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The Spectral Polynomials of Two Joining Graphs: Splices and Links

Feriha Celik, Utkum Sanli and Ismail Naci Cangul

abstract: Energy of a graph, firstly defined by E. Hückel as the sum of absolute values of the eigenvalues
of the adjacency matrix, in other words the sum of absolute values of the roots of the characteristic (spectral)
polynomials, is an important sub area of graph theory. Symmetry and regularity are two important and
desired properties in many areas including graphs. In many molecular graphs, we have a pointwise symmetry,
that is the graph corresponding to the molecule under investigation has two identical subgraphs which are
symmetrical at a vertex. Therefore, in this paper, we shall study only the vertex joining graphs. In this article
we study the characteristic polynomials of the two kinds of joining graphs called splice and link graphs of
some well known graph classes.
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1. Significance of the work

In the last seven decades, graphs have been implemented increasingly to model real life situations to
obtain numerical data by mathematical ways which can be commented to obtain physical or chemical
information normally obtained as a result of time and money consuming laboratory experiments. There
are three main ways of transforming such a case to mathematical language: by means of vertex degrees,
matrices or distances. In this work, we give an algebraic method for one of the matrices called the
sum-edge characteristic polynomials corresponding to graphs.

2. Introduction

We take G = (V,E) to be a simple connected graph, that is G is a graph with no loops nor multiple
edges. We call two vertices u and v of G adjacent if there is an edge e of G connecting u to v. If G has
n vertices v1, v2, · · · , vn, we can form an n× n matrix A = (aij) by

aij =

{

1, if vi and vj are adjacent
0, otherwise

This matrix is called the adjacency matrix of the graph G. As well-known, the eigenvalues λ1, · · · , λn

of a square n×n matrix A, which will also be called as the eigenvalues of the graph G, are the roots of the
equation |A−λIn| = 0. The polynomial on the left hand side of this equation is called the characteristic
(or spectral) polynomial of A (and of the graph G). The set of all eigenvalues of the adjacency matrix A
is called the spectrum of the graph G, denoted by S(G). As usual, we denote a complete graph by Kn,
a star graph by Sn and a path graph by Pn. The spectrum of these graphs are known in literature, [3]
and [8]. For more detailed information about the fundamental topics on graphs and spectrums of some
well-known graphs, see [1], [3], [4], [5] and [6].
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One of the methods of studying graphs is to make use of the graph operations. There is a large
and increasing number of graph operations such as join, corona, cartesian product, union, composition,
concatenation, brick product, etc. In this paper we will give two new graph operations by joining two
given graphs by two new methods and shall study their spectral polynomials.

3. Joining graphs (splices and links) and their spectral polynomials

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The classical union of these two graphs denoted
by G1 ∪G2 is a graph G1 ∪G2 = (V (V1 ∪V2), E(E1 ∪E2)). In this section we rebuilt two new operations
similar to the union. We will study the resulting graphs for G1 = G2 = Kn, Sn and Pn.

3.1. Joining graphs at a vertex: Splices

Doslic defined a new type of graph operation in [7]:

Definition 3.1. Let G1, G2 be two graphs and let us label two vertices, one in V (G1) and the other

in V (G2), by v. The vertex joining graph at v or the splice of these two graphs is denoted by

G1 ∨v G2 and obtained by identifying the vertices v of the two graphs. The vertex set of G1 ∨v G2 is

V (G1 ∨v G2) = V (G1) ∪ V (G2) and the edge set of G1 ∨v G2 is E(G1 ∨v G2) = E(G1) ∪ E(G2).

If |V (G1)| = n1 and |V (G2)| = n2, then |V (G1 ∨v G2)| = n1 + n2 − 1, and if |E(G1)| = m1 and
|E(G2)| = m2, then |E(G1 ∨v G2)| = m1 +m2.

Naturally, if two graphs G1, G2 are not labelled, the vertex at which we join these two graphs can be
selected in many different ways. So the vertex joining (splice) graph is not unique if we do not identify
the vertex at which we obtain the vertex joining graph. Some properties of splice graphs were studied in
[2].

Example 3.2. Let us have the two graphs G1, G2 as in Fig. 1.

Figure 1: The splice graph of G1 and G2.

Vertex joining graph of two graphs is useful in many kinds of calculations with large graphs. We can
use the cut vertices of a large graph G to divide G into smaller components and calculate the desired
property for these smaller graph pieces to obtain the result for G.

