) loe| T oy = fo (u, v).
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In [13] Rammaha and Sakuntasathien focus on the global well-posedness of the system of nonlinear wave
equation (1.6) . In [17] Wu studied blow up of solutions of the system (1.1) forn =3 andk=1=60 = o = 0.
Agre and Rammaha [3] studied the global existence and the blow up of the solution of problem (1.6) when
k=1=0=p, and also Alves et al [4], investigated the existence, uniform decay rates and blow up of the
solution. In [11] Erhen Pigkin prove the blow up of solutions of (1.1) in finite time with negative initial
energy and nondegenerate damping terms. In the work [9], authors considered the following nonlinear
viscoelastic system

t

utt—Au—l—fg(t—s)Au(x,s)ds—i—|ut|p71ut:fl(u, v),
0 (1.7)

v — Av+ [h(t —5) Av (2, 8)ds + |[v:]" vy = fo (u, v).
0

and they prove a global nonexistence for certain solutions with positive initial energy, the main tool proof
is a method used in [15]. In [14], B. Said-Houari proved that the energy associated to the system (1.8)

. t

[ul” uge — Au— Auy + [g(t —s) Au(x,s)ds + |u,5|p_1 u = f1 (u, v),

| 0 1 (18)

[o? v — Av — Avy + [h(t — s) Av (z,s)ds + [v|* vp = fa (u, v).
0

is unbounded and it grows up as an exponential fonction as time goes to infinity, provided that the initail
data are large enough. The key ingredient in his proof is a method used in vitillaro [16] and developed
in [15] for a system of wave equations.

Our paper is organized as follows, In section 2, we present the assumptions and some lemmas needed
for our result. Section 3 is devoted the proof of the main result.

2. Preliminaries
In this section, we shall give some lemmas which will be used throughout this work.

Lemma 2.1. [2](Sobolev-Poincaré inequality) Let s be a number with 2 < s < +oo if n < 2 and
2<s< % if n > 2. Then there is a constant C' depending on ) and s such that

lully < CIVully, e Hp. (2.1)

Lemma 2.2. (Young’s inequality) Let a,b > 0 and 1—17 + % =1 for 0 < p, g < 400, then one has the
mequatity
ab < daP + ¢ (9) b7,

where 6 > 0 is an constant, and ¢ (8) is a positive constant depending on ¢.

We assume that

{ —1r<>r gl g i rlé 3. (2.2)
We can easily verify that
ufy (u, v) +ovfe(u, v) =2 +2)F (u, v) (2.3)
where
F(w )= 500y [l 020 42 2] (2.4)
Lemma 2.3. [9] There exist two positive constants c1 and cy such that
c1 (|u|2(r+2) + |v|2(r+2)) <2(r+2)F (u, v) <co (|u|2(r+2) + |v|2(r+2)) , (2.5)

1s satisfied.
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Now, we define the following energy function associated with a solution (u, v) of problem (1.1) — (1.4)
1 2 2 1 2 2
B () =5 (huelly +llexl3) + 5 (IVul3 + 19013)
b ul + md o]}~ [F (u, ) (2.6)

Lemma 2.4. Let (u,v) be a solution (1.1) — (1.4) then E (t) is a nonincreasing function for t > 0 and

E (1) = —/(|u|k+|v|l) g1 dx—/(|v|9+|u|9) g 741 de (2.7)

Q Q

Proof. By multiplying the first equation of (1.1) by u; and the second equation by v, integrating over
), using integration py parts and summing up, we get

E(t)—E(O):—// (jul* + 1ol') |ut|p+1dx—//(|v|9+|u|g) g 71 davdis (2.8)
0 Q 0 Q

O

Next, we state the local existence theorem that can be established combinig arguments of [12, 13].
We give the definition of a weak solution to problem (1.1) — (1.4).

