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Elastic Membrane Equation with Dynamic Boundary Conditions and Infinite Memory *

Ahlem Merah and Fatiha Mesloub

ABSTRACT: In this paper, we study the elastic membrane equation with dynamic boundary conditions,
source term and a nonlinear weak damping localized on a part of the boundary and past history. Under some
appropriate assumptions on the relaxation function the general decay for the energy have been established
using the perturbed Lyapunov functionals and some properties of convex functions.
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1. Introduction

The objective of this work is to study the following problem

uy — M(t)Au+ [[° g(s)Au (t — s)ds = 0, in Q x (0,400),

u=0 on I'y x [0,400). (11)
ug(t) = _ag,(,t 6“'5(’5 + o7 g(s) G4t — s)ds — h(ug) — f(u), on Ty x[0,+00), '
u(z, —t) = uo(x), ut(x 0) = ul(x), in €.

where  is a bounded domain in R™ with smooth boundary 99 such that 9Q = I'o UTy, ToNT; = 0
and Ty, T'; have positive measure \,_1 (;), ¢ = 0,1, v denotes the unit outer normal vector pointing
towardthe exterior of Q and M (t) = £,+&; ||[Vu (t)||§ +o (Vu(t), Vug (t)), where u is the plate transverse
displacement, = is the spatial coordinate in the direction of the fluid flow, and ¢ is the time. The
viscoelastic structural damping terms are denote by o, £, is the nonlinear stiffness of the membrane,
&, is an in-plane tensile load. All quantities are physically non-dimensionalized &, &, 0 and « are fixed
positive. Equation (1.1) is related to the flutter panel equation with memory term this equation arises in
a wind tunnel experiment for a panel at supersonic speeds. For a derivation of this model see, for instance,
Dowell [14] Holmes [24,25], Bass [5] . For more results concerning Balakrishnan-Taylor equation, one
can refer to Zarai and Tatar [2, 3], For viscoelastic wave equation with Dirichlet boundary condition, the
problems are truly overworked. Many existence and stability results have been established, Cavalcanti
and Oquendo [10], Fabrizio and Polidoro [15], Messaoudi [30, 34]. For linear Cauchy viscoelastic problem,
one can refer to Kafini and Mustafa [26]. With respect to viscoelastic wave equation with boundary
stabilization, Cavalcanti [8 — 11] considered the following system

wt (t) )+ fo g(s)Au(t — s)ds =0, in Qx R,

=0, on Ty x R,

v fOOO )%(S)ds + h(ut) =0 on Fl X R+7
u(O)—uO() +(0) = ui(z),z € Q z e
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Under the following assumptions on functions h,

{ Crlsl” < |h(s)| < Cals|?, if |s| <1
Csls| < [h(s)| < Culs|, if |s|>1

the authors first proved the global existence of solutions, and obtained the energy decays exponentially
if p = 1 and decays polynomially if p > 1.The results were generalized by Cavalcanti et al.[9]. They
obtained the same results without imposing a growth condition on h and under a weaker assumption on
g Messaoudi and Mustafa [26] extended these results and established an explicit and general decay rate
result by exploiting some properties of convex functions. Recently, using the same method as in [26],
Messaoudi et al.[33] considered the above wave system with infinite memory [ g(s)Au(t — s)ds and
obtained a general decay result using multiplier method. Gerbi and Said-Houari [21] studied a viscoelastic
wave equation with dynamic boundary conditions of the form

g (t) — Au(t) — aluy + [° g(t — s)Au(s)ds = lwP~?u, in QxRT,

u =0, on Tg x R,
u(t) = — [— g“ 6“’5 fo (t—s) 6“(8) ds + h(ut)} ., onT; xRT,
u(0) = uo(x), ue(0) = Ul(if)a x € Q,

Using the Faedo-Galerkin method and fixed point theorem, they proved the existence and uniqueness of
a local in time solution, and proved the solution exists globally in time under some restrictions on the
initial data. They also proved if o > 0, the solution is unbounded and grows as an exponential function,
if @ = 0, then the solution ceases to exist and blows up in finite time. Ferhat and Hakem [11] considered
the same viscoelastic wave equation as in [14] but with the following dynamic boundary conditions

