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On the Structure of Split Regular δ-Hom-Jordan-Lie Superalgebras

Valiollah Khalili

abstract: In this paper we study the structure of arbitrary split regular δ-Hom-Jordan-Lie super algebras.
By developing techniques of connections of roots for this kind of algebras, we show that such a split regular δ-
Hom-Jordan-Lie superalgebra L is of the form L = H[α] ⊕

∑
[α]∈Λ/∼

V[α], with H[α] a graded linear subspace

of the graded abelian subalgebra H and any V[α], a well-described ideal of L, satisfying [V[α],V[β]] = 0 if
[α] 6= [β]. Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is
characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a
simple split regular δ-Hom-Jordan-Lie superalgebra.
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1. Introduction

Hom-algebraic structures appeared first as a generalization of Lie algebras in [4], where the author
studied q−deformations of Witt and Virasoro algebras. A general study and construction of Hom-Lie
algebras were considered in [11,12]. Since then, other intersting Hom-type algebraic structures of many
classical structures were studied Hom-associative algebras, Hom-Lie admissible algebras and Hom-Jordan
algebras. Hom-algebraic structures were extended to Hom-Lie superalgebras in [3].

As a generalization of Lie superalgebras and Jordan Lie algebras, the notion of δ-Jordan Lie super-
algebra was introduced in [10,15], which is intimately related to both Jordan-super and antiassociative
algebras. The case of δ = 1 yields the Lie superalgebra, and we call the other case of δ = −1 a Jordan
Lie superalgebra because it turns out to be a Jordan superalgebra. It is often convenient to consider
both cases of δ = ±1, and call δ-Jordan Lie superalgebras. The motivations to charactrize Hom-Lie
structurers are related to physics and to deformations of Lie algebras, in particular Lie algebras of vector
fields. Hom-Lie superalgebras are a generalization of Lie superalgebras, where the classical super Jacobi
identity is twisted by a linear map. If the skew-super symmetric bracket of a Hom-Lie superalgebra is
replaced by δ-Jordan-super symmetric, it is called a δ-Jordan-Hom-Lie superalgebra (see [14]).

As is well-known, the class of the split algebras is especially related to addition quantum numbers,
graded contractions and deformations. For instance, for a physical system, which displays a symmetry of
Lie algebra L, it is interesting to know in detail the structure of the split decomposition, because its roots
can be seen as certain eigenvalues which are the additive quantum numbers characterizing the state of
such a system. Determining the inner structure of split algebras will become more and more meaningful
in the area of research in mathematical physics. Recently, in [2,5,8,9,13,16], the inner structure of
arbitrary split Lie algebras, arbitrary split Lie superalgebras, arbitrary split regular Hom-Lie algebras,
arbitrary split regular Hom-Lie superalgebras, arbitrary split regular δ-Hom-Lie algebras, arbitrary split
involutive regular Hom-Lie algebras and arbitrary split involutive regular Hom-Lie color algebras have
been determined by the techniques of connection of roots.
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Our goal in this work is to study the structure of arbitrary split regular δ-Hom-Jordan-Lie superal-
gebras by the techniques of connection of roots. The results of this article are based on some works in
[1,6,13].

Throughout this paper, split regular δ-Hom-Jordan-Lie super algebras L are considered arbitrary
dimension and over an arbitrary base field F, with characteristic zero.

To close this introduction, we briefly outline the contents of the paper. In Section 2, we begin by
recalling the necessary background on split regular δ-Hom-Jordan-Lie superalgebras. Section 3 develops
techniques of connections of roots for split regular δ-Hom-Jordan-Lie superalgebras. We also show that
such an arbitrary split regular δ-Hom-Jordan-Lie superalgebra L with a root system Λ is of the form
L = H[α] ⊕

∑
[α]∈Λ/∼ V[α], with H[α] a graded linear subspace of the graded abelian subalgebra H and any

V[α], a well-described ideal of L, satisfying [V[α],V[β]] = 0 if [α] 6= [β]. In section 4, we show that under
certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized
and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split
regular δ-Hom-Jordan-Lie superalgebra.

2. Preliminaries

Let us begin with some definitions concerning δ-Hom-Jordan-Lie super algebras. For a detailed
discussion of this subject, we refer the reader to the literature [14].

Definition 2.1. [15] A δ-Jordan-Lie superalgebra is a Z2-graded algebra L = L0̄ ⊕ L1̄ over a base field
F endowed with an even bilinear map [., .] : L × L −→ L (i.e,. [Lī,Lj̄ ] ⊂ Lī+j̄ , ī, j̄ ∈ Z2) satisfying;

(i) [x, y] = −δ(−1)īj̄ [y, x], δ = ±1

(ii) (−1)īk̄[x, [y, z]] + (−1)īj̄ [y, [z, x]] + (−1)īk̄[z, [x, y]] = 0

for all homogeneous elements x ∈ Lī, y ∈ Lj̄ and z ∈ Lk̄, with ī, j̄, k̄ ∈ Z2.