Definition 2.5. A pair of function (u, v) is said to be a weak solution of (1.1) — (1.4) on [0, T] if
u,veC ([o, T); HE (Q) N L2+ (Q)) Jup € C ([0, T); L2(Q) N LPH(Q x (0, T))

and
v € C ([0, T]; L* ()N LT (2 x (0, T)).

In addition, (u, v) satisfies

/ul (t) pdx — /u1 (t) pdx + /Vchpdx + m%/ug@dm

Q Q Q Q

+ ]/ (|u|k + |v|l) ’u,’pﬂ u pdads = ]/f (u, v)@pdzds (2.9)

/ ()qzﬁdx—/vl( ¢dx+/VvV¢dx+m2/v¢dx

Q

a+1 B
// o]’ +|u| ’ vqﬁdmds-{gfg (u, v) pdzds (2.10)

for all test function p € Hg (Q) N LPTL(Q), ¢ € HY (Q) N LI (Q) and for almost all t € [0, T).

Theorem 2.6. (Local existence) Assume that (2.2) holds. Then, for any initial data ug, vo € H () N
L2042 (Q) and uy, v € L*(Q). There exists a unique local weak solution (u, v) of problem (1.1) — (1.4)
(in the sense of definition 2.5) defined in [0, T| for some T > 0, and satisfies the energy identity

t t
+// (jul* + ol |ut|p+1dxds+//(|v|9+|u|g) | dads = E(0), £>0.  (211)
0 Q 0 Q
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3. Exponential growth

In this section, we are going to prove our main result. We need in the sequel the following Lemmas.

Lemma 3.1. [9] Suppose that (2.2) holds. Then there exists n > 0 such that for any (u, v) € H} () x
HL () the inequality

1 r+2
2+2) [Fa, 0) <0 (5 (19013 + I701) + md Jull + 3 o3 (3.1)
Q

holds.

Proof. Direct computation using Minkowski, Hélder’s and Young’s inequality and the embedding theorem
yields the proof of this Lemma. B O

We introduce the following constants:
1 42 1 1
B = n2t) =B . F = - —— 2 3.9
N s A1 » M1 (2 2(T+2))ala (3.2)

where 7 is the optimal constant in (3.1).
The following lemma is very useful to prove our result for positive initial energy F (0) > 0. It is
similar to the one the lemma in [9], first used by Vitillaro [16].

Lemma 3.2. Suppose that (2.2) holds. Let (u, v) be a solution of (1.1) — (1.4). Assume further that
E(0) < Ey and

1
1 2 2 m3 o M3 2\ 2
(5 (170l + 1720l3) + 31 ol + 32 o) "> e (33)
Then there exists a constant as > «p, such that
1 2 2 m% 2 m% 2 :
5 (IVull3 + 1Vel3) + S uly + 2 1V0l3 ) > as. (3.4)
and .
(Il + 0I5 73 + 2wl 733) ™ = Bas, ¥t >0, (3.5)

Theorem 3.3. Suppose that (2.2) holds. Assume further that
2(r+2)>max{k+p+1, I+p+1, 0+qg+1, o+q+1} (3.6)
Then any solution of problem (1.1) — (1.4) with initail data satisfying
1
1 2 2\ |, M 2, M3 2\
(5 (170l + 17v003) + 52 ol + 52 el3) > e (37)
E(0) < Ey, where aq is defined in (3.2), grows exponentially.

Proof. Set
H(t)=FE; — E(t) (3.8)

By using (2.6) and (3.8) we get

1
0 < H(0) < H(t) = By — o (Jluell3 + oell?) -

; (Ivuls +1vol3)

N =
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2 2
m 2 m 2
= (S5 Il + 2 1) + [ F o)
Q

From (3.4), we obtain

1 2 2 1 2 2
By = 5 (lluell3 + llel3) = 5 (I7ull3 + 1V0113)
2 2
my 2 my 2 1 2 1 2
B (it 2 <F--a?<-——" 0 3.9
(%5 Il + 52 101} ) < 1 - gt < —5 ot < (39)

Hence, by the above inequality and (2.5), we have

2(r+2) 2(r+2)
0< H(0) < H®) < 57 (23 + 1k 13) (3.10)
We then define the following Lyaponov function
G({t)=H(t)+ e/ (uuy + voy) do (3.11)

Q
for € small to be chosen later.

