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Nonexistence of Solutions of Higher-order Nonlinear Non-gauge Schrödinger Equation

Ahmed Alsaedi, Bashir Ahmad, Mokhtar Kirane and Abderrazak Nabti

abstract: A nonexistence result is proved of the space higher-order nonlinear Schrödinger equation

i∂tu− (−∆)m(|u|n−1u) = λ|u|p, x ∈ R
N , t > 0,

where m > 1, n > 1 and p > n. Our method of proof rests on a judicious choice of the test function in the
weak formulation of the equation. Then, we obtain an upper bound of the life span of solutions. Furthermore,
the necessary conditions for the existence of local or global solutions are provided.

Next, we extend our results to the 2× 2 – system

i∂tu− (−∆)mu = λ|v|p, x ∈ R
N , t > 0,

i∂tv − (−∆)mv = δ|u|q, x ∈ R
N , t > 0,

where m > 1, p, q > 1, and λ, δ ∈ C\{0}.
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1. Introduction

In this paper, we are concerned not only by the nonexistence of global solutions but also by the life
span of solutions of the higher-order space nonlinear non-gauge Schrödinger equation

i∂tu− (−∆)m(|u|n−1u) = λ|u|p, x ∈ R
N , t > 0, (1.1)

supplemented with the initial condition

u(x, 0) = f(x), x ∈ R
N , (1.2)

where u = u(x, t) is the complex-valued unknown function, i2 = −1, λ = λ1 + iλ2 ∈ C\{0}, λj ∈ R (j =
1, 2), and f(x) = f1(x) + if2(x), fj = fj(x) ∈ L1

loc(R
N ) (j = 1, 2) are real valued functions.

Before presenting our results, let us dwell a while on some existing literature concerning equations
close to (1.1).

In their valuable monograph [7], Galaktionov and al. have discussed the following nonlinear Schrödin-
ger equation with nonlinear diffusion

−iut = (−1)m+1∆m(|u|nu) + |u|nu, in R
N × R

+. (1.3)
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Inspired on nonextensive thermostatistics, Nobre, Rego-Monteiro, and Tsallis [14] introduced the
following d–dimensional non-linear generalization of the Schrodinger equation for a particle of mass m

iℏ
∂

∂t

(

φ(x, t)

φ0

)

= −
1

2− q

ℏ2

2m
∆

(

φ(x, t)

φ0

)2−q

where 1 ≤ q < 3. See [14] for the reason to introduce such equation.
Let also mention the paper of Majda, McLaughlin and Tabak [12] where they introduced the equation

i
∂

∂t
ψ = |

∂

∂x
|αψ + |

∂

∂x
|β/4

(

||
∂

∂x
|β/4ψ|2|

∂

∂x
|β/4ψ

)

with parameters α > 0 and β, where ψ denotes a complex wave field (the operator | ∂
∂x |

α is defined via

its Fourier symbol |k|α; | ∂
∂x |

2 = − ∂2

∂x2 ); see also [13].
There are many results about nonexistence, blow up and global existence of solutions of nonlinear
Schrödinger equations (see [10], [5], [16], [17]).

However, there are few results about upper estimates of the life span of solutions, and necessary condi-
tions of local or global existence for nonlinear Schrödinger equations; we mention that in [9], an upper
bound of the life span of solutions for the equation

i∂tu+∆u = λ|u|p, in R
N × R

+, p > 1, (1.4)

subject to the initial data u(x, 0) = f(x), has been obtained. Moreover, in [2], necessary and sufficient
conditions for global existence for the equation

i∂tu+∆u+ λ|u|αu = 0, in R
N × (−T, T ), (1.5)

with u(x, 0) = ϕ(x), λ ∈ R, 0 ≤ α < 4/(N − 2), (0 ≤ α <∞ if N = 1), have been obtained.

In this paper, using the test function method, we derive nonexistence results for weak solutions to
problem (1.1)–(1.2). Then we obtain an upper estimate for the life span of solutions of equation (1.1)
with initial data of the form u(x, 0) = µf(x). Furthermore, we give the necessary conditions of local or
global existence of solutions.

Next, we extend our results to a 2× 2–system of equations of type (1.1).

2. Preliminaries

Lemma 2.1. (See Lemma 3.1 in [15]) Let φ ∈ L1(RN ) and

∫

RN

φ(x)dx < 0. Then there exists a test

function 0 ≤ ϕ ≤ 1 such that
∫

RN

φ(x)ϕ(x) dx < 0. (2.1)

Now, we are in position to announce our results for problem (1.1)–(1.2).

3. Nonexistence and life span of solutions

The definition of a weak solution to (1.1)–(1.2) that we adopt is as follows.

Definition 3.1. Let QT := RN × (0, T ). We say that a function u is a local weak solution of problem
(1.1)–(1.2), if u ∈ C([0, T ];Lp

loc(R
N )) satisfies

λ

∫

QT

|u|pϕdxdt+ i

∫

RN

f(x)ϕ(x, 0) dx =

∫

QT

(

−iu ∂tϕ− |u|n−1u(−∆)mϕ
)

dxdt (3.1)

for any ϕ ∈ C∞
0 (QT ), ϕ ≥ 0 such that ϕ(·, T ) = 0. If T = +∞, we say that u is a global weak solution of

problem (1.1)–(1.2).
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To study nonexistence of solutions to problem (1.1)–(1.2), we require that the data f satisfies the
assumption

(H1) f1 ∈ L1(RN ), λ2

∫

RN

f1(x) dx > 0, or f2 ∈ L1(RN ), λ1

∫

RN

f2(x) dx < 0.

