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abstract: In this paper, we study a new type of modeling of an Earthquake phenomenon, a mechanical
model of the earthquake process in one-dimension using usual mathematical functions, the latter leads to the
study of nonlinear integro-differential equation of Volterra. The existence and the uniqueness of the solution
are proved. Using Nyström method is builded to approximate the solution. The numerical tests show the
effectiveness of this type of modeling.
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1. Introduction and Motivation

We are interested in modeling the Earthquake phenomenon that results from movement of tectonic
plates. During their movements, tectonic plates may collide along faults. While they pursue their
movement, the pressure increases. When this pressure reaches a significant degree, a sudden slip of the
plate occurs . The resulting shock trains release of energy in the form of seismic waves which cause the
sensation of trembling (see [1,2]).

The Incorporated Research Institutions for Seismology (IRIS) (www.iris.edu) presented a demo
(”Earthquake Machine: Basic One block and simple graph animated”) to explain the Earthquake model.
This demonstration is presented in figure 1

Figure 1: Earthquake Machine in dimension 1

In this work, we will present a model that provid a constant friction. This choice is built on the
difficulty in the theoretical and numerical plan. However with this choice our vision still a performance
vision.
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Thereby, we study this physical experience, we propose a mathematical modeling that describes the
movement of earthquake machine, which is presented in the form of a non-linear integro-differential
equation of Volterra of the second kind

u(t) =

∫ t

0

(t− s)
(

− ̺(
1

m
+

1

M
)u(s) −

̺

2M
δξ

(

−
1

̺
u′(s)+ (1.1)

+
1

m

∫ s

0

(F (α) −R− u(α))dα
)(

|u(s)| − u(s)
)

)

ds+ f(t).

This paper represents a physical foundation for recent works ( [3,4,5]) on this equation and a generalization
of the mathematical assumptions required in these papers to ensure the existence and uniqueness of the
solution.

We will construct a numerical method based on the vision of Nyström (see [6,7,8,9]) to approach
this unique solution, and show the convergence under the local Lipschitz assumptions, which represents
a generalization of those assumptions required in [3,4,5,6].

The numerical tests developed in this paper show our good vision on mathematical modeling, analyt-
ical and numerical plans.

In the sense of establishing a coherent system and keeping the fundamental aspects of our phenomenon,
and to properly present the mechanism of the earthquake machine, we consider a coupled mass spring
oscillator model consists of two masses M and m, linked together by a spring of length L at rest, which
are both free to move. The resulting motions can be very intriguing, but for simplicity, we will neglect
the effects of friction and external forces (The latter is due to the difficulty of theoretical and numerical
studies). The system is placed on a smooth horizontal surface.

We denote by F the force applied to the mass m, R the resistance of the mass M . Because each mass
is free to move, we apply Newton’s second law (see [10]) to each object. Let x(t) denote the displacement
of the mass M from its equilibrium position and similarly, let y(t) denote the corresponding displacement
for the mass m which has a force F acting on its right side, applying Hooke’s law (see [10]),

T (t) = ̺l(t),

where T is the tension of the spring, ̺ is the stiffness constant and l(t) the variation of the length between
the two masses at a moment t such that

l(t) = (y(t) − x(t)) − L.

Applying Newton’s second law to these objects, we obtain the system in the state of rest











H(̺l(t) −R)(̺l(t) −R) = Mx
′′

(t),

F − ̺l(t) = my
′′

(t),

l(t) = (y(t) − x(t)) − L,

(1.2)

and the system in the state of motion











̺l(t) − R = Mx
′′

(t),

F − ̺l(t) = my
′′

(t),

l(t) = (y(t) − x(t)) − L,

(1.3)

where x′′(t) and y′′(t) are the acceleration of masses M and m respectively, and H is Heaviside function
defined by

H(τ ) =

{

1, τ ≥ 0,

0, τ < 0.
(1.4)

By using the function δ defined by
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δ(τ ) =

{

1, τ = 0,

0, τ 6= 0,

the systems (1.2) and (1.3) can be brought together in one system as the following form











(1 − δ(x′(t)))(̺l(t) −R) + δ(x′(t))H(̺l(t) −R)(̺l(t) −R) = Mx
′′

(t),

F − ̺l(t) = my
′′

(t),

l(t) = (y(t) − x(t)) − L.