Definition 2.2. [14] A δ-Hom-Jordan-Lie superalgebra is a quadruple (L, [., .], δ, φ) consisting of a
Z2−graded vector space L = L0̄ ⊕ L1̄, an even bilinear map [., .] : L × L −→ L and a linear map
φ : L −→ L satisfying;

(i) [x, y] = −δ(−1)īj̄ [y, x], δ = ±1

(ii) (−1)īk̄[φ(x), [y, z]] + (−1)īj̄ [φ(y), [z, x]] + (−1)īk̄[φ(z), [x, y]] = 0, (δ-super Hom-jacobi identity)

for all homogeneous elements x ∈ Lī, y ∈ Lj̄ and z ∈ Lk̄, with ī, j̄, k̄ ∈ Z2.

When φ is an algebra automorphism it is said to be a regular δ-Hom-Jordan-Lie superalgebra. We
recover δ-Jordan-Lie superalgebra when we have φ = id.

Especially, for δ = 1 one has a Hom-Lie superalgebra and for δ = −1 a Hom-Jordan-Lie superalgebra.
The usual regularity conditions will be understood in the graded sense. For instance, a subalgebra A

of L is a graded subspace A = A0̄ ⊕ A1̄ of L such that [A, A] ⊂ A and φ(A) = A. A graded subspace
I = I0̄ ⊕ I1̄ of L is called an ideal if [I,L] ⊂ I and φ(I) = I. We say that L is graded simple if [L,L] 6= 0
and its only ( graded) ideals are (0) and L.

Throught this paper we consider regular δ-Hom-Jordan-Lie superalgebra L and denote by N0 the set
of all non-negative integers and by Z the set of all integers.

We introduce the class of split algebras in the fromwork of regular δ-Hom-Jordan-Lie superalgebra
in an analogous way. We begin by considering a maximal abelian Z2−graded subalgebra H = H0̄ ⊕ H1̄

among the abelian Z2−graded subalgebras of L. For a linear functional

α : H0̄ −→ F,

we define the root space of L (with respect to H) associated to α as the subspace

Lα := {xα ∈ L | [h0̄, xα] = α(h0̄)φ(xα) for all h0̄ ∈ H0̄}.
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The elements α : H0̄ −→ F satisfying Lα 6= {0} are called roots of L with respect to H. We denote by
Λ := {α ∈ (H0̄)∗ \ {0} | Lα 6= {0}}.

Definition 2.3. We say that L is a split regular δ-Hom-Jordan-Lie superalgebra, with respect to H, if

L = H ⊕ (
⊕

α∈Λ

Lα).

We also say that Λ is the root system of L. We recall that a root system Λ of L is called symmetric if
Λ = −Λ.

As examples of split regular δ-Hom-Jordan-Lie superalgebras we have the split regular Hom-Lie su-
peralgebras and split regular δ-Jordan-Lie algebras. Hence, the present paper extends the results in
[1,6].

Lemma 2.4. Let L = L0̄ ⊕L1̄ be a split regular δ-Hom-Jordan-Lie superalgebra, with root space decom-
position L = H ⊕ (

⊕
α∈Λ Lα). Then

(1) L0 = H,

(2) for any α ∈ Λ ∪ {0}, we have Lα = L0̄,α ⊕ L1̄,α, where Lī,α = Lα ∩ Lī, ∀α ∈ Λ, ∀ī ∈ Z2,

(3) L0̄ = H0̄ ⊕ (
⊕

α∈Λ L0̄,α) is a split regular δ-Hom-Lie algebra and L1̄ = H1̄ ⊕ (
⊕

α∈Λ L1̄,α) is a split
regular anti-Lie triple system.

Proof. (1) It is clear that the root space associated to the zero root satisfies H ⊂ L0. Coveresly, given
any x0 ∈ L0 we can write x0 = h +

∑n
i=1 xαi

with h ∈ H and xαi
∈ Lαi

, for i = 1, 2, ..., n, bing αi ∈ Λ
with αi 6= αj if i 6= j. Hence, for any h0̄ ∈ H0̄ we have

0 = [h0̄, h +

n∑

i=1

xαi
] =

n∑

i=1

[h0̄, xαi
] =

n∑

i=1

αi(h0̄)φ(xαi
).

Taking into account the direct character of the sum, that αi 6= 0 and φ is an automorphism, we have
that any xαi

= 0 and then x0 = h ∈ H.
(2) By the grading of L, for any xα ∈ Lα, α ∈ Λ ∪ {0} may be expressed in the form x0̄,α + x1̄,α with

xī,α ∈ Lī, ī ∈ Z2. Then for any h0̄ ∈ H0̄ we have

[h0̄, xī,α] = α(h0̄)φ(xī,α),

From here, Lα = L0̄,α ⊕ L1̄,α, where Lī,α = Lα ∩ Lī, ∀α ∈ Λ, ∀ī ∈ Z2. In particular H = L0̄,0 ⊕ L1̄,0.
(3) By part (2) we have

L0̄ = H0̄ ⊕ (
⊕

α∈Λ

L0̄,α) and L1̄ = H1̄ ⊕ (
⊕

α∈Λ

L1̄,α).