Symmetry and regularity are two important and desired properties in many areas including graphs. In
many molecular graphs, we have a pointwise symmetry, that is the graph corresponding to the molecule
under investigation has two identical subgraphs which are symmetric at a vertex. Therefore, in this paper,
we shall study only the vertex joining graphs G ∨v G, that is we take G1 = G2, and call the obtained
graph as the vertex joining graph at v of G.

Using the well-known characteristic polynomials of Kn, Sn and Pn, we shall formulate the character-
istic polynomials of Kn ∨v Kn, Sn ∨v Sn and Pn ∨v Pn.
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We now recall the characteristic polynomials of complete graph Kn, star graph Sn, and path graph
Pn which are well-known in literature, see [3]:

Pol(G) =
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n−2 (

λ2 − n+ 1
)

, if G = Sn,

n
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(

n−k
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)
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n−1
2
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k=0

(−1)k+1
(

n−k
k

)

λn−2k, if G = Pn, n is odd.

(3.1)

We now give the formula for the vertex joining graphs G ∨v G for G = Kn, Sn and Pn as follows. First
we deal with the complete graph Kn:

Theorem 3.3. The characteristic polynomial Pol(Kn ∨v Kn) of Kn ∨v Kn in terms of Kn and Kn−1 is

Pol(Kn ∨v Kn) = (1 + λ)n−2
[

(−1)n+1 ((n− 2)Pol(Kn−1)
+(λ− n+ 2)Pol(Kn))− Pol(Kn−1)] .

Proof. Let us consider the vertex joining graph at v of the complete graphKn. For clearence, we illustrate
the n = 5 case in Fig. 2:

Figure 2: Vertex joining graph of K5 and K5.

The adjacency matrix of Kn ∨v Kn is

A =









































0 1 1 . . . 1 1 1 1 . . . 1
1 0 1 . . . 1 1 0 0 . . . 0
1 1 0 . . . 1 1 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
1 1 1 . . . 0 1 0 0 . . . 0
1 1 1 . . . 1 0 0 0 . . . 0
1 0 0 . . . 0 0 0 1 . . . 1
1 0 0 . . . 0 0 1 0 . . . 1
...

...
...

. . .
...

...
...

...
. . .

...
1 0 0 . . . 0 0 1 1 . . . 1
1 0 0 . . . 0 0 1 1 . . . 0









































(2n−1)×(2n−1)

.

In this adjacency matrix, we can easily see that its elements have some special rule in rows and columns.
By dividing this adjacency matrix, the top of left side matrix is Kn and the bottom of right side Kn−1.
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In literature the characteristic polynomial of Kn ∨v Kn is given by

Pol(Kn ∨v Kn) = |λI2n−1 −A|

=
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By using the elementary column operations −C2n−1 + Cn+1 −→ Cn+1, −C2n−1 + Cn+2 −→ Cn+2,
−C2n−1 + Cn+3 −→ Cn+3, . . . , −C2n−1 + C2n−2 −→ C2n−2. This time by using row operations
1
λ
R2n−1+Rn+1 −→ Rn+1,

1
λ
R2n−1+Rn+2 −→ Rn+2,

1
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R2n−1+Rn+3 −→ Rn+3, . . . ,

1
λ
R2n−1+R2n−2 −→

R2n−2. Taking the (n + 1)− th, (n+ 2)− th, · · · , (2n− 2)− th rows into the paranthesis of (1 + λ)/λ,
the above determinant becomes

=
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Adding the negative of the (n+ 1)− th row to all the rows below it, and taking the last n− 2 rows into
paranthesis of λ, we get

= (1 + λ)
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Adding the sum of all the rows between (n + 1) − th and (2n − 2) − th to the (n + 1) − th row, and
calculate the obtained determinant according to the last row, we get

= (1 + λ)n−2
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Adding the columns C2n−2, C2n−3, · · · , Cn+1 to Cn+1 in the first determinant and calculating the
second determinant according to the last row, we get

= (1 + λ)n−2
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Calculating the first determinant according to the last row, and afterwards, continuing in the same
fashion for both determinants until the (n+ 2)− th row, we obtain
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Next calculating both determinants first according to the last rows and after according to the last columns,
we get
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(n − 2 − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 1 . . . 1
1 −λ 1 . . . 1
1 1 −λ . . . 1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
1 1 1 . . . 1
1 1 1 . . . −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n×n

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 1 . . . 1
1 −λ 1 . . . 1
1 1 −λ . . . 1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
1 1 1 . . . 1
1 1 1 . . . −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n−1)×(n−1)





















.