(1.5)

Where x′(t) and y′(t) are the velocity of masses M and m respectively.
As the model represents a simulation of an Earthquake Machine, and in order to be well posed, we

put the seismic function u given by

u(τ ) = ̺l(τ) −R. (1.6)

Hence, the previous system (1.5) can be written as the form

u(t) + 1
2δ(x

′(t))(|u(t)| − u(t)) = Mx
′′

(t), (1.7)

F −R− u(t) = my
′′

(t), (1.8)

u(t) = ̺(y(t) − x(t) − L) −R, (1.9)

where

H(τ )τ =
1

2
(|τ | + τ). (1.10)

We integrate the equations (1.7) and (1.8), replacing the results in (1.9), under the initial conditions

{

x(0) = x′(0) = y′(0) = 0,

y(0) = L,
(1.11)

we obtain the equation

u(t) + ̺

∫ t

0

∫ s

0

(

(
1

m
+

1

M
)u(θ) +

1

2M
δ
(

−
1

̺
u′(θ)+ (1.12)

+
1

m

∫ θ

0

(F (α) −R − u(α))dα
)(

|u(θ)| − u(θ)
)

)

dθds = −R+
̺

m

∫ t

0

∫ s

0

(F (θ) −R)dθds.

The equation (1.12) represents a discontinuity given by the function δ. Therefore, to solve this problem
we will approach the equation (1.12) by another equation through approaching δ using δξ of class C1(R)
defined as

δξ(τ ) =

{

(1 − ( τ
ξ
)2)2, if τ ∈ [−ξ, ξ],

0, if τ ∈] − ∞,−ξ[∪]ξ,+∞[,
(1.13)

such that
∀τ ∈ R, lim

ξ→0
δξ(τ ) = δ(τ ).

Therefore, the equation (1.12) is written as

u(t) =

∫ t

0

(t− s)
(

− ̺(
1

m
+

1

M
)u(s) −

̺

2M
δξ

(

−
1

̺
u′(s)

+
1

m

∫ s

0

(F (α) −R − u(α))dα
)(

|u(s)| − u(s)
)

)

ds−R+
̺

m

∫ t

0

(t− s)(F (s) −R)ds.(1.14)
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Which also gives,

u′(t) =

∫ t

0

(

− ̺(
1

m
+

1

M
)u(s) −

̺

2M
δξ

(

−
1

̺
u′(s)+

+
1

m

∫ s

0

(F (α) −R− u(α))dα
)(

|u(s)| − u(s)
)

)

ds+
̺

m

∫ t

0

(F (s) −R)ds. (1.15)

For T > 0 maximum experiment time, the equation (1.14) which is an integro-differential nonlinear
equation of Volterra can be written as the following simple and clear formula

∀t ∈ [0, T ], u(t) =

∫ t

0

(t− s)K(s, u(s), u′(s))ds + f(t), (1.16)

which gives

∀t ∈ [0, T ], u′(t) =

∫ t

0

K(s, u(s), u′(s))ds + f ′(t), (1.17)

where

K(s, u(s), u′(s)) = −̺(
1

m
+

1

M
)u(s) −

̺

2M
δξ

(

−
1

̺
u′(s)+

+
1

m

∫ s

0

(F (α) −R− u(α))dα
)(

|u(s)| − u(s)
)

,

and

f(t) = −R+
̺

m

∫ t

0

(t− s)(F (s) −R)ds.

The present paper is organized as follow, in section 2, we study our equation in an analytical sense,
we show the existence and the uniqueness of the solution using similar methods to those used in [3,4,5,6].
In section 3, we study this equation in a numerical sense using a Nyström method (cf. [3,4,6,8]) to
approximate the solution of this equation. Finally, in section 4 we give an experimental tests which show
the effectiveness of our model.