Taking into acount this expression of the Hom-Lie algebra L0̄, the direct character of the sum and the fact
α 6= 0 for any α ∈ Λ, we have that H0̄ is a maximal abelian subalgebra of L0̄. Hence L0̄ is a split regular
δ-Hom-Lie algebra with respect to H0̄(for mor details see [5]). In the sence of [7] L1̄ = H1̄ ⊕(

⊕
α∈Λ L1̄,α)

is a split regular anti-Lie triple system with respect to H1̄. �

Note that if L is a split regular δ-Hom-Jordan-Lie superalgebra, with root space decomposition L =
H ⊕ (

⊕
α∈Λ Lα), taking into account Lemma 2.4, we then write

L = (H0̄ ⊕ (
⊕

Λ0̄

L0̄,α)) ⊕ (H1̄ ⊕ (
⊕

Λ1̄

L1̄,α)), (2.1)

where Λ0̄ := {α ∈ Λ : L0̄,α 6= 0} and Λ1̄ = {α ∈ Λ : L1̄,α 6= 0}.
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Lemma 2.5. For any α, β ∈ Λ ∪ {0} and any ī, j̄ ∈ Z2, the following assertions hold.

(1) φ(Lī,α) ⊂ Lī,αφ−1 and φ−1(Lī,α) ⊂ Lī,αφ,

(2) [Lα,̄i,Lj̄,β] ⊂ Lī+j̄,δ(α+β)φ−1 ,

(3) If Lī,α 6= 0 then Lī,αφZ 6= 0, for any z ∈ Z.

Proof. (1) By Lemma 2.4-(2) and the fact that φ is an automorphism, we have

φ(Lī,α) = φ(Lα ∩ Lī)

= φ(Lα) ∩ (Lī.

Now taking into account Lemma 1. 1 in [1], we get

φ(Lī,α) ⊂ Lαφ−1 ∩ Lī = Lī,αφ−1 .

In a similar way, one gets the second statement in (1).
(2) For any for any h0̄ ∈ H0̄, xī,α ∈ Lī,α and yj̄,β ∈ Lj̄,β , by denoting h′ = φ(h0̄), from δ-super

Hom-jacobi identity, we have

[h′, [xī,α, yj̄,β ]] = [φ(h0̄), [xī,α, yj̄,β]]

= δ[[h0̄, xī,α], φ(yj̄,β)] + δ[φ(xī,α), [h0̄, yj̄,β ]]

= δ[α(h0̄)φ(xī,α), φ(yj̄,β)] + δ[φ(xī,α), β(h0̄)φ(yj̄,β)]

= δ(α + β)(h0̄)φ([xī,α, yj̄,β ])

= δ(α + β)(φ−1(h′)φ([xī,α, yj̄,β ]).

Therefore, we get [xī,α, yj̄,β ] ∈ Lī+j̄,δ(α+β)φ−1 and so we conclud that the result.
(3) The proof is similar to part (1). �

3. Connections of roots and decompositions

In the following, L denotes a split regular δ-Hom-Jordan-Lie superalgebra with a symmetric root
system Λ and L = H⊕(

⊕
α∈Λ Lα), the corresponding root space decomposition. We begin by developing

the techniques of connections of roots in this section.

Definition 3.1. Let α, β be two nonzero roots in Λ. We say that α is connected to β and denoted by
α ∼ β if there exists a family

{α1, α2, α3, ..., αk} ⊂ Λ,

satisfying the following conditions;

If k = 1 :

(1) α1 ∈ {αφ−n : n ∈ N0} ∩ {±βφ−m : m ∈ N0}.

If k ≥ 2 :

(1) α1 ∈ {αφ−n : n ∈ N0}.

(2) δα1φ−1 + δα2φ−1 ∈ Λ,
δ2α1φ−2 + δ2α2φ−2 + δα3φ−1 ∈ Λ,
δ3α1φ−3 + δ3α2φ−3 + δ2α3φ−2 + δα4φ−1 ∈ Λ,
...
δiα−i

φ + δiα2φ−i + δi−1α3φ−i+1 + ... + δαi+1φ−1 ∈ Λ,
...
δk−2α1φ−k+2 + δk−2α2φ−k+2 + δk−3α3φ−k+3 + ... + δk−iαiφ

−k+i + ... + δαk−1φ−1 ∈ Λ.
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(3) δk−1α1φ−k+1 + δk−1α2φ−k+1 + δk−2α3φ−k+2 + ... + δk−i+1αiφ
−k+i−1 + ... + δαkφ−1 ∈ {±βφ−m :

m ∈ N0}.

The family {α1, α2, α3, ..., αk} ⊂ Λ is called a connection from α to β.