Finally using the statements for Pol(Kn) and Pol(Kn−1), we get the required result. �

This formula can be stated explicitly in terms of λ as follows:

Theorem 3.4. The characteristic polynomial of Kn ∨v Kn is

Pol(Kn ∨v Kn) = − (λ− n+ 2)
(

λ2 − (n− 2)λ− 2n+ 2
)

(λ+ 1)
2n−4

.

Proof. Using the formula for Pol(Kn) in Equation 3.1, we obtain the result. �

Secondly, we study the characteristic polynomial of the vertex joining graph at v of the star graph.

Theorem 3.5. The characteristic polynomial Pol(Sn ∨v Sn) of Sn ∨v Sn is

Pol(Sn ∨v Sn) =























Pol(S2n−1), if v is the
central vertex.

(−λ)n−3
(

λ2 − n+ 2
) (

Pol(Sn)− (−λ)n−2
)

, if not.

Proof. First, let v be the central vertex of Sn and let us consider the vertex joining graph at v of the star
graph Sn.

Figure 3: Vertex joining graph of Sn and Sn at the central vertex.

As Sn ∨v Sn = S2n−1, using the Eqn. 3.1 for Sn, we obtain Sn ∨v Sn as (−λ)
n−2 (

λ2 − n+ 1
)

.

Secondly, let v be one of the outer vertices of Sn and let us consider the vertex joining graph at v of
the star graph Sn. For clearence, we illustrate the obtained graph in Fig. 4:
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Figure 4: Vertex joining graph of Sn and Sn at an outer vertex.

The adjacency matrix of Sn ∨v Sn is

A =









































0 1 0 . . . 0 1 0 0 . . . 0
1 0 1 . . . 1 0 0 0 . . . 0
0 1 0 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 1 0 . . . 0 0 0 0 . . . 0
1 0 0 . . . 0 0 1 1 . . . 1
0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 . . . 0 1 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 . . . 0 1 0 0 . . . 0









































(2n−1)×(2n−1)

.

Hence the characteristic polynomial of Sn ∨v Sn is

Pol(Sn ∨v Sn) = |λI2n−1 − A|

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 . . . 0 1 0 0 . . . 0
1 −λ 1 . . . 1 0 0 0 . . . 0
0 1 −λ . . . 0 0 0 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 1 0 . . . −λ 0 0 0 . . . 0
1 0 0 . . . 0 −λ 1 1 . . . 1
0 0 0 . . . 0 1 −λ 0 . . . 0
0 0 0 . . . 0 1 0 −λ . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 . . . 0 1 0 0 . . . −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2n−1)×(2n−1)

.

In this determinant, we can easily see that the top left n × n part is the characteristic polynomial
of Sn and the bottom right (n − 1) × (n − 1) part is the characteristic polynomial of Sn−1. Firstly
by using the elementary column operations 1

λ
C2n−1 + Cn+1 −→ Cn+1,

1
λ
C2n−1 + Cn+2 −→ Cn+2,

1
λ
C2n−1 + Cn+3 −→ Cn+3, . . . ,

1
λ
C2n−1 + C2n−2 −→ C2n−2, and secondly applying 1

λ
Cn+2 + Cn+1 −→

Cn+1,
1
λ
Cn+3 + Cn+1 −→ Cn+1,

1
λ
Cn+4 + Cn+1 −→ Cn+1, . . . , 1

λ
C2n−2 + Cn+1 −→ Cn+1, the above

determinant becomes

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 . . . 0 1 0 0 . . . 0
1 −λ 1 . . . 1 0 0 0 . . . 0
0 1 −λ . . . 0 0 0 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 1 0 . . . −λ 0 0 0 . . . 0

1 0 0 . . . 0 n−2−λ
2

λ
1 1 . . . 1

0 0 0 . . . 0 0 −λ 0 . . . 0
0 0 0 . . . 0 0 0 −λ . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2n−1)×(2n−1)

.
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In the last determinant, it is clearly seen that aij = 0 where i = n+ 2, · · · , 2n− 1 and j = 1, · · · , n+ 1.
These zero terms give a nice way to compute this determinant by using linear algebraic methods. It
is equal to the product of its left upper side n+ 1 × n+ 1 square determinant and right bottom side
n− 2× n− 2 square determinant as follows:

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 . . . 0 1
1 −λ 1 . . . 1 0
0 1 −λ . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 1 0 . . . −λ 0

1 0 0 . . . 0
−λ

2+(n−3)λ+1
λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n+1)×(n+1)

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 0 . . . 0
0 −λ . . . 0
0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n−2)×(n−2)

It is clearly seen that the second determinant is diagonal and its value is the product of diagonal entries,
(−λ)n−2. Calculating the first determinant according to the last row, we get

= (−λ)n−2
(

−λ2+(n−3)λ+1
λ

Pol(Sn)

+(−1)n+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 . . . 0 1
−λ 1 1 . . . 1 0
1 −λ 0 . . . 0 0
1 0 −λ . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . −λ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n×n



















.