2. Analytical study

We consider the previous equation

∀t ∈ [0, T ], u(t) =

∫ t

0

(t− s)K(s, u(s), u′(s))ds+ f(t). (2.1)

It is clear that f and K verify the following properties

(H)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1. f ∈ C1([0, T ]),

2. ∃α, β, ᾱ, β̄ ∈ R, ∀t ∈ [0, T ], α < f(t) < β, ᾱ < f ′(t) < β̄,

3. ∀t, s ∈ [0, T ], ∀u, ū ∈ [α, β], ∀v, v̄ ∈ [ᾱ, β̄], ∃M ∈ R
∗
+, |K(s, u, v)| ≤ M.

4. ∀t, s ∈ [0, T ], ∀u, ū ∈ [α, β], ∀v, v̄ ∈ [ᾱ, β̄], ∃Lα,β , L̄ᾱ,β̄ ∈ R
∗
+,

|K(s, u, v) −K(s, ū, v̄)| ≤ Lα,β |u− ū| + L̄ᾱ,β̄|v − v̄|.

The classical method that is used to prove the existence and uniqueness of the solution of the equation
(1.16) is based on the construction of two successive sequences {un(t)}n∈N, {ϕn(t)}n∈N. This method is
called the Picard method. These sequences are given by







u0(t) = f(t),

un(t) = f(t) +

∫ t

0

(t− s)K(s, un−1(s), u′
n−1(s))ds, ∀n ∈ N

∗
(2.2)
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and

{

ϕ0(t) = f(t),

ϕn(t) = un(t) − un−1(t), ∀n ∈ N
∗

(2.3)

which gives us successively







u′
0(t) = f ′(t),

u′
n(t) = f ′(t) +

∫ t

0

K(s, un−1(s), u′
n−1(s))ds, ∀n ∈ N

∗
(2.4)

and
{

ϕ′
0(t) = f ′(t),

ϕ′
n(t) = u′

n(t) − u′
n−1(t). ∀n ∈ N

∗
(2.5)

Also, from (2.3) and (2.5) we obtain














n
∑

i=0

ϕi(t) = un(t),

n
∑

i=0

ϕ′
i(t) = u′

n(t).
(2.6)

Theorem 2.1. According to the properties (H), and knowing that there exist points 0 = δ0 < δ1 < δ2 <
... < δn = T such that, for 0 ≤ i ≤ n, and for t ∈ [δi, δi+1], the equation (1.16) has a unique continuous

solution in C1(0, T ).

Proof. First, we establish the existence and the uniqueness in some interval [0, δ1], than this solution can
be continuous to successive intervals [δ1, δ2], [δ2, δ3] and so on. Under suitable conditions, we eventually
cover the whole interval [0, T ].

Let be t ∈ [0, δ1]. Because of 1., 2. and 3. from (H), we can find a constant C such that

∫ t

0

|K(s, f(s), f ′(s))|ds ≤ Ct, ∀t ∈ [0, δ1], (2.7)

From 1., we choose a positive number d such that

∀t ∈ [0, δ1], α ≤ f(t) − CdeLd ≤ f(t) ≤ f(t) + CdeLd ≤ β, (2.8)

and
∀t ∈ [0, δ1], ᾱ ≤ f ′(t) − CdeLd ≤ f ′(t) ≤ f ′(t) + CdeLd ≤ β̄, (2.9)

Let be
δ1 = min(d, T ).

Defining the sequences un, ϕn, u′
n and ϕ′

n as in (2.2)-(2.5), we can now show by induction, for n ∈ N
∗

that

(Pn)























(an) α ≤ un(t) ≤ β,

(bn) ᾱ ≤ u′
n(t) ≤ β̄,

(cn) |ϕn(t)| + |ϕ′
n(t)| ≤ C γn−1tn

n! ,

(dn) |un(t) − f(t)| + |u′
n(t) − f ′(t)| ≤ C

n
∑

i=1

γi−1ti

i! .