Note that the case k = 1 in Definition 3.1 is equivalent to the fact β = εαφz for some z ∈ Z and
ε ∈ {±1}.

Lemma 3.2. The following assertions hold

(1) For any α ∈ Λ, we have that αφz1 is connected to αφz2 for every z1, z2 ∈ Z. We also have that αφz1

is connected to −αφz2 in case −αφz2 ∈ Λ.

(2) Let {α1, α2, α3, ..., αk} be a connection from α to β. Suppose that α1 = αφ−n, n ∈ N0. Then for any
r ∈ N0 such that r ≥ n, there exists a connection {α̃1, α̃2, ..., α̃k} from α to β such that α̃1 = αφ−r.

(3) Let {α1, α2, α3, ..., αk} be a connection from α to β. Suppose that α1 = εβφ−m, m ∈ N0 in case
k = 1 or

δk−1α1φ−k+1 + δk−1α2φ−k+1 + δk−2α3φ−k+2 + ... + δk−i+1αiφ
−k+i−1 + ... + δαkφ−1 = εβφ−m,

in case k ≥ 2, with ε ∈ {±1}. Then for any r ∈ N0 such that r ≥ m, there exists a connection
{α̃1, α̃2, ..., α̃k} from α to β such that α̃1 = εβφ−r in case k = 1 or

δk−1α̃1φ−k+1 + δk−1α̃2φ−k+1 + δk−2α̃3φ−k+2 + ... + δα̃kφ−1 = εβφ−r,

in case k ≥ 2.

Proof. They are proved in Lemma 3.2 and Lemma 3.3 in [6]. �

Proposition 3.3. The relation ∼ in Λ defined by

α ∼ β if and only if α is connected to β,

is an equivalence relation.

Proof. The proof is vertically identical to the proof of Proposition 3.4 in [6]. �

By the above proposition, we can consider the equivalence relation in Λ by the connection relation ∼
in Λ. So we denote by

Λ/ ∼:= {[α] : a ∈ Λ},

where [α] denotes the set of nonzero roots of L which are connected to α. Clearly, if β ∈ [α] then −β ∈ [α]
and by Proposition 3.3, if β /∈ [α] then [α] ∩ [β] = ∅.

Our next goal in this section is to associate an adequate ideal L[α] of L to any [α]. For a fixed α ∈ Λ,
we define

H[α] := span
F
{[Lβ ,L−β ] : β ∈ [α]} ∪ L0.

Applying Lemma 2.5-(2), we obtain

H[α] =
∑

β∈[α]

([L0̄,β,L0̄,−β] + [L1̄,β ,L1̄,−β ]) ⊕
∑

β∈[α]

([L0̄,β,L1̄,−β] + [L1̄,β,L0̄,−β])

⊂ L0̄,0 ⊕ L1̄,0 = H. (3.1)

Next, we define

V[α] :=
⊕

β∈[α]

Lβ = (
⊕

β∈[α]

L0̄,β) ⊕ (
⊕

β∈[α]

L1̄,β).

Finally, we denote by L[α] the direct sum of the two graded subspaces above, that is,

L[α] := H[α] ⊕ V[α].
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Proposition 3.4. For any α ∈ Λ, the graded subspace L[α] is a graded subalgebra of L.

Proof. First, we are going to check that L[α] satisfies [L[α],L[α]] ⊂ L[α]. By the fact H[α] ⊂ L0 = H and
Eq. (3.1), it is clear that [H[α],H[α]] = 0, and we have

[L[α],L[α]] = [H[α] ⊕ V[α],H[α] ⊕ V[α]]

⊂ [H[α],V[α]] + [V[α],H[α]] + [V[α],V[α]]. (3.2)

Let us consider the first summand in (3.2). For β ∈ [α], ī ∈ Z2, by Lemmas 2.5-(1) and3.2-(1), one gets
[H[α],Lī,β ] ⊂ Lī,δβφ−1 , where δβφ−1 ∈ [α]. Hence,

[H[α],V[α]] ⊂ V[α]. (3.3)

Similarly, we can also get
[V[α],H[α]] ⊂ V[α]. (3.4)

Consider now the third summand in (3.2). Given β, γ ∈ [α] and ī, j̄ ∈ Z2 such that 0 6= [Lī,β ,Lj̄,γ ]. If
γ = −β, we have

[Lī,β,Lj̄,γ ] = [Lī,β,Lj̄,−β ] = [Lβ , ⊂ H[α].

Suppose that 0 6= β + γ, taking into account the fact 0 6= [Lī,β,Lj̄,γ ] together with Lemma 2.5-(2), one

gets δ(β + γ)φ−1 ∈ Λ, therefore, {β, γ} a connection from β to δ(β + γ)φ−1. The equivalence relation ∼
gives us (β + γ)φ−1 ∈ [α] and so [Lī,β,Lj̄,γ ] ⊂ Lī+j̄,δ(β+γ)φ−1 ⊂ V[α]. Hence,

[V[α],V[α]] = [
⊕

β∈[α]

Lī,β ,
⊕

β∈[α]

Lj̄,β] ⊂ H[α] ⊕ V[α]. (3.5)

From Eqs. (3.3), (3.4), and (3.5), we conclude that [L[α],L[α]] ⊂ L[α].
Second, we have to verify that φ(L[α]) = L[α]. But this is a direct consequence of Lemma 2.5-(1) and

Lemma 3.2-(1). �

Proposition 3.5. If [α] 6= [β], then L[α],L[β]] = 0.