We have the following result.

Theorem 3.2. Let f satisfy (H1), and let λ ∈ C\{0}. If

p ≤ n+ 2m/N, (3.2)

then problem (1.1)–(1.2) does not admit a global weak solution.

Proof. Assume that u is a global bounded solution to problem (1.1)–(1.2). First, we construct a test
function. For this aim, we shall use a non-negative smooth function Φ which was constucted in the paper
[6] and [8]

Φ(x) = Φ(|x|), Φ(0) = 1, 0 < Φ(r) ≤ 1, for r ≥ 0, (3.3)

where Φ(r) is decreasing and Φ(r) −→ 0 as r −→ ∞ sufficiently fast. Moreover, there exists a constant
km such that

|∆mΦ| ≤ kmΦ, x ∈ R
N , (3.4)

and ‖Φ‖L1 = 1. This can be done by setting for example Φ(r) = e−rν for r ≫ 1 with ν ∈ (0, 1] and
extending Φ to [0,∞) by a smooth approximation. Let σ be sufficiently large and

φ(t) = (1− t)σ+, t ≥ 0. (3.5)

Now set

ϕ(x, t) = φ(t/R2α)Φ(x/R), R > 0, α =
m(p− 1)

p− n
> 0.

In the sequel of the paper, we will consider the same test functions defined in (3.3)–(3.5).
Here, we consider the case

∫

RN f2(x) dx < 0 and λ1 > 0 only, since the other cases can be treated similarly
(see Remark 3.3). By taking the real parts in (3.1), we have

λ1

∫

Q
R2α

|u|pϕdxdt−

∫

RN

f2(x)ϕ(x, 0) dx

=

∫

Q
R2α

(Im u) ∂tϕdxdt−

∫

Q
R2α

(Re u)|u|n−1 (−∆)mϕdxdt.

Setting

I :=

∫

Q
R2α

|u|pϕ dxdt,

we obtain

λ1I−

∫

RN

f2(x)ϕ(x, 0) dx

≤

∫

Q
R2α

|u||∂tϕ| dxdt+

∫

Q
R2α

|u|n|(−∆)mϕ| dxdt =: I1 + I2. (3.6)

Now, applying ε–Young’s inequality

XY ≤ εXp + C(ε)Y p̃, p+ p̃ = pp̃, X ≥ 0, Y ≥ 0, with 0 < ε≪ 1,

in

{

I1 with X = |u|ϕ
1
p , and Y = ϕ− 1

p |∂tϕ|,

I2 with X = |u|nϕ
n
p , and Y = ϕ−n

p |(−∆)mϕ|,
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we have the estimates

I1 ≤ εI+ C1(ε)

∫

Q
R2α

ϕ− 1
p−1 |∂tϕ|

p̃ dxdt,

I2 ≤ εI+ C2(ε)

∫

Q
R2α

ϕ− n
p−n |(−∆)mϕ|

p

p−n dxdt,

where C1(ε) =
1
p̃ (pε)

−p̃/p and C2(ε) =
p−n
p ( pnε)

−n/(p−n).

So inequality (3.6) can be rewritten

(λ1 − 2ε)I−

∫

RN

f2(x)ϕ(x, 0) dx

≤ C1(ε)

∫

Q
R2α

Φ(x/R)φ(t/R2α)
−1
p−1 |φ

′

(t/R2α)|p̃ dxdt

+C2(ε)

∫

Q
R2α

Φ(x/R)−
n

p−n |∆mΦ(x/R)|
p

p−nφ(t/R2α) dxdt.

At this stage, passing to the scaled variables

τ = t/R2α, y = x/R, (3.7)

and setting
Ω :=

{

(y, τ ) ∈ R
N × R

+ : τ ≤ 1
}

,

we have
∫

Q
R2α

Φ(x/R)φ(t/R2α)
−1
p−1 |φ

′

(t/R2α)|p̃ dxdt (3.8)

≤ R
2αp

p−1+N+2α

∫

Ω

Φ(y)φ(τ )
−1
p−1 |φ

′

(τ )|p̃ dydτ ,

and by using inequality (3.4), we have

∫

Q
R2α

Φ(x/R)−
n

p−n |∆mΦ(x/R)|
p

p−nφ(t/R2α) dxdt

≤ R− 2mp

p−n
+N+2α

∫

Ω

Φ(y)φ(τ ) dydτ .

Finally, we have the estimate

(λ1 − 2ε)I−

∫

RN

f2(x)ϕ(x, 0) dx ≤ Rs(A+B), (3.9)

where

A := C1(ε)

∫

Ω

Φ(y)φ(τ )
−1
p−1 |φ

′

(τ )|p̃ dydτ , B := C2(ε)

∫

Ω

Φ(y)φ(τ ) dydτ ,

and

s :=
−2m

p− n
+N.