In fact, for n = 1, we have u1(t) = f(t) and u′
1(t) = f ′(t), then

α ≤ u1(t) ≤ β,

ᾱ ≤ u′
1(t) ≤ β̄,

so that (a1) and (b1) are satisfied. Also,
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|ϕ1(t)| + |ϕ′
1(t)| = |u1(t) − f(t)| + |u′

1(t) − f ′(t)|

≤

∫ t

0

|(t− s)K(s, f(s), f ′(s))|ds +

∫ t

0

|K(s, f(s), f ′(s))|ds

≤ |(δ1 + 1)|

∫ t

0

|K(s, f(s), f ′(s))|ds

≤ Ct, ∀t ∈ [0, δ1]. (2.10)

(c1) and (d1) holds.
The property (P1) is satisfied. Now, assuming that (Pn) is satisfied, we prove the property (Pn+1).

Then

|ϕn+1(t)| + |ϕ′
n+1(t)| ≤ γ

∫ t

0

|ϕn(s)| + |ϕ′
n(s)|ds

≤ γ

∫ t

0

C
γn−1sn

n!
ds

≤ C
γn

n!

∫ t

0

snds

≤ C
γntn+1

(n+ 1)n!
. (2.11)

So that (cn+1) is satisfied. Also

|un+1(t) − f(t)| + |u′
n+1(t) − f ′(t)| = |un(t) − f(t) + ϕn+1(t)| + |u′

n+1(t) − f ′(t) + ϕ′
n+1(t)|

≤ |un(t) − f(t)| + |u′
n+1(t) − f ′(t)| + |ϕn+1(t)| + |ϕ′

n+1(t)|

≤ C

n
∑

i=1

γi−1ti

i!
+ C

γntn+1

(n+ 1)!
,

although (dn+1) holds.

Finally, for 0 < t < δ1,
n

∑

i=1

γi−1ti

i!
< deLd, (2.12)

on the other hand, we have

|un+1(t) − f(t)| ≤ C
n

∑

i=1

γi−1ti

i!
, (2.13)

and

|u′
n+1(t) − f ′(t)| ≤ C

n
∑

i=1

γi−1ti

i!
, (2.14)

then from (2.8), (2.12) and (2.13) we have

α ≤ un+1(t) ≤ β. (2.15)

Also, from (2.9), (2.12) and (2.14) we obtain

ᾱ ≤ u′
n+1(t) ≤ β̄, (2.16)

this completes the inductive argument.
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Since (Pn) is obviously true for all n, this bound makes it obvious that the sequence {un}n∈N converges
uniformly to u ∈ C1(0, δ1), and we can write

∞
∑

i=0

ϕi(t) = lim
n→+∞

un(t) = u(t).

To prove that u satisfies the original equation (1.16), we put

u(t) = un(t) + ∆n(t),

then
u′(t) = u′

n(t) + ∆′
n(t).

We have

|u(t) − f(t) −

∫ t

0

(t− s)K(s, u(s), u′(s))ds| =

= |un(t) + ∆n(t) − f(t) −

∫ t

0

(t− s)K(s, u(s), u′(s))ds|

≤ |∆n(t)| + |

∫ t

0

(t− s)(K(s, un−1, u
′
n−1) −K(s, u(s), u′(s)))ds|

≤ |∆n(t)| + δ1

∫ t

0

Lα,β|un−1(s) − u(s)| + L̄ᾱ,β̄ |u′
n−1(s) − u′(s)|ds

≤ |∆n(t)| + δ1

∫ t

0

Lα,β|∆n−1(s)| + L̄ᾱ,β̄ |∆′
n−1(s)|ds

≤ |∆n(t)| + δ1 max{Lα,β , L̄ᾱ,β̄}‖∆n−1(s)‖C1([0,δ1])

≤ ‖∆n‖C1([0,δ1]) + ‖∆n−1‖C1([0,δ1]).