_du _ au(s) auf
wn(t) = { Jo ot = 5)757 ds + o 5

, ' x RT
+#1h(Ut)+#2h(Ut(t—T)) ] o

They established a general decay result by introducing suitable energy and Lyapunov functionals and
some properties of convex functions. Ferhat and Hakem [12] investigated the following system

u(t) — Au(t) — alug +6(t) [~ g(t — s)Au(s)ds = lwP"?u, in QxR*,
u=0, on Ty x RT,
wn(t) = - (005~ 90 = 5) 5552 ds 055
+M1 |u| Fug o+ g |Ut(f—7)| Fug(t— )
u(0) = uo (), ut (0) = u1(x), z€E€Q,

(t=s) 1 on T'1 x RT,

They proved the global existence and energy decay of solutions for this system. Ferhat and Hakem
[18] considered a weak viscoelastic wave equation with dynamic boundary conditions and Kelvin Voigt
damping and delay term acting on the boundary in a bounded domain, and proved the asymptotic
behavior by making use an appropriate Lyapunov functional. Recently, Benaissa and Ferhat [6] considered
a viscoelastic wave equation with dynamic boundary conditions and infinite memory

wge (t) )+ Jo g(s)Au(t — s)ds =0, in Q x RY,

U—O on Ty x R,

up(t) = fo S (t — s)ds} , onTy xRT,
U(O)—UO( ),Ut(O)—m( ) z e,

and established an exponential decay result of energy by exploiting the frequency domain method which
consists in combining a contradiction argument and a special analysis for the resolvent of the operator
under the assumption —(,g(t) < ¢'(t) < (og(t). For more results concerned with wave equation with
boundary stabilization, one can refer to Doronin and Larkin [13], Muioz Rivera and Andrade [35], Gerbi
and Said-Houari [20 — 22], Liu and Yu [29], Since there are few works on wave equation with dynamic
boundary conditions, source term and a nonlinear weak damping localized on a part of the boundary
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and past history, motivated by above scenario, we study in the present work the stability of solutions to
problem (1.1) —(1.4). The main objective of the present work is to establish an explicit and general decay
result using multiplier method and some properties of convex functions. Our result is obtained without
imposing any restrictive growth assumption on the damping term. We end this section by establishing
the usual history setting of problem (1.1) — (1.4). Following the same arguments of Dafermos [12], we
introduce a new variable

n(z,t,s) = u(t) —u(t — s),

which gives us

Ny + 1N = Ug.
Assuming &, — fo s)ds = [ then we can get a new system, which is equivalent to problem (1.1)
g (t) — (l—i—fl IVul® + o (Vu, V) ) — 19 s)ds =0 in Qx RT,
u =0, on Ty x RT,
Bu(t)
wir(t) = (z + & IVulP + 0 (Vu, Vw)) on Ty x R,
—Jo 9(s)5k(s)ds — h(ue) — f (u),
u(z, —t) = uo( ) ug(x,0) = up(x), x € Q.

The rest of this paper is as follows. In Sect.2, we give some assumptions and our main results. In
Sect.3, we establish the general decay result of the energy. In this paper we will use a lot of concepts and
techniques contained in Feng [16].

2. Assumptions and Main Results

In this section, we present some materials and assumptions used in this paper.

L1(Q),(1 < q < 00), and H'(Q2) denote Lebesgue integral and Sobolev spaces [[-Il, and [|.]|, r, are the
norm in the space L9(f2) and L9(I'1), respectively. For simplicity, we write ||.|| and .||, instead of ||.||,
and |||y -, , respectively C'is used to denote a generic positive constant. Denote

Hp () ={ue H'(Q): u\r, =0}
then we have the embedding Hf (Q2) < L* (I'y). We will usually use the following Green’s formula
ou 1
Vu )Ww(x Au x)dx + g g(x)w(x)dF,Vw € Hp, ().
1

To deal with the new variable 7, we introduce a weighted L? space

M= 12 (R H} (©) = {<: RY s HY (Q): /Ooog<s> IV¢(s)|? ds < oo} ,

which is Hilbert space endowed with inner product and norm

6t = [ o6 ([ Fe@ vo s ar) as

i<l = [ " () V¢ ()] ds.

and

The phase space H is defined by .
H = H} (Q) x L* (Q) x M.