As p ≤ n+ 2m/N , we hace s ≤ 0. So, we have to consider two cases :
• The case s1 < 0 : In this case, letting R −→ ∞ in (3.9), we obtain

0 < (λ1 − 2ε)

∫ ∞

0

∫

RN

|u|p dxdt −

∫

RN

f2(x) dx = 0;
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a contradiction.
• The case s1 = 0 : In this case, we take

ϕ(x, t) = φ(t)Φ(x/RB),

where φ(t) = ψσ
(

t
R2α

)

, σ ≫ 1, R > 0, and ψ is a smooth non-increasing function on [0,∞) such that

ψ(r) =

{

1 if 0 ≤ r ≤ 1,

0 if r ≥ 2,

and 1 ≤ B < R is large enough such that when R −→ ∞ we don’t have B −→ ∞ in the same time. Now,
we estimate the first term on the right hand side of inequality (3.6) using again the ε-Young inequality
and the second term by using the Hölder inequality as follows

λ1I−

∫

RN

f2(x)ϕ(x, 0) dx

≤ εI+ C2(ε)

∫

Q
R2α

Φ(x/R)−
n

p−n |∆mΦ(x/R)|
p

p−nφ(t) dxdt (3.10)

+

(
∫

Ω1

∫

RN

|u|pϕdxdt

)
1
p
(
∫

Ω1

∫

RN

Φ(x/R)φ(t)
−1
p−1 |φ

′

(t)|p̃ dxdt

)
1
p̃

,

where Ω1 =
{

t ∈ [0,∞) : R2α ≤ t ≤ 2R2α
}

is the support of φ
′

(t). Note that

∫

Ω1

∫

RN

|u|pϕdxdt = 0 as R −→ ∞,

because u ∈ Lp(RN × (0,∞)). Furthermore, introducing the new variables y = x/BR, τ = t/R2α and
using the fact that p = n+ 2m/N , we rewrite (3.10) as follows

(λ1 − ε)I−

∫

RN

f2(x)ϕ(x, 0) dx (3.11)

≤ C1B
N/p̃

(
∫

Ω1

∫

RN

|u|pϕdxdt

)
1
p

+ C2B
−2α,

where C1, C2 are independent of R, B. Passing to the limit as R −→ ∞ and then when B −→ ∞, we
get

0 < (λ1 − ε)

∫ ∞

0

∫

RN

|u|p dxdt−

∫

RN

f2(x) dx = 0;

this is a contradiction. �

Remark 3.3. For the other cases, setting

I :=















































−

∫

Q
R2α

λ1|u|
p
ϕ(x, t) dxdt if λ1 < 0, λ1

∫

RN

f2(x) dx < 0,

∫

Q
R2α

λ2|u|
pϕ(x, t) dxdt if λ2 > 0, λ2

∫

R2N

f1(x) dx > 0,

−

∫

Q
R2α

λ2|u|
pϕ(x, t) dxdt if λ2 < 0, λ2

∫

RN

f1(x) dx > 0,

we can prove the same conclusion in the same manner as above.
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For an estimate of the life span Tµ from above of a possible weak solution of problem (1.1)–(1.2),
we make the following assumption on the data f

(H2)







f1 ∈ L1
loc(R

N ), λ2f1(x) ≥ |x|−k, |x| > 1,

or f2 ∈ L1
loc(R

N ), −λ1f2(x) ≥ |x|−k, |x| > 1,

where N < k < 2m/(p− n). We have the following assertion.

Theorem 3.4. Suppose that conditions (H2) and (3.2) are satisfied, and let u be the solution of (1.1)
with the initial data u(x, 0) = µf(x), where µ > 0. Denote by [0, Tµ) the life span of u. Then there exists
a constant C > 0 such that

Tµ ≤ Cµ1/ρ, (3.12)

where ρ = k − 2m
p−n < 0.

Remark 3.5. When p = n+ 2m/N , we have ρ = k −N .

Proof. Let u be the solution of equation (1.1) with the initial data u(x, 0) = µf(x). We take

ϕ(x, t) = φ(t/T 2α
µ )Φ(x/Tµ), Tµ > 0.

We only consider the case when λ1 > 0; the other cases can be treated in a similar manner. Then, as for
the estimate (3.6), we have

λ1I−

∫

RN

µf2(x)ϕ(x, 0) dx (3.13)

≤

∫

Q
T2α
µ

|u||∂tϕ| dxdt +

∫

Q
T2α
µ

|u|n|(−∆)mϕ| dxdt.

Repeating the same calculations as in the proof of Theorem 3.2, we arrive, with 0 < ε≪ 1, at

(λ1 − 2ε)I−

∫

RN

µf2(x)ϕ(x, 0) dx

≤ C1(ε)

∫

Q
T2α
µ

Φ(x/Tµ)φ(t/T
2α
µ )

−1
p−1 |φ

′

(t/T 2α)|p̃ dxdt

+C2(ε)

∫

Q
T2α
µ

Φ(x/Tµ)
− n

p−n |∆mΦ(x/Tµ)|
p

p−nφ(t/T 2α
µ ) dxdt.

If we take the scaled variables τ = t/T 2α
µ , y = x/Tµ, we get

(λ1 − 2ε)I− TN
µ

∫

RN

µf2(Tµy)Φ(y) dy ≤ T s
µ(A+B), (3.14)

where the domain of integration of A, B is QT 2
µ
.