Proof. We have

[L[α],L[β]] = [H[α] ⊕ V[α],H[β] ⊕ V[β]]

⊂ [H[α],V[β]] + [V[α],H[β]] + [V[α],V[β]]. (3.6)

Let us consider the third summand in Eq. (3.6) and suppose there exist η ∈ [α] and µ ∈ [β] and
ī, j̄ ∈ Z2 such that 0 6= [Lī,η,Lj̄,µ]. By condition [α] 6= [β], one gets η 6= −µ, then δ(η + µ)φ−1 ∈ Λ.

Hence, {η, µ, −δηφ−1} is a connection from η to µ. By the transitivity of ∼, we have α ∈ [β], which is a
contradiction. Therefor, [Lī,η,Lj̄,µ] = 0 and so [

⊕
η∈[α] Lī,η,

⊕
µ∈[β] Lj̄,[β]] = 0. Hence,

[V[α],V[β]] = {0}. (3.7)

Consider now the first summand in Eq. (3.6) and suppose there exist η ∈ [α] and µ ∈ [β], ī ∈ Z2 such that
0 6= [[Lη ,L−η],Lī,µ]. By Lemma 2.5-(1) we have Lī,µ = φ(Lī,µφ), so we obtain 0 6= [[Lη ,L−η], φ(Lī,µφ)].
Using the grading of Lη, we get

[[L0̄,η,L−η], φ(Lī,µφ)] + [[L1̄,η,L−η], φ(Lī,µφ)] 6= 0.

therefore,
either [[L0̄,η,L−η], φ(Lī,µφ)] 6= 0 or [[L1̄,η,L−η], φ(Lī,µφ)] 6= 0.

In the first case, by the δ-super Hom-jacobi identity, we get either [L−η, φ(Lī,µφ)] 6= 0 or [Lī,µφ,L0̄,η] 6= 0.
From here [V[α],V[β]] 6= 0 in any case, what contradicts Eq. (3.7). In the second case we have

[[L1̄,η,L0̄,−η], φ(Lī,µφ)] + [[L1̄,η,L1̄,−η], φ(Lī,µφ)] 6= 0,
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and so
either [[L1̄,η,L1̄,−η], φ(Lī,µφ)] 6= 0 or [[L1̄,η,L1̄,−η], φ(Lī,µφ)] 6= 0.

Again by the δ-super Hom-jacobi identity to any of these summends we have as above that necessarity
[V[α],V[β]] 6= 0 what contradicts Eq. (3.7). Hence,

[H[α],V[β]] = 0. (3.8)

In a similar way, we also have
[V[α],H[β]] = 0. (3.9)

Finally, from Eqs. (3.7), (3.8), and (3.9), we conclude that [L[α],L[β]] = 0. �

Theorem 3.6. The following assertions hold

(1) For any α ∈ Λ, the graded subalgebra

L[α] = H[α] ⊕ V[α],

of L associated to [α] is a (graded) ideal of L.

(2) If L is simple, then there exists a connection from α to β for any α, β ∈ Λ and H =
∑

α∈Λ[Lα,L−α].

Proof.

(1) Since [L[α],H] = [L[α],L0] ⊂ L[α], taking into account Proposition 3.4 and Proposition 3.5, we
have

[I[α],L] = [L[α],H ⊕ (
⊕

β∈[α]

Lβ) ⊕ (
⊕

γ /∈[α]

Lγ)] ⊂ I[α].

As we also have by Proposition 3.4 that φ(L[α]) = L[α], we conclude that L[α] is an ideal of L.
(2) The simplicity of L implies I[α] = L. From here, it is clear that [α] = Λ and H =

∑
α∈Λ[Lα,L−α].

�

Theorem 3.7. For a vector superspace complement U of span
F
{[Lα,L−α] : α ∈ Λ} in H, we have

L = U ⊕
∑

[α]∈Λ/∼

L[α],

where any L[α] is one of the (graded) ideals of L described in Theorem 3.6-(1), satisfying [L[α],L[β]] = 0,
whenever [α] 6= [β].

Proof. Each L[α] is well defined and by Theorem 3.6-(1), an ideal of L. It is clear that

L = H ⊕ (
⊕

α∈Λ

Lα) = U ⊕
∑

[α]∈Λ/∼

L[α].

Finally, Proposition 3.5 gives us [L[α],L[β]] = {0}, if [α] 6= [β]. �

Let us denote by Z(L) the center of L, that is, Z(L) = {x ∈ L : [x,L] = 0}.