Our goal is to show that G (¢) satisfies a differential inequality of the form

Lam= G (3.12)

By taking a derivative of (3.11) and using equations (1.1), we obtain

¢ (1) = H () +e(lull+ lul3) - e (19l + |90)3)
e (m lull + 3 [0l3) + ¢ [ (i (s 0)+ o (u, 0)) da
Q
p—1 4 0 q—1
/ (1 =+ ol") e dx—e/ (1el” + ul?) w1 0] vda.
Q Q
(3.13)
From the definition of H (t), it follows that
— (Ivull + 1903) = 2B+ 21 0 ~2 [ F a0
Q

o (Ihaell3 + loell3) +m3 ully + i3 ol (3.14)

Inserting (3.14) into (3.13), lead to

/

G () = H' (1) +2¢ (lwll} + loll3) — 2¢Br + 2H (2)
e (1= 1) (o242 1 2 o2
€ e U+ vl|542) uvll, 45

_ e/ (|u|k + |v|l) g |ug|” ™ uda — 6/ (|v|9 + |u|g) v [oe] " vda (3.15)

Q Q
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By taking ¢z = 1 — $ — 2F, (Bozg)_Q(T”), one can easily check that c3 > 0, since ay > B

Therefore, (3.15) take the form

/

G (1) > H' (1) +2¢ (Jjuall3 + el

F2eH (1) + ecs (llu+ vl 3 +2 luell[13)
k l p—1 6 0 q—1
- e/ (|u| + |v] ) ug |ug)”” " uda — 6/ (|v| + |ul ) vy v vde (3.16)
Q Q

In the order to estimate the last two terms in (3.16), we make of the following Young’s inequatily

sexe  §PyB

XY <
S + R
X,Y>0,0 >0, a, 8€RT such that é + % = 1. Consequently, we get
_ w1 1
g P u < 1%51 7 uft mfszfﬂ Jug [P
and therefore "
/ (|u|k + |v|l) Uy |ut|p_1 udr < ]%(fT/ (|u|k + |v|l) |u|erl dx
Q Q
1
+ md’f“/ (" + fol") b+ (3.17)
Q

Similarly, for all 5 > 0

g1 q ot gt L g1 g4l
Vt |’Ut| v S ?(52 |’U| + m(SQ |Ut| N

)

then

_atl
[ (0l el o™ vao < L, " [ (10l 4 ful?) ol da
Q

Q

1
+ q+—1‘53+1/ (101" + uf?) [or]**" da (3.18)
Q

Inserting (3.17), (3.18) into (3.16), we obtain
G (1) > H' (1) +2¢ (Jjuel}3 + el

F2eH (1) + ecs ([[u+ 0]2072) +2 w1 12)

1 1
_6m5117+1/ (|u|k + |v|l) |ut|erl dx — em(Sngl/ (|U|9 + |u|g) |Ut|qJrl du
Q Q

pt1
—ptl . q
—€ 6, " (uk+vl) ulPT d — e
6T [ (1l 1ol b 4
Q

_att
55 / (1o + [ul?) ol de (3.29)
Q
Using Young’s inequality, we get

k ! +1 k+p+1 Uy il
[ (1ol 1+ do < a2+ [ 1ol do
Q Q
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I+p+1 p+1

k+p+1 ! - I+p+1
Sullpypr + 7770 i1 o vl fpi + eI T lull i
and
0 +1 0+q+1 +1
/0w+w@hw mswmgﬂ+/mwqux
0
0+q+1 Y erre Q+q+1 q+1 79+ o+q+1
< H’U||9+q+1+m ‘ || Ullgrgrs + PETESEL || Vot g1