By the assumption (H2) on the data f , we have

µTN
µ

∫

RN

−f2(Tµy)Φ(y) dy ≥ µTµ

∫

|y|≥ 1
Tµ

−f2(Tµy)Φ(y) dy

≥ µλ−1
1 TN−k

µ

∫

|y|≥ 1
Tµ

|y|−kΦ(y) dy (3.15)

≥ µλ−1
1 TN−k

µ

∫

|y|≥ 1
Tµ0

|y|−kΦ(y) dy = CkµT
N−k,
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where Tµ0
is a constant independent of Tµ, ε. Now, by the positivity of the first term in the left hand-side

of (3.14), we obtain

CkµT
N−k ≤ T s(A+B).

Whereupon

µ ≤ C−1
k (A+B)T

k− 2m
p−n

µ .

Finally, we have

Tµ ≤ Cµ1/ρ;

this completes the proof of the Theorem. �

4. Necessary conditions for local or global existence

Here, we suppose that the data f satisfy the assumption

(H3) f1 ∈ L∞(RN ), λ2f1(x) dx ≥ 0, or f2 ∈ L∞(RN ), λ1f2(x) dx ≤ 0.

In this section, we only consider the case when λ1 > 0. Then, the necessary conditions for the existence
of local or global solutions to problem (1.1)–(1.2) are presented; these conditions depend on the behavior
of the initial condition at infinity.

Theorem 4.1. (Necessary conditions for global existence)
Let f satisfy (H3). If u is a global solution to problem (1.1)–(1.2), then there is a positive constant C > 0
such that

lim inf
|x|−→∞

(

−f2(x)|x|
2m
p−n

)

≤ C.

Proof. Let u be a global weak solution to problem (1.1)–(1.2). We set

ϕ(x, t) = φ(t/R2m)Φ(x/R),

with suppΦ(x) := {R ≤ |x| ≤ 2R}, with (supp stands for support of Φ(x)). Then, we have

λI+

∫

RN

if(x)ϕ(x, 0) dx = −

∫

Q
R2m

iuΦ(x/R)φ
′

(t/R2m) dxdt

−

∫

Q
R2m

|u|n−1u (−∆)mΦ(x/R)φ(t/R2m) dxdt. (4.1)

Now, by taking the real parts in (4.1), we get

λ1I−

∫

RN

f2(x)Φ(x/R) dx ≤

∫

Q
R2m

|u|Φ(x/R)|φ
′

(t/R2m)| dxdt

+

∫

Q
R2m

|u|n|∆mΦ(x/R)|φ(t/R2m) dxdt. (4.2)

Applying ε-Young’s inequality to the right hand side of (4.2), we obtain, with 0ε≪ 1,

(λ1 − 2ε)I−

∫

RN

f2(x)Φ(x/R) dx

≤ C1(ε)

∫

Q
R2m

Φ(x/R)φ(t/R2m)−
1

p−1 |φ
′

(t/R2m)|p̃ dxdt

+C2(ε)

∫

Q
R2m

Φ(x/R)−
n

p−n |∆mΦ(x/R)|
p

p−nφ(t/R2m) dxdt. (4.3)
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If we take τ = t/R2m, y = x/R, and use inequality (3.4) in the right-hand side of (4.3), and take account
of the positivity of the first term in the left-hand side, we get

∫

suppΦ

−f2(Ry)Φ(y) dy ≤

∫

suppΦ

−f2(Ry)Φ(y) dy

≤ CRγ

∫

suppΦ

Φ(y) dy

= CRγ

∫

suppΦ

|Ry|−γ |Ry|γΦ(y) dy

≤ C̃(R)

∫

suppΦ

|Ry|γΦ(y) dy,

where γ =
−2m

p− n
, and C̃(R) := CRγ(2R)−γ := C. So

∫

suppΦ

−f2(Ry)Φ(y) dy ≤ C

∫

|y|≤2

|Ry|γΦ(y) dy. (4.4)

Using the estimate

inf
|y|≥1

(

−f2(Ry)|Ry|
−γ
)

∫

|y|≤2

|Ry|γΦ(y) dy ≤

∫

suppΦ

−f2(Ry)Φ(y) dy

≤

∫

|y|≤2

|Ry|γΦ(y) dy

in the left-hand side of (4.4), we obtain, after dividing by

∫

|y|
∫
|y|≤2

|Ry|γΦ(y) dy2

|Ry|γΦ(y) dy, that

inf
|y|>1

(

−f2(Ry)|Ry|
−γ
)

≤ C. (4.5)

Passing to the limit in (4.5), as R −→ ∞, we obtain

lim inf
|x|−→∞

(

−f2(x)|x|
2m
p−n

)

≤ C.

�

Corollary 4.2. (Sufficient conditions for the nonexistence of global solutions)
Let f satisfy (H3). If

lim inf
|x|−→∞

(

−f2(x)|x|
2m
p−n

)

= +∞,

then problem (1.1)–(1.2) cannot admit a global solution.

Finally, we give a necessary condition for the local existence.