Definition 3.8. A δ-Hom-Jordan-Lie superalgebra L is called perfect if Z(L) = 0 and [L,L] = L.

Corollary 3.9. If L is a perfect split regular δ-Hom-Jordan-Lie superalgebra, then L is the direct sum
of the ideals given in Theorem 3.6-(1),

L =
⊕

[α]∈Λ/∼

L[α].

Proof. From [L,L] = L, it is clear that L =
∑

[α]∈Λ/∼ L[α]. Now, by Z(L) = 0 and Proposition 3.5, the
direct character of the sum is clear. �
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4. the simple components

In this section, we are intersted in studying under which conditions a split regular δ-Hom-Jordan-Lie
superalgebra L decompose as the direct sum of its simole graded ideals. From now on we will assume Λ
is symmetric.

Lemma 4.1. Let L = H ⊕ (
⊕

α∈Λ Lα) be a ssplit regular δ-Hom-Jordan-Lie superalgebra. If I is an
ideal of L such that I ⊂ H, then I ⊂ Z(L).

Proof. It is clear that the assersion is a consequence of [I,H] ⊂ [H,H] = 0 and [I,
⊕

α∈Λ Lα] ⊂
(
⊕

α∈Λ Lα) ∩ H = 0. �

Taking into account the above lemma, observe that the grading of I together with Lemma 2.4-(2),
allows us to assert that

I = I0̄ ⊕ I1̄ = (I0̄ ∩ H0̄) ⊕ (
⊕

α∈Λ

(I0̄ ∩ L0̄,α)) ⊕ (I1̄ ∩ H1̄) ⊕ (
⊕

α∈Λ

(I1̄ ∩ L1̄,α)). (4.1)

Lemma 4.2. (1) For any α, β ∈ Λ with α 6= β there exists h0̄ ∈ H0̄ such that α(h0̄) 6= 0 and α(h0̄) 6=
β(h0̄).

(2) If I is an ideal of L and x = h +
∑n

i=1 xαi
∈ I with h ∈ H, xαi

∈ Lαi
and αi 6= αj . Then any

xαi
∈ I.

Proof. See Lemmas 5. 2 and 5. 3 in [6]. �

Let us introduce the concepts of root-multiplicativity and maximal length in the framework of split
regular δ-Hom-Jordan-Lie superalgebra, in a similar way to the ones for split regular δ-Hom-Lie algebra
in [6].

Definition 4.3. We say that a split regular δ-Hom-Jordan-Lie superalgebra L is root-multiplicative if
given α ∈ Λī and β ∈ Λj̄ , for ī, j̄ ∈ Z2, such that δ(α + β)φ−1 ∈ Λī+j̄ , then [Lī,α,Lj̄,β] 6= 0.

Definition 4.4. We say that a split regular δ-Hom-Jordan-Lie superalgebra L is of maximal length if
for any α ∈ Λī with ī ∈ Z2, we have dimLī,α ∈ {0, 1}.

Observe that for a split regular δ-Hom-Jordan-Lie superalgebra L of maximal length, Eq. (4.1) allows
us assert that given any nonzero graded ideal I of L we can write

I = ((I0̄ ∩ H0̄) ⊕ (
⊕

α∈ΛI

0̄

Lα)) ⊕ ((I1̄ ∩ H1̄) ⊕ (
⊕

α∈ΛI

1̄

Lα)), (4.2)

where ΛI
ī

:= {α ∈ Λī : Īi ∩ Lī,α 6= 0} for each ī ∈ Z2.

Theorem 4.5. Let L be a centerless split regular δ-Hom-Jordan-Lie superalgebra of maximal length
and root-multiplicative. Then L is simple if and only if L has all of its nonzero roots connected and
H =

∑
α∈Λ[Lα,L−α].

Proof. The necessary implication is Theorem 3.6-(2). To prove the convers, consider any nonzero ideal
I of L, by Eq. (4.2) and Lemma 4.2, we have

I = ((I0̄ ∩ H0̄) ⊕ (
⊕

α∈ΛI

0̄

Lα)) ⊕ ((I1̄ ∩ H1̄) ⊕ (
⊕

α∈ΛI

1̄

Lα)),

with ΛI
ī

⊂ Λ, for each ī ∈ Z2. and some ΛI
ī

6= φ. Let us fix some α0 ∈ ΛI
ī

so that

0 6= Lī,α0
⊂ I. (4.3)
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Thus
{Lī,α0φz : z ∈ Z} ⊂ I. (4.4)

The fact that φ(I) = I together with Lemma 2.5-(2) allows us to assert that

If α ∈ ΛI
ī then {αφz : z ∈ Z} ⊂ ΛI

ī . (4.5)

Now, let us take any β ∈ Λ satisfying β /∈ {±α0φz : z ∈ Z}. Since α0 and β are connected, we have a
connection {α1, α2, ..., αk}, k ≥ 2 from α0 to β satisfying the following conditions;