In the sequel, we shall give some assumptions. For the relaxation function g, we assume:
(A1) g(t): RT < R is a nonincreasing C' function satisfying

g(0) >0 and &, — /000 g(s)ds =1>0. (2.1)
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In addition, there exists an increasing strictly convex function G: RT — RT of class C* (RT) N C? (RT)
satisfying

G(0) = G'(0) =0 and lim G'(t) = +00 (2.2)
such that ( )
g S

(A2) h: R — R is a nondecreasing CO function such that there exists a strictly increasing function
ho € C* (RT) with hg (0) = 0 and positive constants c¢;, ¢z and ¢ such that

{ ho (Is]) < [A(s)| < hg ' (Is]); if |s|<e 0
c1 |s| < |h(s)| < ez s if |s|>e :

Moreover we suppose that the function H(s) = \/shg (1/3) is a strictly convex C? function on (0,7?] for
some r > 0 when hg is nonlinear.
(A3) We assume f: R — R that for some ¢g > 0,

[f(w) = f()] < co (T4 [ul” + o) [u—v|, Yu, vER (2.5)
where 5
0<p< — ifn>3andp>0ifn=12.
In addition, we assume that
fwu>F(u) >0;Vu € R (2.6)
where F(z) = [ f(s)ds. Assumptions (2.5) — (2.6) include nonlinear terms of the form

flu) = [ulf u+ |ul”u, 0<a<p.
(A4) There exists a positive constant mg such that
[Vuo (-, 8)[| < mo. (2.7)

The same arguments as in [5], [15] and [32], we can prove the global existence of solutions to problem
(1.5) — (1.8) given in the following theorem.

Theorem 2.1. Suppose assumptions (A1) — (A4) hold. If the initial data (uo (.,0),u1,7,) € H then
problem (1.5) — (1.8) has a unique weak solution such that for any T > 0,

u(t) € L= ((0,): HE, () us (1) € L= ((0,T); LX) and n € L= ((0,7]; M).
The energy functional of problem (1.5) — (1.8) is defined by

£0) = 5 { I OF + e @, + [ P+ lnlly +Val? + Z1val} - 28)

Then we can get the stability result of energy to problem (1.5) — (1.8) given in following theorem.

Theorem 2.2. Suppose (A1) — (A4) hold, let (ug (.,0),u1,1,) € H, then there exist positive constants
ko, ks, ka,e1,€0 such that the energy E(t) defined by (2.8) satisfies

E(t) < kaWit (kot + k3),Vt € RT, (2.9)

where

Wi(r) = /T Wzl(s) ds and Wa(t) = tG’ (e1t) H' (eot)
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3. General Decay

In this section, we shall study the general decay of energy to problem (1.5) — (1.8) to prove Theorem
2. For this purpose, we need the following technical lemmas.

Lemma 3.1. Under the assumptions of Theorem2, the energy functional E(t) is non-increasing and
satisfies that for any t > 0,

B0) < ~o (35 IVu) = [ nwowar+ 3 [ 190 @)Pas (3.1)

Proof. Multiplying (1.5) by wu;, and using integration by parts, boundary conditions (1.6) — (1.7) and
Green’s formula, we can obtain that

3 (||Ut O + lue ONF, + IVl + S [Val* + fp, F dP)
+o (54 Ivul ) T o Bug)udl (3.2)
+ fo, Vg [ g()Vn (s) dsdz = 0
Note that
! th n ()l 2/, 9 n .

Inserting (3.3) into (3.2), we can get the desired estimate (3.1). Using (A2), we know that h(us)us > 0.
Then E’(t) < 0. The proof is complete. O

Lemma 3.2. Under the assumptions of Theorem?2, the functional ¢ (t) defined by
¢ (t) = / i ()u(t)de + / w(u(t)dl + 2 | Vu (3.4)
Q 'y

satisfies that for any t > 0,
o) < ue @)+ |u (ﬂ”%l — (=01 (14 0) [[Vul® = & | Vaull*
+01/ o(s) 1V ()| ds + 02/ h2(uy)dD (3.5)
0 I

Proof. Differentiating ¢ (¢) with respect to ¢, we obtain
¢'(t) = llue @) + llue (1T, +/ e (t)u(t)dz +/ e (D)u(t)dl + o | Vul|* (Vu (1), Vue (1) (3.6)
Q Iy
We infer from (1.7) and Green’s formula that

/Qutt(t)u(t)dx—i—/ uge (t)u(t)dl

I

[ [0 19 0 5 50) 2w+ [ s 0]

ou

+/F1 [— (l + & || Vul? +a(Vu,Vut)) v /OOO 9(8)% (s)ds —h(u) = f(u)| udl

- (z & IVal?) [Val? = (0 (Fu. V) [9al® = [ Vu [ g(5)Vn(s) dsdo
Q 0

h(ug)dl — dr

wh(ug) /1“1 uf(u)