Theorem 4.3. ( Necessary conditions for the local existence)
Let f satisfy (H3). If u is a weak local solution of problem (1.1)–(1.2) on [0, T ] where 0 < T ≤ ∞, then
we have

lim inf
|x|−→∞

(−f2(x)) ≤ CT− 1
p−1 , (4.6)

for some positive constant C > 0.
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Proof. We set, for R > 0 sufficiently large, ϕ(x, t) = φ(t/T )Φ(x/R). Then as for the estimate (4.3), we
have for 0 < ε≪ 1,

(λ1 − 2ε)

∫

QT

|u|ϕdxdt −

∫

RN

f2(x)Φ(x/R) dx

≤ C1(ε)

∫

QT

Φ(x/R)φ(t/T )−
1

p−1 |φ
′

(t/T )|p̃ dxdt

+C2(ε)

∫

QT

Φ(x/R)−
n

p−n |∆mΦ(x/R)|
p

p−nφ(t/T ) dxdt. (4.7)

Now, we pass to the variables τ = t/T, y = x/R, and use (3.4) in the right-hand side of (4.7), while in
the left-hand side we use the positivity of the first term, to obtain

∫

suppΦ

−f2(Ry)Φ(y) dy ≤
(

C1T
1−p̃ + C2TR

− 2m
p−n

)

∫

|y|≤2

Φ(y) dy. (4.8)

Using the estimate

inf
|y|>1

(−f2(Ry))

∫

|y|≤2

Φ(y) dy ≤

∫

suppΦ

−f2(Ry)Φ(y) dy

≤
(

C1T
1−p̃ + C2TR

− 2m
p−n

)

∫

|y|≤2

Φ(y) dy

in the left-hand side of (4.8), we obtain, after dividing by

∫

|y|≤2

Φ(y) dy, that

inf
|y|≥1

(−f2(Ry)) ≤ C1T
1−p̃ + C2TR

− 2m
p−n . (4.9)

Passing to the limit in (4.9), as R −→ ∞, we obtain

lim inf
|x|−→∞

(−f2(x)) ≤ CT 1−p̃ = CT
−1
p−1 ,

which completes the proof of the Theorem. �

5. A system of two equations

Now, we consider the system of space nonlocal nonlinear non-gauge Schrödinger equations

{

i∂tu− (−∆)mu = λ|v|p, x ∈ RN , t > 0,

i∂tv − (−∆)mv = δ|u|q, x ∈ RN , t > 0,
(5.1)

supplemented with the initial conditions

u(x, 0) = f(x), v(x, 0) = g(x), x ∈ R
N , (5.2)

where u = u(x, t), v = v(x, t) are the complex-valued unknown functions, λ, δ ∈ C\{0}, λ = λ1 + iλ2,
δ = δ1 + iδ2, λj , δj ∈ R (j = 1, 2), and f = f(x) = f1(x) + if2(x), g = g(x) = g1(x) + ig2(x),
fj(x), gj(x) ∈ L1

loc(R
N ) (j = 1, 2).

Definition 5.1. We say that

(u, v) ∈ C([0, T ];Lq
loc(R

N ))× C([0, T ];Lp
loc(R

N ))
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is a local weak solution of problem (5.1)–(5.2) if

λ

∫

QT

|v|pϕdxdt+

∫

RN

f(x)ϕ(x, 0) dx

=

∫

QT

−iu ∂tϕ− u (−∆)mϕdxdt, (5.3)

and

δ

∫

QT

|u|qϕdxdt +

∫

RN

g(x)ϕ(x, 0) dx

=

∫

QT

−iv ∂tϕ− v (−∆)mϕdxdt, (5.4)

for all ϕ ∈ C∞
0 (QT ), ϕ ≥ 0 and satisfying ϕ(·, T ) = 0. If T = +∞, we say that (u, v) is a global weak

solution of (5.1)–(5.2).

Now, we derive similar results for problem (5.1)–(5.2) as for problem (1.1)–(1.2).

6. Nonexistence and life span of solutions

Suppose that the initial conditions f and g satisfy, respectively, the assumptions

(A1) f1 ∈ L1(RN ), λ2

∫

RN

f1(x) dx > 0, or f2 ∈ L1(RN ), λ1

∫

RN

f2(x) dx < 0;

(A2) g1 ∈ L1(RN ), δ2

∫

RN

g1(x) dx > 0, or g2 ∈ L1(RN ), δ1

∫

RN

g2(x) dx < 0.

Theorem 6.1. Let f and g satisfy, respectively, (A1), (A2), and let λ, δ ∈ C\{0}. If

N ≤ max

{

2m(p+ 1)

pq − 1
,
2m(q + 1)

pq − 1

}

, (6.1)

then problem (5.1)–(5.2) has no global nontrivial solution.

Proof. Let (u, v) be a nontrivial global solution of problem (5.1)–(5.2). Using (5.3), (5.4), and taking the
real parts, we have

λ1

∫

QT

|v|pϕdxdt −

∫

RN

f2(x)ϕ(x, 0) dx

=

∫

QT

(Im u)∂tϕdxdt−

∫

QT

(Re u)(−∆)mϕdxdt,

and

δ1

∫

QT

|u|qϕdxdt−

∫

RN

g2(x)ϕ(x, 0) dx

=

∫

QT

(Im v)∂tϕdxdt−

∫

QT

(Re v)(−∆)mϕdxdt.

We assume that

ϕ(x, t) := φ(t/R2m)Φ(x/R), R > 0.
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We only consider the case when λ1 > 0,
∫

RN f2(x)(x) dx < 0, and δ1 > 0,
∫

RN g2(x) dx < 0. Then by the
Lemma 2.1, we have the estimates

λ1

∫

Q
R2m

|v|pϕdxdt ≤

∫

Q
R2m

|u||∂tϕ| dxdt+

∫

Q
R2m

|u||∆mϕ| dxdt,

(6.2)

and

δ1

∫

Q
R2m

|u|qϕdxdt ≤

∫

Q
R2m

|v||∂tϕ| dxdt+

∫

Q
R2m

|v||∆mϕ| dxdt.