α1 = α0φ−n for some n ∈ N0, and

δα1φ−1 + δα2φ−1 ∈ Λ,
δ2α1φ−2 + δ2α2φ−2 + δα3φ−1 ∈ Λ,
δ3α1φ−3 + δ3α2φ−3 + δ2α3φ−2 + δα4φ−1 ∈ Λ,
...
α−i

φ + α2φ−i + α3φ−i+1 + ... + αi+1φ−1 ∈ Π,
...
δiα−i

φ + δiα2φ−i + δi−1α3φ−i+1 + ... + δαi+1φ−1 ∈ Λ,
...
δk−2α1φ−k+2 + δk−2α2φ−k+2 + δk−3α3φ−k+3 + ... + δk−iαiφ

−k+i + ... + δαk−1φ−1 ∈ Λ.

δk−1α1φ−k+1 + δk−1α2φ−k+1 + δk−2α3φ−k+2 + ... + δk−i+1αiφ
−k+i−1 + ... + δαkφ−1 ∈ {±βφ−m :

m ∈ N0}.

Consider α1 = α0 ∈ Λī. Since α2 ∈ Λ it follows Lj̄,α2
6= 0, for some j̄ ∈ Z2, and so α2 ∈ Λj̄ . We

have α1 ∈ Λī and α2 ∈ Λj̄ such that δ(α1 + α2)φ−1 ∈ Λī+j̄ by Lemma 2.5-(2). From here, the root-
multiplicativity and maximal length of L allow us to get

0 6= [Lī,α1
,Lj̄,α2

] = Lī+j̄,δ(α1+α2)φ−1 .

Since 0 6= Lī,α1
⊂ I as consequence of Eq. (4.3), we have

0 6= Lī+j̄,δ(α1+α2)φ−1 ⊂ I.

We can argue in a similar way from δ(α1 + α2)φ−1, α3 and δ2α1φ−1 + δ2α2φ−1 + δα3φ−1 to get

0 6= Lk̄,δ2α1φ−1+δ2α2φ−1)+δα3φ−1 ⊂ I, for some k̄ ∈ Z2.

If we follow this process with the connection {α1, α2, ..., αk}, then we obtain that

0 6= Ltr,δk−1α1φ−k+1+δk−1α2φ−k+1+δk−2α3φ−k+2+...+δk−i+1αiφ−k+i−1+...+δαkφ−1 ⊂ I,

for some r̄ ∈ Z2 and so
either 0 6= Lr̄,βφ−m ⊂ I or 0 6= Lr̄,−βφ−m ⊂ I,

for any β ∈ Λ \ {±α0φz : z ∈ Z} and some m ∈ N0. Now taking into account Eqs. (4.4) and (4.5), we get

either {Lī,αφz : z ∈ Z} ⊂ I or {Lī,−αφ−z:z∈Z} ⊂ I, (4.6)

for any α ∈ Λī and a fixed ī ∈ Z2. For given any α ∈ Λ, Eq. (4.6) can be reformulated by asserting that

either {αφz : z ∈ Z} ⊂ ΛI
ī or {−αφ−z : z ∈ Z} ⊂ ΛI

ī . (4.7)

Now, we consider two cases;
Case 1. If Λ0̄ ∩ Λ1̄ = ∅. Eq. (4.7) shows that for any α ∈ Λ = Λ0̄ ∪ Λ1̄ we have

Lǫα ⊂ I, for some ǫ ∈ {±1}. (4.8)
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Taking into account H =
∑

α∈Λ[Lα,L−α] we obtain

H ⊂ I. (4.9)

Now, for any α ∈ Λ, the facts δαφ 6= 0,H ⊂ I and the maximal length of L show that

[H0̄,Lδαφ] = Lα ⊂ I. (4.10)

From Eqs. (4.8)-(4.10) we conclud I = L.
Case 2. If Λ0̄ ∩ Λ1̄ 6= ∅. We first claim;

If there exists some α ∈ Λ0̄ ∩ Λ1̄ satisfying L0̄,α ⊕ L1̄,α ⊂ I then I = L. (4.11)

Indeed, the fact that L has all its nonzero roots connected, from α ∈ Λ0̄ we get that for any β ∈ Λ\{±α},
we have Lr̄,ǫβ ⊂ I for some ǫ ∈ {±1} and some r̄ ∈ Z2. Similarly, from α ∈ Λ1̄ we obtain 0 6= LR̃+1̄,ǫβ ⊂ I.
So Lǫβ ⊂ I. From here, the experession of H gives us

H ⊂ I. (4.12)

Given now any γ ∈ Λ, the facts γ 6= 0, Eq. (4.12) and the maximal length of L show that

[H0̄,L0̄,γ ] = L0̄,γ ⊂ I, ∀ī ∈ Z2.