By using (3.20), (3.21) and lemma 3, (3.19) becames
G (1) 2 H' (t) + 2 (el + loall3) + € (m? ull3 +m3 |lo]]3)

2(r+2 2(r+2
2 (1) + cex (ul3073) + 1013072

Q Q
5_;77 || ||k+p+1 ! I+p+1
_€p+1 1 k+p+1 R I+p +1 H ||l+p+1
+& —E || [ees;
I+p+1 Y1 I+p+1
%JthnM“ —i—fﬁnnm“
q+1 2 O+q+1 Q+ +1 o+q+1
g+1 - o+q+1
m 2 || Vllgtqt1

We define the algebric inequality

1
z“<(z+1)<<1+—)(z+a), Vz>0, 0<v<l1, a>0.
a

In the sequel noting by ¢ the various constants.
Since (3.6) holds, by the embedding theorem and the previous inequality, we obtain

lulli 24 < elullfinh) < ed (Il 13 + B (0)) < ed (lull3 i3+ H ®)
lllebtt < ed (33 + H (1)
lullgets < ed (Jlull 13+ H (1)
lolli25t < ed (Jlol2052) + H (1
lollghaiy < ed (Iloll303) + H (2)
lollet et < cd (ol 2072 + H (1)
where d = 1 + 5757 Choosmg
= li;ilw_l?%’ 2:ngng172ﬁ+ﬂ’
1
o = ™ e

Substituting (3.24) into (3.22) and using the formula of H' (t), we obtain

G (1) 2 (1= k) H' (8) +2¢ (Ilusl}3 + vel3) + ¢ (m3 el + m3 1ol13)

0t [ (il ol e - _+15q+1//(V494—v49)|qu+1dx

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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P 2(r+2)
—+€ [64 — ot 151 Cd(1+K1 +K2):| ||u||2(r+2)
teles— =L 67" cd (14 Ky + Ka) | o] 202
4 g+1 2 3 4 2(r+2)

2- L5 T A4 K+ K) — —L 5, T cd(1 4 K+ K))| H 3.25

_ P — a t .
relp- T Fan s k) - s T at Kk e 32
where K = max( p+15p+1, q+15q+1) . At this point, and for large values of §; and do, and we pick €

small enough, we can find positive constants A, A1, A2 and A3 such that (3.25) becames

G (t) > \H (t) + 2¢ <||ut||§ + ||vt||§)

+ e [[ullyirs) + exs [[vl503) + eXsH (t). (3.26)
Therefore , , 2rs2) or2)
! r+ r+

G ()2 M (el + loel3 + [ull3 73 + oI55 + 7 (1)) (3.27)

where M = min (2, A1, A2, A3). Consequently, we have

G(0)=H(0)+ e/ (upu1 + vou1) dx > 0.
Q

Now, by Holder’s and Young’s inequalities, we estimate

1 1
(w4 vor) da < kol + —— luel2 4 ke ol + —— locll3 k1, k2 > 0. (3.28)
4k 4ko
Q
We can find constant ¢ such that
2(r+2 2(r+2 2 2 2 2

/ (wag +vor) da < e (Jlul30 ) + 013013+l + ol + el + llell3) (3.29)

Q

Again applied (3.23) and the embedding theorem, we get

2(r+2 2(T+2) 2(r+2
el < ellull3as) < e (luli3yi3) ™ < ed (Il i)+ H ()

Similarly,
2(r+2
loll3 < ed (03033 + H (1)) -

Also, noting that

2(r+2 2(r+2
G(t)=H(t)+ e/ (uug + vor) da < c(H (t) + lull503) + Ivll505)

Q
2 2
+ [luelly + llvell3)- (3.30)
And combining with (3.27) and (3.30), we arrive at
d
EG@) >EG(t), £€>0, V>0, (3.31)
Integrating of (3.31) between 0 and ¢ gives
G (t) > G(0)e, vt >o0. (3.32)

This completes the proof. B
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