(6.3)

We set

I :=

∫

Q
R2m

|v|pϕdxdt, J :=

∫

Q
R2m

|u|qϕdxdt.

By Hölder’s inequality applied in the right hand sides of (6.11) and (6.12), respectively, we obtain

λ1I ≤ J
1
q (A1 +B1), (6.4)

δ1J ≤ I
1
p (A2 +B2), (6.5)

where

A1 =

(

∫

Q
R2m

Φ(x/R)φ(t/R2m)
−1
q−1 |φ

′

(t/R2m)|q̃ dxdt

)
1
q̃

,

B1 =

(

∫

Q
R2m

Φ(x/R)
−1
q−1 |∆mΦ(x/R)|

q

q−1φ(t/R2m) dxdt

)
1
q̃

,

A2 =

(

∫

QR2m

Φ(x/R)φ(t/R2m)
−1
p−1 |φ

′

(t/R2m)|p̃ dxdt

)
1
p̃

,

B2 =

(

∫

Q
R2m

Φ(x/R)
−1
p−1 |∆mΦ(x/R)|

p

p−1φ(t/R2m) dxdt

)
1
p̃

.

Combining (6.4) and (6.5), we obtain

λ1I ≤ δ
− 1

q

1 I
1
pq (A2 +B2)

1
q (A1 +B1),

δ1J ≤ λ
− 1

q

1 J
1
pq (A1 +B1)

1
p (A2 +B2).

Then, we have

I
1− 1

pq ≤ C (A2 +B2)
1
q (A1 +B1), (6.6)

J
1− 1

pq ≤ C (A1 +B1)
1
p (A2 +B). (6.7)

At this stage, we introduce the scaled variables: τ = t/R2m, y = x/R; we obtain the estimates

I
1− 1

pq ≤ CRθ1 , (6.8)

J
1− 1

pq ≤ CRθ2 , (6.9)
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where

θ1 := (N + 2m)

(

pq − 1

pq

)

− 2m

(

1 + q

q

)

,

and

θ2 := (N + 2m)

(

pq − 1

pq

)

− 2m

(

1 + p

p

)

.

Note that inequality (6.1) is equivalent to θ1 ≤ 0 or θ2 ≤ 0 . So, we have to distinguish two cases :
• The case θ1 < 0 (resp. θ2 < 0) : we pass to the limit as R −→ ∞ in (6.8) and (6.9), respectively,

we get
∫ ∞

0

∫

RN

|u|q dxdt = 0 and

∫ ∞

0

∫

RN

|v|p dxdt = 0.

which implies that u ≡ v ≡ 0; contradiction.
• The case θ1 = 0 (resp. θ2 = 0) : in this case, we choose the test function as follows

ϕ(x, t) = φ(t/R2m)Φ(x),

where Φ(x) = ψℓ
(

|x|
BR

)

, ℓ ≫ 1, and 1 ≤ B ≤ R is large enough such that when R −→ ∞ we don’t have

B −→ ∞ in the same time. We repeat the same calculations as above, we arrive at

u ≡ v ≡ 0,

which is a contradiction. �

Now, we give an estimate of the life span of solutions to problem (5.1)–(5.2). We introduce the
following assumptions on f and g

(B1)







f1 ∈ L1
loc(R

N ), λ2f1(x) ≥ |x|−k, |x| > 1,

or f2 ∈ L1
loc(R

N ), −λ1f2(x) ≥ |x|−k, |x| > 1,

and

(B2)







g1 ∈ L1
loc(R

N ), δ2g1(x) ≥ |x|−k, |x| > 1,

or g2 ∈ L1
loc(R

N ), −δ1g2(x) ≥ |x|−k, |x| > 1,

where N < k < min{ 2m(p+1)
pq−1 , 2m(q+1)

pq−1 }.

Theorem 6.2. Suppose that conditions (B1), (B2) and (6.1) are satisfied, and let (u, v) be the solution
of (5.1) with the initial condition (u(x, 0), v(x, 0)) = µ(f(x), g(x)), where µ > 0. Denote by [0, Tµ) the
life span of (u, v). Then there exists a constant C > 0 such that

Tµ ≤ Cmin
{

µ1/ρ1 , µ1/ρ2

}

, (6.10)

where ρ1 = k − 2m(p+1)
pq−1 , and ρ2 = k − 2m(q+1)

pq−1 .

Proof. Let (u, v) be the solution of system (5.1) with the initial conditions (u(x, 0), v(x, 0)) = µ(f(x), g(x)).
We assume

ϕ(x, t) := φ(t/T 2m
µ )Φ(x/Tµ).

Then, as for the estimates (6.11) and (6.12), by taking the case when (λ1, δ1 > 0) in the assumptions
(B1), B(2), we have

λ1

∫

Q
T2m
µ

|v|pϕ dxdt−

∫

RN

µf2(x)ϕ(x, 0) dx

≤

∫

QT2m
µ

|u||∂tϕ| dxdt+

∫

QT2m
µ

|u||(−∆)mϕ| dxdt, (6.11)
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and

δ1

∫

Q
T2m
µ

|u|qϕdxdt−

∫

RN

µg2(x)ϕ(x, 0) dx

≤

∫

Q
T2m
µ

|v||∂tϕ| dxdt+

∫

Q
T2m
µ

|v||(−∆)mϕ| dxdt.