Hence,

[H0̄,Lγ ] = Lγ ⊂ I. (4.13)

From Eqs. (4.12) and (4.13) we conclud I = L.
Second, for any α ∈ Λ such that α ∈ Λ0̄∩Λ1̄, by Eq. (4.7) we have ǫαφ−m ∈ Λ, for certain ǫ ∈ {±1} and

some m ∈ N0, then 0 6= [H0̄,Lr̄,ǫαφ−m ] for fixed r̄ ∈ Z2. Since H0̄ =
∑

γ∈Λ([L0̄,γ ,L0̄,−γ ] + [L1̄,γ ,L1̄,−γ ]),
there exists γ ∈ Λ such that

either 0 6= [[L0̄,γ ,L0̄,−γ ],Lr̄,ǫαφ−m ] or 0 6= [[L1̄,γ ,L1̄,−γ ],Lr̄,ǫαφ−m ]. (4.14)

Now, by Lemma 2.4-(1) we have φ(Lr̄,ǫαφ−m+1) = Lr̄,ǫαφ−m and so

0 6= [[Lj̄,γ ,Lj̄,−γ ], φ(Lr̄,ǫαφ−m+1)], (4.15)

for some j̄ ∈ Z2 and fixed r̄ ∈ Z2, m ∈ N0. By the δ-super Hom-jacobi identity either 0 6= [[Lj̄,γ , ] or

[L−η
−α,Lr̄,ǫαφ−m+1 ] or 0 6= [Lj̄,−γ ,Lr̄,ǫαφ−m+1 ] and so by the maximal length of L either 0 6= Lj̄+r̄,ǫαφ−m+1+γ

or 0 6= Lj̄+r̄,ǫαφ−m+1−γ . That is,

0 6= Lj̄+r̄,ǫαφ−m+1+κγ ⊂ I, (4.16)

for some κ ∈ {±1}. From here there are two possibilities, if 0 6= Lj̄+1̄,−κγ , by the root-multiplicativity
and maximal length of L, we obtain

0 6= [Lj̄+r̄,ǫαφ−m+1+κγ ,Lj̄+1̄,−κγ ] = L1̄r̄,ǫαφ−m+1 ⊂ I. (4.17)

Taking into account Eq. (4.7), and Eq. (4.11) give us L = I. If 0 = Lj̄+1̄,−κγ , as by semmetry of Λ,

−ǫαφ−m ∈ Λ and by Lemma 2.5-(3) we also obtain −ǫαφ−m+1 ∈ Λ. So 0 6= Lk̄,−ǫαφ−m+1 for some k̄ ∈ Z2.
By the root-multiplicativity and maximal length of L, we obtain

0 6= [Lj̄+r̄,ǫαφ−m+1+κγ ,Lk̄,−ǫαφ−m+1 ] = Lj̄+r̄+k̄,κγ ⊂ I. (4.18)

Now, if r̄ + k̄ = 0̄, taking into account Eq. (4.15) gives us

0 6= [[Lj̄,γ ,Lj̄,−γ ],Lr̄,ǫαφ−m ].
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The fact that α ∈ Λ0̄ ∩ Λ1̄ and Eq. (4.18) let us assert

0 6= [[Lj̄ ,γ ,Lj̄,−γ ],Lm̄,α] = Lm̄,α ⊂ I. (4.19)

If r̄ + k̄ = 1̄, taking into account Eq. (4.15), the root-multiplicativity and maximal length of L, that

0 6= [Lj̄+1̄,κγ ,Lr̄,ǫαφ−m+1 ] = Lj̄+r̄+1̄,κγ+ǫαφ−m+1 ⊂ I. (4.20)

From here Eqs. (4.11) and (4.16) give us L = I. Hnce, L is simple. �

Theorem 4.6. Let L be a centerless split regular δ-Hom-Jordan-Lie superalgebra of maximal length and
root-multiplicative and H =

∑
α∈Λ[Lα,L−α]. Then

L =
⊕

[α]∈Λ/∼

L[α],

where any L[α] is a simple split regular δ-Hom-Jordan-Lie superalgebra having all its nonzero roots con-
nected.

Proof. By Corollary 3.9, we can write L =
⊕

[α]∈Λ/∼ L[α] as direct sum of the family of ideals

L[α] = H[α] ⊕ V[α] =
∑

β∈[α]

[Lβ ,Lβ ] ⊕ (
⊕

β∈[α]

Lβ),

where each L[α] is a split regular δ-Hom-Jordan-Lie superalgebra having as root system ΛL[α]
= [α], with

all of its root connected. Taking into account the fact [α] = −[α] and L[α] is a graded subalgebra of L, we
easily deduce that [α] has all of its root connected through roots in [α]. We also get that any of the L[α]

is root-multiplicative as consequence of the root-multiplicativity of L. Clearly, L[α] is of maximal length,
and finally ZL[α]

(L[α]) = 0, as consequence of Lemma 3.5, Theorem 4.5, and Z(L) = 0. We can therefore
apply Theorem 4.5 to any L[α] so as to conclude that L[α] is simple. It is clear that the decomposition
L =

⊕
[α]∈Λ/∼ L[α] satisfies the assertions of the theorem. �
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