I



A. MERAH AND F. MESLOUB

which, combined with (3.6), gives us

G =l O+l <t>||%1 - (z + & IVul?) |Vl

/ Vu/ s)dsdx — /F1 uh(ug)dl' — /1“1 wf(u)dl

Using Young’s inequality, Holder’s inequality and Poincaré’s inequality, we know that for any §; > 0

/VU/ s) dsdx
51 IVl + [ / "o

sivallt+ g [ ][ aas| | [ oo w0 as] ao

_l oo
<o vl + S [Ty eneo)as

(3.7)

IN

IN

(3.8)
and )
—/ uh(ug)dl < C16y | Vu|® + — 7 hQ(ut)dF (3.9)
'
Inserting (3.8) — (3.9) into (3.7), we get for any §; > 0
¢ < Nu O + lue @IF, = =81 (1+C)) [Vul* = & [Vull*
5 _l o0 o0
=D [T 1wn @R s [ ols) 1906517
451 0 0
+i/ h?(u;)dT —/ wf(u)dl (3.10)
451 Fl
Now, we take 61 > 0 so small that
l
=61 (1+Ch) > 3
Thus, (3.5) follows from (3.10) and (2.6) with
B 1 & -1
C—max{45l, 10, }
The proof is complete. U

Lemma 3.3. Define the functional 3 (t) as

w0 =~ [u [ gt (s)dsde— [ ) / " g(s)n (s) dsdr

Under the assumptions of Theorem 2, then the functional v (t) satisfies for any 62 >0

Ut <

3 3 5 :
6 =Dl = § € = Dllwll, + 82 1Vul? + £ ©) (5 191?)

o0 o0 , 1
0 [0 IV @ s+ Ko [ @I s+ g [ Rgar. @10



ELASTIC MEMBRANE EQUATION

Proof. Differentiating ¢ (¢) with respect to ¢, we can obtain that

v = [ | gt (s)dsdz -~ [ ) / " (s (s) dsdr

=1

- [0 [ gt (s)dsao - [ ) [ " (s (5) dsdT.

i=Iq =13

- [watt) [ aom(s) dsda

_ /Q (= (1+ & IValP + o (Vo Vuy)) Au(t)

- [ asnras) ([T ot s)as
(

(14 & 19l + o (u, Vu)) 7

Clearly

which, using (1.7), yields
L = / (l—f—fl [Vul® + o (Vu, Vut)) Vu(t)/ g(s)Vn (s)dsdx
0

+/Q </OOO g(s)Vn (s) d8>2dx+/rl f(u) /Ooog(s)n (s) dsdl

- () / " g5 (5) dsd

Since E(t) is nonincreasing, then we can infer from (2.9) that
l
5 IVull® < E(t) < E(0)

which gives us
2
[Vull* < FE(0).

Performing Holder’s and Young’s inequalities, (2.5) and (2.8), we infer that for any d3 > 0

/ (l + &, |Vul® + o (Vu, Vut)) Vu(t) /000 g(s)Vn (s) dsdx

( 251E >/Vu / ) |Vn (s)| dsdx
G I9ulP + o+ (1+2751E<o>)2 Al mg(snw(sndsrdx

sl + 8= (1 Kp0) [ [ o) 9 o1 s

IN

IN

IN

(3.12)

(3.13)

(3.14)

(3.15)
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o (Vu, Vut)/ Vu(t) /000 g(s)Vn (s)dsdx

2 0o
< o (35 I7u0?) B0+ 55 [T a0 19n 1 a

2

/Q (/ooog(s)v”@ d8> do < (& —1) /0 " 9(9) 190 (5)|ds

o0 1 € —1 . [® )
/ ) | smasar<g [ i+ e, | o 19n s as

/Fl f(u) / " g(o)n (5) dsdr

< §3C1LEP (0) ||Vl + 50

o | " () [V ()2 ds.

Combining (3.15) — (3.19) with (3.13), we have for any, d3 > 0
€0 =1 20 2 gl
< E
I < (453 I+ 0)) + 5

He-n+ 2t B2la) [T vl e

1d ° 1
v (55 190 ) B+ 319l + 5 [ 42y

Noting that
/0 o(sy, (s)ds = - / o(s)n, (s) ds + / ui (1) g(s)ds
- / d'()n (s)ds + (1 — 1) uy

we can derive that

L= (1) ul? —/utu)/mg'() (s) dsdz

< 2oz Dyes L /(/ @as) ([ = m(s)as)
CQ
< 2 - S [T () 19 ) s
The same arguments give us
—1 0)C? [
< =280 g, - S5 [0 v o)1 as.