Now, by the ε-Young’s inequality, we have

CI−

∫

RN

µf2(x)ϕ(x, 0) dx ≤ C (A2 +B2)
p

pq−1 (A1 +B1)
pq

pq−1 , (6.12)

and

CJ−

∫

RN

µg2(x)ϕ(x, 0) dx ≤ C (A1 +B1)
q

pq−1 (A2 +B2)
pq

pq−1 , (6.13)

where the domain of integration of Ai, Bi (i = 1, 2) is QT 2
µ
.

Making the following change of variables τ = t/T 2m
µ , y = x/Tµ, we obtain

CI− TN
µ

∫

RN

µf2(Tµy)Φ(y) dy ≤ CT γ1
µ , (6.14)

and

CJ− TN
µ

∫

RN

µg2(Tµy)Φ(y) dy ≤ CT γ2
µ , (6.15)

where

γ1 := N −
2m(p+ 1)

pq − 1
, γ2 := N −

2m(q + 1)

pq − 1
.

By the assumptions on the data f and g, we have as for the estimate (3.15)

µTN
µ

∫

RN

−f2(Tµy)Φ(y) dy ≥ µλ−1
1 TN−k

µ

∫

|y|≥ 1
Tµ0

|y|−kΦ(y) dy = CkµT
N−k
µ ,

and

µTN
µ

∫

RN

−g2(Tµy)Φ(y) dy ≥ µδ−1
1 TN−k

µ

∫

|y|≥ 1
Tµ0

|y|−kΦ(y) dy = CkµT
N−k
µ ,

where Tµ0
is a constant independent of Tµ, ε.

Now, by the positivity of the first term in the left-hand sides of (6.14) and (6.15), we obtain

CkµT
N−k
µ ≤ CT γ1

µ ,

and
CkµT

N−k
µ ≤ CT γ2

µ .

Whereupon

µ ≤ CT
k− 2m(p+1)

pq−1
µ , µ ≤ CT

k− 2m(q+1)
pq−1

µ .

Finally, we can get the following estimates

Tµ ≤ Cµ1/ρ1 , Tµ ≤ Cµ1/ρ2 ,

where ρ1 = k − 2m(p−1)
pq−1 , and ρ2 = k − 2m(q+1)

pq−1 ; which completes the proof of the Theorem. �
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7. Necessary conditions for local or global existence

We suppose the following assumptions on the initial conditions f and g,

(C1) f1 ∈ L∞(RN ), λ2f1(x) ≥ 0, or f1 ∈ L∞(RN ), λ1f2(x) ≤ 0,

and
(C2) g1 ∈ L∞(RN ), δ2g1(x) ≥ 0, or g1 ∈ L∞(RN ), δ1g2(x) ≤ 0.

We also consider the case when λ1, δ1 > 0 only; the other cases can be treated similarly.

Theorem 7.1. (Necessary condition for global existence)
Suppose that assumptions (C1) and (C2) are satisfied. If (u, v) is a weak global solution to problem
(5.1)–(5.2), then there is a constant C > 0 such that

lim inf
|x|−→∞

(

−f2(x)|x|
2mp+1)
pq−1

)

≤ C and lim inf
|x|−→∞

(

−g2(x)|x|
2m(q+1)

pq−1

)

≤ C. (7.1)

Proof. Let (u, v) be a global weak solution to problem (5.1)–(5.2), Now, we set

ϕ(x, t) := φ(t/R2m)Φ(x/R), R > 0,

with suppΦ(x) := {R ≤ |x| ≤ 2R}. Then, we have

λI+

∫

RN

if(x)ϕ(x, 0) dx = −

∫

Q
R2m

iuΦ(x/R)φ
′

(t/R2m) dxdt (7.2)

−

∫

Q
R2m

u (−∆)mΦ(x/R)φ(t/R2m) dxdt, (7.3)

and

δJ+

∫

RN

ig(x)ϕ(x, 0) dx = −

∫

Q
R2m

ivΦ(x/R)φ
′

(t/R2m) dxdt

−

∫

Q
R2m

v (−∆)mΦ(x/R)φ(t/R2m) dxdt. (7.4)

By taking the real parts in (7.3), (7.4), we arrive at

λ1I−

∫

RN

f2(x)Φ(x/R) dx ≤

∫

Q
R2m

|u|Φ(x/R)|φ
′

(t/R2m)| dxdt

+

∫

Q
R2m

|u| |∆mΦ(x/R)|φ(t/R2m) dxdt, (7.5)

and

δ1J−

∫

RN

g2(x)Φ(x/R) dx ≤

∫

Q
R2m

|v|Φ(x/R)|φ
′

(t/R2m)| dxdt

+

∫

Q
R2m

|v||∆mΦ(x/R)|φ(t/R2m) dxdt. (7.6)

Using Hölder and ε-Young inequalities, we obtain

CI−

∫

RN

µf2(x)ϕ(x, 0) dx ≤ C (A2 +B2)
p

pq−1 (A1 +B1)
pq

pq−1 , (7.7)
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and

CJ−

∫

RN

µg2(x)ϕ(x, 0) dx ≤ C (A1 +B1)
q

pq−1 (A2 +B2)
pq

pq−1 . (7.8)

Now, we pass to the new variables τ = t/R2m, y = x/R, we have
∫

RN

−f2(Ry)Φ(y) dy ≤ CRα1

∫

|y|≤2

Φ(y) dy,

∫

RN

−g2(Ry)Φ(y) dy ≤ CRα2

∫

|y|≤2

Φ(y) dy,

where α1 := − 2m(p+1)
pq−1 , and α2 := − 2m(q+1)

pq−1 . Furthermore, we have

∫

RN

−f2(Ry)Φ(y) dy ≤ C(R)

∫

|y|≤2

|Ry|−α1 |Ry|α1Φ(y) dy,

and
∫

RN

−g2(Ry)Φ(ξ) dξ ≤ C̃(R)

∫

|y|≤2

|Ry|−α2 |Ry|α2Φ(y) dy.

