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abstract: In this work, by using a variational approach, we give a result on the existence and multiplicity
of solutions concerned a class of nonlocal elliptic problems with variable exponent.
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1. Introduction

Partial differential equations related to a kind of Kirchhoff problem has been a very active field of
investigation in recent years. This type of equations describes many natural phenomena like elastic
mechanics, image restoration, electrorheological fluids, biological systems where such solution modelizes
a process depending on the average of itself. See for example, [7,21,23] and its references.

Such equation is related to the stationary version of a model in general version introduced by Kirchhoff
[16]. More precisely, Kirchhoff suggested a model
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where ρ0, ρ, L and h are constants associated to the effects of the changes in the length of strings during
the vibrations. It is an extension of the classical D’Alembert’s wave equation.

The authors in [4] have investigated the Kirchhoff type equation involving the p(x)−Laplacian of the
form

utt −M(

∫

Ω

1

p(x)
| ∇u |p(x) dx)∆p(x)u+Q(t, x, u, ut) + f(x, u) = 0.

They have introduced the asymptotic stability, as time tends to infinity. This type of Kirchhoff problems
with stationary process has received considerable attention by several researchers, see for example [1,2,
3,4,6,5,8,12,14,17,18,19] and the references therein.

We consider the following nonlocal problem

h

(∫

Ω

1

p(x)
|∇u|p(x)dx

) (
−∆p(x)u

)
= f(x, u) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary, h : R+ → R is a continuous function and

the operator ∆p(x)u := div(|∇u|p(x)−2∇u) is the p(x)−Laplacian with p ∈ C(Ω) satisfies

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < ∞
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and N ≥ 2, q ∈ C+(Ω), with C+(Ω) is defined by

C+(Ω) = {p ∈ C(Ω) and inf
x∈Ω

p(x) > 1}.

For the function h we suppose the following conditions:
(h1) There exist h3 > h1 > 0, h2 > 0 and β > 1 such that

h1 ≤ h(t) ≤ h2|t|β + h3.

(h2) There exists λ ∈ (0, 1] such that
H(t) ≤ λh(t)t

where H(t) =
∫ t

0
h(s) ds.

We also give the appropriate assumptions on f in order to state the basic result of this paper,
(f1) f ∈ C(Ω × R,R) and there exists 1 < q(x) < p∗(x), such that

|f(x, t)| ≤ C1 + C2|t|q(x)−1

for a.e x ∈ Ω, t ∈ R, with C1 and C2 are positives constants and

p∗(x) =

{
Np(x)

N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

(f2) lim
|t|→0

f(x, t)

|t|p−−2t
= ∞.

(f3) f(x, 0) = 0, L(x, t) = p−F (x, t) − f(x, t)t > 0 for every x ∈ Ω, |t| ≤ δ and t 6= 0 where

F (x, t) =

∫ t

0

f(x, s) ds,

δ > 0 be small enough.
(f4) When t is small, f is odd with respect to the second argument.
Now, we present our main result,

Theorem 1.1. Under the assumptions (f1) − (f4), (h1), (h2), the problem (1.1) has a sequence of weak
solutions such that ‖un‖L∞ → 0 as n → ∞.

It is known that the p(x)−laplacian operator possesses more complicated nonlinearities than the
p−Laplacian operator, mainly due to the fact that it is not homogeneous. As far as we are aware,
contributions discussed a nonlocal problem involving p(x)−laplacian operator have seldom been studied.
So it is necessary for us to investigate the related problems deeply. Here, a distinguishing feature that
we have assumed some conditions only at zero, however, there are no conditions imposed on f at infinity
which is necessary in many works, we borrow the main ideas from [20], Tan and Fang in [22].

This paper is organized as follows. In Section 2, we recall some preliminaries on variable exponent
spaces. In Sections 3, we give the proof of result and we establish the existence and multiplicity of
solutions via a variational structure.

2. Preliminaries

To deal with problem (1.1), we need some theory of variable exponent Lebesgue-Sobolev spaces. For
convenience, we only recall some basic facts which will be used later. For more details, we refer to [9,13].
Let Ω be a bounded domain of RN , denote

C+(Ω) =
{
p(x) : p(x) ∈ C(Ω), p(x) > 1, for all x ∈ Ω

}
,

p+ = max{p(x) : x ∈ Ω}, p− = min{p(x);x ∈ Ω},

Lp(x)(Ω) =

{
u : u is a measurable real-valued function,

∫

Ω

|u(x)|p(x)dx < ∞

}
,
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with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
λ > 0 :

∫

Ω

|
u(x)

λ
|p(x)dx ≤ 1

}

becomes a Banach space . We also define the space

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

equipped with the norm

‖u‖W 1,p(x)(Ω) = |u(x)|Lp(x)(Ω) + |∇u(x)|Lp(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). Of course the norm ‖u‖ = |∇u|Lp(x)(Ω) is

an equivalent norm in W
1,p(x)
0 (Ω). In this paper, we denote by X = W

1,p(x)
0 (Ω).