Inserting (3.20) — (3.22) into (3.12), we can get (3.11) with

2
K = 50_l<l+2—£1E(0)> Tl

405 l 21
§o— 1 § !
+(1=1)+ 5 Ch + 105 Ch
2
K L 20

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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The proof is done. U

Define the functional £ (t) by
L(t) == E(t) +e10(t) + 20 (1),

where €1 and €5 are positive constants will be chosen later. It is easy to verify that for e > 0 and €5 > 0

small enough, .
iE(t) < L(t) < =-E(t). (3.23)

Lemma 3.4. There exists a positive constant m such that for any t > 0,

Do o

£ (8) < —mE(t +c/ D IVn (@) ds+C [ B, (3.24)

Proof. Tt follows from (3.1), (3.5) and (3.11) that for any ¢ > 0,

g0 < - [2@-e-a]lul - [Fe-ne-a lul?,

—[ler + 61 (1+ C) &1 — ba5] || V||
2
~6e1 [Vl — 0 (1= B 0)er) (55 IVl
1 oo
(- mn) [T @I s
0

(5550 ) e e s [ o197 as

+(isl+ ) h?(uy)dT. (3.25)
46, r,

At this point we choose d3 > 0 satisfying e
3l
02 < 3 (€ —1)

which gives us

2 3
75262 < Z (50 — l) £9.

For any fixed ,d2 > 0 we take €5 > 0 small enough so that (3.23) remains valid and further. For fixed
and 9, we pick €1 > 0 so small that (3.23) remains valid and further

2 1 3
—5262 < e <H1111{2C 4(5 Z)EQ},

which gives us

3 1
1 (50 —1)82 > 0, (81 + 01 (1 +C)€1 —5282) > 0, <§ — K2€2> > 0.

Therefore, there exists a positive constant m such that for any ¢ > 0,
£ (t) < —mE(t +c/ |WM)H®+0/lﬂmd
which completes the proof. O

The same arguments as in [17], we can get the following lemma.
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Lemma 3.5. Under the assumptions of Theorem?2, there exists a positive v > 0 such that for any ey > 0

G%wE@»Amg@MVn@n%ws—wEﬁ»+wEwG%@E@» (3.26)

Proof. of Theorem?2. We distinguish the following two cases to prove T heorem?2.

Case 1. The function hg is linear.It follows from (A2) that
cils| < Jh(s)] < czls|, Vs €R,
which implies
h%(s) < cash(s),Vs € RT. (3.27)
Combining (3.1) and (3.27) with (3.24), we arrive at for any t > 0,
L(t) < +C/ s) [V (s)||* ds — CE'(¢t). (3.28)
Let €(t) =L (t) + CE(t). Using (3.23), we know that € (t) ~ E(t). Then (3.28) gives us

€ (t) < —mE(t +C/ s) [V (s)|]? ds. (3.29)

Multiplying (3.29) by G’ (eo E(t)) and using (3.26), we obtain

G’ (eoE(t)) € (t)

IN

—mG’ (e0E(t)) E(t) — Cv, E'(t)
+Cy,80E(t)G' (0 E(t))
= —(m—Cye) EQ)G' (e0E(t)) — C1 E'(t).

Now we take 9 >0 so small that m — Cry,e0 >0 , and denote €} (t) = G (e0E(t)) € (t) + Cy, E' ()
we can get there exists some K1 > 0 such that

€1 (t) ~ E(t) and 6/1 ( ) < K1G (6161( )) €1 (t) (330)

which yields (W (e1))" > K, , where

! 1
- 4
7) /T CsG (€15) y

for 0< 7 <1 . Integrating the last inequality in (3.30) over [0,t], we have for any t > 0,
a () <WTH (Kt + Ks). (3.31)

Then (2.9) follows from (3.31),(2.8) and ¢; ~ E.

Case 2. The function hg is nonlinear on [0,¢].

Following the arguments as in [20], we first suppose that max {r,ho(r)} < e otherwise we choose r
smaller.

Let &1 =min{r, ho(r)} It follows from (A2) that for €1 <|s| <e

(s | ket GeD)

|s] le1]

|h(s)] <

and

ho ([s])
||

ho (|e1])
le1]

h(s)] > |s| < |s] -
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Tthen we have

{ ho (Is[) < [a(s)| < hg " (|s), for |s| < e1, (3.32)
cils| < |h(s)| < eals|, for [s| > e,
which gives us for all |s| < eq,
H (h*(s)) = [h(s) ho (|h(s)]) < sh(s).
Then
h%(s) < H™' (sh(s)),V|s| < e1. (3.33)
As in [19], we denote
'y = {x cly: |’U,t(t)| > 61},F12 = {x cly: |’U,t(t)| < 61} .