Thus
∫

RN

−f2(Ry)Φ(y) dy ≤ C

∫

|y|≤2

|Ry|α1Φ(y) dy,

and
∫

RN

−g2(Ry)Φ(ξ) dξ ≤ C̃

∫

|y|≤2

|Ry|α2Φ(y) dy.

Using the estimates

inf
|y|≥1

(

−f2(Ry)|Ry|
−γ
)

∫

|y|≤2

|Ry|α1Φ(y) dy ≤

∫

suppΦ

−f2(Ry)Φ(y) dy, (7.9)

and

inf
|y|≥1

(

−g2(Ry)|Ry|
−γ2
)

∫

|y|≤2

|Ry|α2Φ(y) dy ≤

∫

suppΦ

−g2(Ry)Φ(y) dξ, (7.10)

in the right-hand sides of (7.9) and (7.10), we conclude, after dividing by

∫

|y|≤2

|Ry|α1Φ(y) dy and
∫

|y|≤2

|Ry|α2Φ(y) dy, respectively, that

inf
|y|≥1

(

−f2(Ry)|Ry|
−α1
)

≤ C, (7.11)

and
inf
|y|≥1

(

−g2(Ry)|Ry|
−α2
)

≤ C. (7.12)

Passing to the limit in (7.11), (7.12), as R −→ ∞, we obtain

lim inf
|x|−→∞

(

−f2(x)|x|
2m(p+1)

pq−1

)

≤ C and lim inf
|x|−→∞

(

−g2(x)|x|
2m(q+1)

pq−1

)

≤ C;

this completes the proof. �
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Corollary 7.2. (Sufficient conditions for the nonexistence of global solutions)
Let f, g satisfy the assumptions (C1), (C2). If

lim inf
|x|−→∞

(

−f2(x)|x|
2m(p+1)

pq−1

)

= +∞, or lim inf
|x|−→∞

(

−g2(x)|x|
2m(q+1)

pq−1

)

= +∞,

then problem (5.1)–(5.2) cannot admit a global solution.

Theorem 7.3. (Necessary condition for local existence)
Suppose that assumptions (C1) and (C2) are satisfied. If (u, v) is a local solution to problem (5.1)–(5.2)
on [0, T ] where 0 < T <∞, then we have the estimates

lim inf
|x|−→∞

(−f2(x)) ≤ CT− p+1
pq−1 and lim inf

|x|−→∞
(−g2(x)) ≤ CT− q+1

pq−1 ,

for some positive constant C > 0.

Proof. Let (u, v) be a local solution to problem (5.1)–(5.2). Setting ϕ(x, t) := φ(t/T )Φ(x/R), and re-
peating the same calculations as above, we get

∫

suppΦ

−f2(Ry)Φ(y) dy ≤ C1(T,R)

∫

suppΦ

Φ(y) dy, (7.13)

and
∫

suppΦ

−g2(Ry)Φ(y) dy ≤ C2(T,R)

∫

suppΦ

Φ(y) dy, (7.14)

where
C1(T,R) :=

(

T− p
pq−1 + T

pq−p
pq−1R− 2mpq

pq−1

)(

T− 1
pq−1 + T

p−1
pq−1R− 2mp

pq−1

)

,

and
C2(T,R) :=

(

T− q

pq−1 + T
pq−q

pq−1R− 2mpq

pq−1

)(

T− 1
pq−1 + T

q−1
pq−1R− 2mq

pq−1

)

.

Using the estimates

inf
|y|≥1

(−f2(Ry))

∫

|y|≤2

Φ(y) dy ≤

∫

suppΦ

−f2(Ry)Φ(y) dy

≤ C1(T,R)

∫

|y|≤2

Φ(y) dy, (7.15)

and

inf
|y|≥1

(−g2(Ry))

∫

|y|≤2

Φ(y) dy ≤

∫

suppΦ

−g2(Ry)Φ(y) dy

≤ C2(T,R)

∫

|y|≤2

Φ(y) dy (7.16)

in the left-hand side of (7.13), (7.14), respectively, we conclude, after dividing by the term
∫

|y|≤2
Φ(y) dy,

that
inf

|y|≥1
(−f2(Ry)) ≤ C1(T,R), (7.17)

and
inf
|y|≥1

(−g2(Ry)) ≤ C2(T,R). (7.18)

Passing to the limit in (7.17) and (7.18), as R −→ ∞, we arrive at

lim inf
|x|−→∞

(−f2(x)) ≤ T− p+1
pq−1 and lim inf

|x|−→∞
(−g2(x)) ≤ T− q+1

pq−1 ;

which completes the proof of the Theorem. �
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