But,
lim

n→+∞
‖∆n‖C1([0,δ1]) = 0,

and thus u is a solution of (1.16).
To show that u(t) is the only continuous solution, suppose that there exists another solution ũ(t) ∈

C1(0, δ1) of (1.16). Then, for all t ∈ [0, δ1]

|u(t) − ũ(t)| + |u′(t) − ũ′(t)| =

∣

∣

∣

∣

∫ t

0

(t− s)(K(s, u(s), u′(s)) − K(s, ũ(s), ũ′(s)))ds

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∫ t

0

(K(s, u(s), u′(s)) −K(s, ũ(s), ũ′(s)))ds

∣

∣

∣

∣

,

from which it follows that

|u(t) − ũ(t)| + |u′(t) − ũ′(t)| ≤ δ1

∫ t

0

Lα,β|u(s) − ũ(s)| + L̄ᾱ,β̄ |u′(s) − ũ′(s)|ds

+

∫ t

0

Lα,β |u(s) − ũ(s)| + L̄ᾱ,β̄|u′(s) − ũ′(s)|ds,

≤ γ

∫ t

0

|u(s) − ũ(s)| + |u′(s) − ũ′(s)|ds. (2.17)
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Since u(t) and ũ(t) are both continuous in [0, δ1], ∃C > 0 such that,

|u(t) − ũ(t)| + |u′(t) − ũ′(t)| ≤ C, ∀t ∈ [0, δ1].

substituting this into (2.17)

|u(t) − ũ(t)| + |u′(t) − ũ′(t)| ≤ Cγt.

By repeating the argument n times, we are led to

|u(t) − ũ(t)| + |u′(t) − ũ′(t)| ≤ C
γntn

n!
,

for any n hence, we conclude that u(t) = ũ(t) for all t ∈ [0, δ1].
Now, for t ∈ [δ1, δ2], we write the equation as

u1(t) = F (t) +

∫ t

δ1

(t− s)K(s, u1(s), u′
1(s))ds, ∀t ∈ [δ1, δ2], (2.18)

where

F (t) = f(t) +

∫ δ1

0

(t− s)K(s, u0(s), u′
0(s))ds,

and u0(s) is the solution obtained in the first step, but (2.18) is just the same Volterra equation with
an origin shifted from 0 to δ1. So, we can apply the same basic steps. We define

u(t) =

{

u0(t), t ∈ [0, δ1],

u1(t), t ∈ [δ1, δ2].
(2.19)

It is clear that u ∈ C1(0, δ2) is the unique solution of (1.16) over [0, δ2].
This argument can be repeated and since there is only a finite number of subintervals in [0, T ], we

thereby construct the unique solution in C1(0, T ). �

3. Numerical study

In this part, we use a numerical method based on the numerical integration to approximate the
solution of the equation. This technique is called Nyström method, which is studied in [3,4,6]

For N ∈ N
∗, we construct a subdivision of the interval [0, T ],

h =
T

N
, ti = ih, 0 ≤ i ≤ N.

We denote Un ≈ u(tn) and Vn ≈ u′(tn), by applying the Nyström method for the approximation of the
integrals that appear in our equation, using the quadratic formula of the numerical integration on the
equations (1.16) and (1.17)

∫ b

a

ξ(t)dt ≈ h

N
∑

i=0

wiξ(ti),

where, wi are real, such that it exits W > 0, ∀N ∈ N
∗, max

0≤j≤N
|wj | ≤ W.

We obtain the following system

U0 = f(0), (3.1)

V0 = f ′(0), (3.2)

Un = f(tn) + h
n−1
∑

i=0

wi(tn − ti)K(ti, Ui, Vi), 1 ≤ n ≤ N (3.3)

Vn = f ′(tn) + h

n
∑

i=0

wiK(ti, Ui, Vi), 1 ≤ n ≤ N (3.4)
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Lemma 3.1. Consider the system (3.1)-(3.4), for a fixed N ∈ N
∗, ∃α1, β1, ᾱ1, β̄1 ∈ R, for all 0 ≤ n ≤ N ,

we have

α1 ≤ Un ≤ β1 (3.5)

ᾱ1 ≤ Vn ≤ β̄1 (3.6)

where, α1, β1, ᾱ1 and β̄1 are independent from N.