It follows from (3.32) that on T'1a ,

uch(ug) < erhyt (e1) < ho (r)r = H*(r). (3.34)
We define J (t) by

1
J(t) = =— uth (ug) dT'
T12] Jr,,

Since H™! is concave, we infer from Jensen’s inequality that

HY(J@)>C [ H*(uh(u))dl. (3.35)

INP
Using (3.33) and (3.35), we conclude that
/ h? (ug)dl' < H™' (ugh (ug)) dl +/ h? (u;) dT’
Ty T2 T

< CH '(J(t) - CE'(t),

which, together with (3.24), yields for any t > 0,
K'(t) < —mE(t) + C/ 9(s) |V (s)[|* ds + CH™' (J (1))
0

where k(t) = L (t) + CE(t) and k(t) ~ E(t) For g9 <r? and Co >0 andthe fact E' <0,H' >0
and H” >0 , we obtain that the functional ki(t) defined by

E(t)
E(0)

ko (t) = H ( ) k(1) + CoE (1),

is equivalent E(t) to and

ki(t) = eo g((g))H” <50%> k(t) + H' (ao%) K'(t) + CoE'(t)

< —-mE(t)H’ (50 gé?)) +CH(J(t)) H' (50 g((é))> + CoE'(t)
LCH (60 gg) /0 9(s) |V ()| ds. (3.36)

Now, we denote the conjugate function of the convex function H by H* see, for example, Arnold [1], and
Lasieckaand Tataru [28],i.e.,

H” (s) = 1‘/561]11{13r (st — H(t)).
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Then

H* (s) = s (H') " (s) = H [(H) ' (5)],
is the Legendre transform of H, which satisfies

AB < H* (A) + H(B).

For A=H' (50%) and B=H~'(J(t)), and noting the fact H*(s)<s(H') " (s) and using
(3.36), we shall see that

ot (220 4 0 E0 (220 oy

I (1) 50) 207 \*E©)

IN

LCoE'(t) + CH ( ];E((é))) / " g(s) [ ()] ds

— (mE(0) — Cep) g((é)) H' (50 g(?)) —(C —Cy) E'(t)

IN

+CH' (60%> /OOO g(s) [V (s)|* ds. (3.37)

In (3.37), we choose €9 >0 so small that mE(0) — Ceo >0 and Cy so large that C —Cy <0 to
get for any t > 0,

K (1) < —K%H’ (eo g((é))) +CH (eo g((é))) /OOO a(s) |V (s)]12 ds. (3.38)

Multiplying (3.38) by G’ (e0E(t)) and using (3.26), we obtain

G (20E()K,(t) < —K%G’ (c0E(t)) H' <5—:0

o)

B (OH (80 g((é)))
+7220E(1)G' (20 B(1)) H' (60 g((é)))

_kEW o (eom 1) B (80@) —CE'(t)
)

IN

E(0) E(0)

a0 B ()G (0B () H' ( Bt

E(O))'

(3.39)

Define the functional kao(t) by
kao(t) = G’ (eoE(t)) ki (t) + CE(t).
It is easy to verify that ko(t) ~ E(t). i.e., there exist two positive constants $, and 5 such that
Bikalt) < B(t) < ok (1), (3.40)
Noting the fact E'(t) <0 and G” >0 we infer from (3.39) that

ky(t) < — (K — 7p61) %G’ (61 g(((t)))> H' (Eo ];E((é))) : (3.41)

with €1 = €gE(0) . For a suitable choice of €, we get from (3.41) that for some constant K; > 0,

s B (5w (o) i (5). e
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where Ws (t) = tH' (eot) G’ (e1t) Denote R(t) = Bile®) 1t follows from (3.40) that

By

B0)
R(t) ~ E(t). (3.43)

(3.42), we get for some ka(t) > 0,
R(t) < —K;Wa (R(t) (3.44)

which implies (W1 (R(t)))" > K2, where

1
Wh(t) = / Wa(s)ds, forte (0,1].

Integrating (3.44) over [0,t] we have for any t > 0,

R(t) < Wit (Kot + K3). (3.45)

Then (2.9) follows from (3.43) and (3.45). The proof is done.
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