Proposition 2.1. (cf. [9]) (i) The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω), where 1
p(x) + 1

p′(x) = 1. For

any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have

∫

Ω

|uv|dx ≤
( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x);

(ii) If p1(x), p2(x) ∈ C+(Ω) and p1(x) ≤ p2(x) for all x ∈ Ω, then Lp2(x)(Ω) →֒ Lp1(x)(Ω) and the
embedding is continuous.

Proposition 2.2. (cf. [13]) Set ρ(u) =
∫

Ω
|∇u(x)|p(x)dx, then for u ∈ X and (uk) ⊂ X, we have

(1) ‖u‖ < 1 (respectively= 1;> 1) if and only if ρ(u) < 1 (respectively= 1;> 1);

(2) for u 6= 0, ‖u‖ = λ if and only if ρ(u
λ

) = 1;

(3) if ‖u‖ > 1, then ‖u‖p−

≤ ρ(u) ≤ ‖u‖p+

;

(4) if ‖u‖ < 1, then ‖u‖p+

≤ ρ(u) ≤ ‖u‖p−

;

(5) ‖uk‖ → 0 (respectively → ∞) if and only if ρ(uk) → 0 (respectively → ∞).

For x ∈ Ω, let us define

p∗(x) =

{
Np(x)

N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.3. ( [13]) If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω, then there is a
continuous (compact) embedding X →֒ Lq(x)(Ω).

Definition 2.4. We say that u ∈ X is a weak solution of (1.1), if

h

(∫

Ω

1

p(x)
|∇u|p(x) dx

)∫

Ω

(| ∇u |p(x)−2 ∇u∇v dx−

∫

Ω

f(x, u)v dx = 0,

∀v ∈ X.

In order to study (1.1) by means of variational methods, we introduce the functional associated

φ(u) = H

(∫

Ω

1

p(x)
|∇u|p(x) dx

)
−

∫

Ω

F (x, u)dx,

for u ∈ X.
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3. Proof of the main result

Firstly, we shall recall the following interesting proposition:

Proposition 3.1. [15] Let φ ∈ C1(X,R) where X is a Banach space. Assume φ satisfies the (P.S.)
condition, is even and bounded from below, and φ(0) = 0. If for any n ∈ N, there exists a k-dimensional
subspace Xn and ρn > 0 such that

sup
Xn∩Sρn

φ < 0;

where Sρ := {u ∈ X : ‖u‖ = ρ}, then φ has a sequence of critical values cn < 0 satisfying cn → 0 as
n → ∞.

We split the proof of the above result into three claims as follows.
Claim 1: There exist δ > 0 and f̃ ∈ C(Ω × R) such that f̃ is odd and

f̃(x, t) = f(x, t) for |t| <
δ

2
. (3.1)

p−F̃ (x, t) − f̃(x, t)t ≥ 0, for (x, t) ∈ Ω × R (3.2)

and

p−F̃ (x, t) − f̃(x, t)t = 0 for |t| > δ(or t = 0), (3.3)

where

F̃ (x, t) =

∫ t

0

f̃(x, s)ds.

Proof : Firstly let define

F̃ (x, t) = g(t)F (x, t) + (1 − g(t))d|t|p
−

where d is a positive constant and g is a cut-off function presented as follows:

g(t) =

{
1 if |t| ≤ δ

2 ,

0 if |t| ≥ δ,

and

g′(t)t ≤ 0, |g′(t)| ≤
4

δ
.

For |t| ≤ δ
2 , easily (3.1) holds.

Meanwhile, we have

f̃(x, t) =
∂

∂t
F̃ (x, t) = g′(t)F (x, t) + g(t)f(x, t) + (1 − g(t))(d|t|p

−

)′ − dg′(t)|t|p
−

.

It is immediate to see that when |t| ≥ δ

p−F̃ (x, t) = p−d|t|p
−

,

therefore (3.3) is satisfied. In the rest, from (f2), we may choose δ > 0 sufficiently small in order to get

F (x, t) ≥ d|t|p
−

when t ∈ [ δ
2 , δ] and due to the fact that g′(t)t ≤ 0 we obtain the formula (3.2).�

We introduce the functional

φ̃(u) = H

(∫

Ω

1

p(x)
|∇u|p(x) dx

)
−

∫

Ω

F̃ (x, u)dx,

for u ∈ X.
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Claim 2: If φ̃(u) = φ̃
′
(u).u = 0 then u = 0. Otherwise, u 6= 0. From our assumption,

∫

Ω

F̃ (x, u)dx = H

(∫

Ω

1

p(x)
|∇u|p(x) dx

)

and

h

(∫

Ω

1

p(x)
|∇u|p(x) dx

)(∫

Ω

|∇u|p(x)dx

)
=

∫

Ω

f(x, u)u dx,

so we get

p−

∫

Ω

F (x, u)dx = p−H

(∫

Ω

1

p(x)
|∇u|p(x) dx

)

≤ p−λh

(∫

Ω

1

p(x)
|∇u|p(x) dx

)(∫

Ω

1

p(x)
|∇u|p(x)dx

)

≤ p− 1

p−
λh

(∫

Ω

1

p(x)
|∇u|p(x) dx

)(∫

Ω

|∇u|p(x)dx

)

<

∫

Ω

f̃(x, u)u dx, (3.4)

which contradicts the condition (3.2).