Proof. We have, for 1 ≤ n ≤ N

Un = h

n−1
∑

i=0

wi(tn − ti)K(ti, Ui, Vi) + f(tn).

Then

|Un − f(tn)| ≤ h

n−1
∑

i=0

wi(tn − ti)|K(ti, Ui, Vi)|

≤ T 2WM.

Therefore

α− T 2WM ≤ f(tn) − T 2WM ≤ Un ≤ T 2WM + f(tn) ≤ T 2WM + β

α1 ≤ Un ≤ β1.

On the other hand, we have for 1 ≤ n ≤ N

Vn = h

n
∑

i=0

wiK(ti, Ui, Vi) + f ′(tn),

then

|Vn − f ′(tn)| ≤ h

n
∑

i=0

wi|K(ti, Ui, Vi)|

≤ TWM.

We obtain

ᾱ− TWM ≤ f ′(tn) − TWM ≤ Vn ≤ TWM + f ′(tn) ≤ TWM + β̄

ᾱ1 ≤ Vn ≤ β̄1.

It is clear that

α1 ≤ U0 = f(t0) ≤ β1,

ᾱ1 ≤ V0 = f ′(t0) ≤ β̄1.

�

3.1. System study

The next theorem shows the existence and uniqueness of the solution of the system (3.1)-(3.4), under
the properties (H)
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Theorem 3.2. For h sufficiently small, the system (3.1)-(3.4) has a unique solution.

Proof. It is clear that we can obtain the solution of (3.3) by the recurrence formula, it remains to prove
the existence of the solution of the equation (3.4).
For all n ≥ 1, we define

ψn : R → R

X → ψn(X).

Such that

ψn(X) = f ′(tn) + h

n−1
∑

i=0

wiK(ti, Ui, Vi) + hwnK(tn, Un, X).

For all X,Y ∈ R, we have

|ψn(X) − ψn(Y )| = |hwnK(tn, Un, X) − hwnK(tn, Un, Y )|,

≤ hWL̄ᾱ1,β̄
1

|X − Y |.

Consequently, ψn is a contraction for h small enough. Using Banach’s fixed point, we get the result. �

3.2. Error analysis

In this part, we will show that the numerical method constructed previously converges to the exact
solution of the equation. For N ∈ N

∗, we define for 0 ≤ n ≤ N ,

εn := |Un − u(tn)| + |Vn − u′(tn)|.

The method converges if

lim
h→0

( max
0≤n≤N

εn) = 0.

We define local consistency error by

δ(h, tn) =

∣

∣

∣

∣

∣

∫ tn

0

(tn − s)K(s, u(s), u′(s))ds − h
n−1
∑

i=0

(tn − ti)wiK(ti, u(ti), u
′(ti))

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∫ tn

0

K(s, u(s), u′(s))ds− h

n
∑

i=0

wiK(ti, u(ti), u
′(ti))

∣

∣

∣

∣

∣

.

The approximation method (3.1)-(3.4) is said consistent with (1.16), if

lim
h→0

( max
0≤n≤N

δ(h, tn)) = 0.

Theorem 3.3. If the approximation method (3.1)-(3.4) is consistent with (1.16), then

lim
h→0

( max
0≤n≤N

εn) = 0.
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Proof. For n ≥ 1.