Claim 3: The functional φ̃ satisfies the Palais-Smale condition (P.S):

According to previous Claim 2, it is easy to check that φ̃ is even and φ̃ ∈ C(X,R). Meanwhile, for
‖u‖ > 1 we have

φ̃(u) = H

(∫

Ω

1

p(x)
|∇u|p(x) dx

)
−

∫

Ω

F̃ (x, u) dx

≥ h1

(∫

Ω

1

p(x)
|∇u|p(x) dx

)
−A

∫

Ω

|u|p
−

dx

≥
h1

p+
‖u‖p−

−B‖u‖p−

, (3.5)

with A and B are two positive constants. Then φ̃ is coercive i.e φ̃(u) → ∞ when ‖u‖ → ∞. Hence any

(P.S)c sequence of φ̃ is bounded. So by a standard argument shows that φ̃ verifies (P.S)c condition on
X for all c.

Proof of Theorem 1.1:
We modify and extend f(x, u) to get f̃(x, u) ∈ C(Ω × R,R) verifying the mentioned properties of

Proposition 3.1. .
For any k ∈ N we get k independent smooth functions ψi for i = 1, ...k and define the subspace

Xk := span{ψ1, ..., ψk}. Meanwhile, form the Claim 1, for ‖u‖ < 1 we can obtain

φ̃(u) ≤
h2

β

(
1

p(x)
|∇u|p(x)dx

)β

+ h3

(
1

p(x)
|∇u|p(x)dx

)
− C

∫

Ω

|u|p
−

dx

≤
h2

β(p−)β
‖u‖βp−

+
h3

p−
‖u‖p−

− C

∫

Ω

|u|p
−

dx. (3.6)

Taking (3.6) in account and as all norms in Xk are equivalent, so for sufficiently small ρk > 0 and for C
sufficiently large, we get

sup
Xk∩Sρn

φ̃ < 0.

We see that the assertions of proposition 3.1 are fulfilled, and then there exist a sequence of negative
critical values ck for the functional φ̃ verifies ck → 0 when k is large enough.
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Thereby, for any uk ∈ X satisfying φ̃(uk) = ck and φ̃
′
(uk) = 0, we have (uk)k is (P.S)0 sequence of

φ̃(u). Passing, if necessary, to a subsequence still denoted by (uk), we may assume that (uk)k has a limit.
According to Claim 1 and Claim 2, we know that the value 0 is the only critical point when the energy

is zero what implies that the subsequence of (uk) converges to 0. By the results of regularity in [10,11],

(uk) ∈ C(Ω) and |uk|L∞ → 0 as k → ∞.

So from the Claim 1, we have

|un|C(Ω) ≤
δ

2
.

Thereby the sequence (uk)k are solutions of the problem (1.1). �

Remark 3.2. Assume the following hypothesis:
(f ′

2) f ∈ C(Ω × (−δ, δ),R) such that

lim
|t|→0

F (x, t)

|t|p−
= ∞

instead of (f2), so by the same method, with slightly modified lines, we may obtain the above result. An
example of function satisfies our hypotheses is

F (x, t) =
c(x)

p−
|t|p

−

log

(
1

|t|

)
c(x) > 0.

Assume that
(g) g(x, u) is continuous, odd in u in a neighborhood of 0 and there exists

1 < r(x) < p∗(x),

such that
|g(x, t)| ≤ C(1 + |t|r(x)−1)

for a.e x ∈ Ω, t ∈ R, with C be positive constant and we have

lim inf
t→0

G(x, t)

F (x, t)
> −1

and

lim inf
t→0

L0(x, t)

L(x, t)
> −1

uniformly in Ω, where
L0(x, t) = p−G(x, t) − g(x, t)t > 0

for every x ∈ Ω and t 6= 0 and G(x, t) =
∫ t

0
g(x, s) ds.

As an application of Theorem 1.1, we have the following result.

Corollary 3.3. Let us consider the following problem

h

(∫

Ω

1

p(x)
|∇u|p(x)dx

)(
−∆p(x)u

)
= f(x, u) + g(x, u) in Ω,

u = 0 on ∂Ω,

(3.7)

Under the assumptions (f1) − (f4), (h1), (h2), and (g), the problem (3.7) has a sequence of weak
solutions such that ‖un‖L∞ → 0 as n → ∞.

proof : From the condition (g), we can see that the new nonlinear term f(x, t) + g(x, t) still satisfies
the above conditions used in the main result, so by the same lines in proof of Theorem 1.1, we infer that
the problem (3.7) has a sequence of solutions with ‖un‖L∞ → 0 as n → ∞.
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