εn = |Un − u(tn)| + |Vn − u′(tn)|

=

∣

∣

∣

∣

∣

h

n−1
∑

i=0

(tn − ti)wiK(ti, Ui, Vi) −

∫ tn

0

(tn − s)K(s, u(s), u′(s))ds

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

h

n
∑

i=0

wiK(ti, Ui, Vi) −

∫ tn

0

K(s, u(s), u′(s))ds

∣

∣

∣

∣

∣

,

≤

∣

∣

∣

∣

∣

h

n−1
∑

i=0

(tn − ti)wiK(ti, u(ti), u
′(ti)) −

∫ tn

0

(tn − s)K(s, u(s), u′(s))ds

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

h

n
∑

i=0

wiK(ti, u(ti), u
′(ti)) −

∫ tn

0

K(s, u(s), u′(s))ds

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

h

n−1
∑

i=0

(tn − ti)wiK(ti, Ui, Vi) − h

n−1
∑

i=0

(tn − ti)wiK(ti, u(ti), u
′(ti))

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

h
n

∑

i=0

wiK(ti, Ui, Vi) − h
n

∑

i=0

wiK(ti, u(ti), u
′(ti))

∣

∣

∣

∣

∣

,

≤ δ(h, tn) + hW
n−1
∑

i=0

(tn − ti)
[

Lα,β |Ui − u(ti)| + L̄ᾱ,β̄ |Vi − u′(ti)|
]

+

+hW
n−1
∑

i=0

[

Lα,β|Ui − u(ti)| + L̄ᾱ,β̄|Vi − u′(ti)|
]

+ hW
[

Lα,β |Un − u(tn)| + L̄ᾱ,β̄|Vn − u′(tn)|
]

.

Then

εn ≤ δ(h, tn) + hWLα,β |Un − u(tn)| + hWL̄ᾱ,β̄|Vn − u′(tn)|

+ hW

n−1
∑

i=0

(tn − ti + 1)Lα,β |Ui − u(ti)| + hW

n−1
∑

i=0

(tn − ti + 1)L̄ᾱ,β̄|Vi − u′(ti)|.

For h small enough
α = min((1 − hWLα,β), (1 − hWL̄ᾱ,β̄)) > 0,

and

εn ≤
1

α
δ(h, tn) +

1

α
hW

n−1
∑

i=0

(tn − ti + 1)(Lα,β|Ui − u(ti)| + L̄ᾱ,β̄ |Vi − u′(ti)|),

then

εn ≤
hW max((tn − ti + 1)Lα,β , (tn − ti + 1)L̄ᾱ,β̄)

α

n−1
∑

i=0

εi +
1

α
δ(h, tn).

Applying Theorem 7.1 from [6], we get

εn ≤
1

α

(

1 +
hW (tn − ti + 1) max(Lα,β, L̄ᾱ,β̄)

α

)n−1(

max
1≤i≤n

δ(h, ti) + hW (tn − ti + 1)

× max(Lα,β , L̄ᾱ,β̄)ε0

)

,
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but

(

1 +
hW (tn − ti + 1) max(Lα,β , L̄ᾱ,β̄)

α

)n−1

≤
(

1 +
TW (tn − ti + 1) max(Lα,β, L̄ᾱ,β̄)

Nα

)N

,

and

lim
N→+∞

(

1 +
TW (tn − ti + 1) max(Lα,β , L̄ᾱ,β̄)

Nα
)N < +∞.

Then, ∃θ > 0 such that

∀N ∈ N; max
1

α

(

1 +
hW (tn − ti + 1) max(Lα,β, L̄ᾱ,β̄)

α

)n−1

≤ θ.

And the desired result is obtained. �

4. Experimental results

Our study allows us to solve a rather complicated problem where the numerical results show their
efficiency and accuracy. To show this efficiency and precision of the proposed method in this paper, and to
illustrate the approximation performance of our modeling of the mechanical model as well as the solving of
the integro-differential nonlinear equation of Volterra (1.16), we complete the study with results obtained
from an experimental simulation of Earthquake machine, using the Nyström approximation method
proved in the previous section.

To perform the calculus, we need to clarify some parameters that intervene in our equation (1.16),
indeed the physical parameters ̺,m,M,R and F are

̺ = 10N.m−1, m = 10g, M = 50000g R = 2N, F = 3N

in an interval t ∈ [0, 50] with a discretization N = 1000.

We choose {wi}0≤i≤N of the Trapezoidal rule i.e. for 1 ≤ i ≤ N − 1, wi = 1, and w0 = wN = 1
2 .

For 1 ≤ n ≤ N , Un is calculated directly from the previous terms, but Vn is approached using Banach
fixed point sequence with the stopping condition of the form |Xold −Xnew| ≤ 10−7.

The results of this numerical calculus for these values are illustrated in the figures 2, 3 and 4

0 10 20 30 40 50
−2

−1

0

1

2

3

4

                                                                                                            t(s)

u

Figure 2: The seismic function: u
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Figure 3: The velocity of mass M: x′
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Figure 4: The movement of M: x

The results presented in these graphs are compatible with the mechanism of the earthquake machine,
and they show the efficiency of our proceeding and the good vision for this phenomenon modeling.

From different values of parameters that we have put, it can be seen that the velocity x′(t) can take a
negative values in some moments. This latter is due to the theoretical approach of replacing the function
δ with another smoother function δξ defined in (1.13), in addition to the error spread of the numerical
approximation using the Nyström method.

The reader at this point can ask the following question: What happens when ξ approaches zeros?
The answer is ’nothing !’, because the curves of u, x and x′ keep the same shape if we replace δξ by
δ in our program, as it is entailed in the figures 2, 3 and 4 . Since the studied equation remains well
constructed and admits a unique solution, although theoretically we can not treat the case ξ = 0 using
Picard’s successive method. In addition, the numerical method is also convergent in this case. We explore
another analytical and numerical track to study our equation when ξ = 0.

During its movement, the mass M jumps into different distances over time, as shown in the figures
4. This jump reflects the null values of speed recorded in our results which proves our good vision of
approximation of the physical phenomenon.

The following table shows that each time the discretization N is increased , the minimum of the
velocity converges to 0.

Table 1: Comparison of the different velocity values according to N.

N 250 500 750 1000 250 1500 1750 2000
min(x′)(m/s) -0.0198 -0.0099 -0.0066 -0.0050 -0.0040 -0.0033 -0.0029 -0.0025
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5. Conclusion

The main purpose of the current paper has been to construct a modeling of an earthquake machine
mechanism, and to study the existence and uniqueness of the solution of an integro-differential nonlinear
Volterra equation that results from this modeling . Developed numerical tests show the effectiveness
of this modeling of the problem as well as Nyström method used to approximate the solution of this
equation.

Currently, we are studying the case where the resistance is not constant. This situation is more
realistic and will give better results, but gives rise to new mathematical challenges.

References

1. X. Le Pichon, J. Francheteau and J. Bonnin , Plate Tectonics (Elsevier Scientific Publishing Company Amsterdam,
London, New York, 1973)

2. G. D. Williams, Tectonics and seismic sequence stratigraphy: an introduction, Tectonics and Seismic Sequence Stratig-
raphy. Geological Society Special Publication No. 71 (1993) 1–13.

3. H. Guebbai, M.Z. Aissaoui, I. Debbar and B. Khalla, Analytical and numerical study for an integro-differential nonlinear
Volterra equation, Applied Mathematics and Computation 229(2014) 367–373.

4. S. Segni, M. Ghiat and H. Guebbai, New approximation method for Volterra nonlinear integro-diferential equation,
Asian-European Journal of Mathematics, Vol. 12, No. 1, 1950016 Doi:10.1142/S1793557119500165 (2019)

5. M. Ghiat and H. Guebbai, Annalytical and numerical study for an integro-differential nonlinear Volterra equation with
weakly singular kernel, Com. Appl. Math, Doi: https://doi.org/10.1007/s40314-018-0597-3 (2018)

6. P. Linz, Analytical and numerical methods for Volterra equations (SIAM Studies in Applied Mathematics, Philadelphia,
1985).

7. A. Atkinson and W. Han , Theoretical Numerical Analysis: A Functional Analysis Framework ( Springer-Verlag, New
York, 2001).
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