From the last determinant, using some elementary row and column operations, we get

= (−λ)n−2
(

(−λ2+(n−3)λ+1
λ

)Pol(Sn)

+(−1)n+2(−λ2+n−2
λ

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 . . . 0 1
1 0 0 . . . 0 0
1 −λ 0 . . . 0 0
1 0 −λ . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . −λ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n×n



















.

Adding the negative of the second row to Ri for i = 3, 4, · · · , n and finally calculating the last determinant
according to the first row, we get the required result. �

Replacing the formula for the characteristic polynomial of Sn, we obtain the explicit formula for
Sn ∨v Sn as follows:

Corollary 3.6. Let v be one of the outer vertices of Sn. The characteristic polynomial of Sn ∨v Sn is

Sn ∨v Sn = −λ2n−5
(

λ2 − n+ 2
) (

λ2 − n
)

.

Next we deal with the characteristic polynomial of Pn. In this case, as Pn ∨v Pn is again a path graph
P2n−1, we obtain the following result:

Theorem 3.7. The characteristic polynomial of Pn ∨v Pn is

Pol(Pn ∨v Pn) = Pol(Pn−1) [Pol(Pn)− Pol(Pn−2)]

Also it is equal to

Pol(Pn ∨v Pn) = −Pol(Pn−1) [λPol(Pn−1) + 2Pol(Pn−2)] .
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Proof. Let us consider the graph of Pn and Pn ∨v Pn.

Figure 5: Vertex joining graph of Pn and Pn.

Joining two Pn’s at one of the end vertices, say v, of both of them, we get a new path graph, which
has 2n− 1 vertices. By using Eqn. 3.1, we get the result easily. �

Corollary 3.8. The characteristic polynomial of Pn ∨v Pn is

Pn ∨v Pn =
n−1
∑

k=0

(−1)k+1

(

2n− 1− k

k

)

λ2n−2k−1.

The proof can be done by replacing the formulae for Pn, Pn−1 and Pn−2 in Eqn. 3.1.

3.2. Joining graphs by an edge: Links

In this section we recall a new joining operation called the link or edge joining graph which uses an
extra edge, actually a bridge, for adding two graphs to each other, see [7].

Definition 3.9. Let G1, G2 be two graphs and let us label two vertices, one in V (G1) and the other in

V (G2), by v. The edge joining graph at v or the link of these two graphs is denoted by G1 ∨
e
v G2

and obtained by adding a new edge e between the identified vertices v of the two graphs.

The vertex set of G1 ∨e
v G2 is V (G1 ∨e

v G2) = V (G1) ∪ V (G2) and the edge set of G1 ∨e
v G2 is

E(G1 ∨
e
v G2) = E(G1) ∪ E(G2) ∪ {e}.

Example 3.10. Let us have the two graphs G1, G2 and their joining graph by a new edge e on v as in

Fig. 6.

Figure 6: Edge joining graph at v of G1 and G2.

Now we are ready to obtain the characteristic polynomials of edge joining graphs at a vertex v for
G1 = G2 = Kn, Sn and Pn:

Theorem 3.11. The characteristic polynomial of Kn ∨e
v Kn is

Pol(Kn ∨e

v
Kn) = Pol(Kn) ·

(λ2 − (n − 3)λ − (2n − 3))(λ2 − (n − 1)λ − 1)(λ + 1)n−3

(λ − n + 1)
.

Proof. For illustration, the figure of Kn ∨e
v Kn is given for n = 5.
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Figure 7: Edge joining graph at v, K5 ∨
e
v K5.

The adjacency matrix of Kn ∨e
v Kn is

A =









































0 1 · · · 1 1 1 0 · · · 0 0
1 0 · · · 1 1 0 0 · · · 0 0
1 1 · · · 1 1 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
1 1 · · · 0 1 0 0 · · · 0 0
1 1 · · · 1 0 0 0 · · · 0 0
1 0 · · · 0 0 0 1 · · · 1 1
0 0 · · · 0 0 1 0 · · · 1 1
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 1 1 · · · 0 1
0 0 · · · 0 0 1 1 · · · 1 0









































2n×2n

.

In this adjacency matrix, the top left n× n matrix and the bottom right n× n matrix are the adjacency
matrix of Kn. The characteristic polynomial of Kn ∨e

v Kn is given by

Pol(Kn ∨e
v Kn) = |A− λIn|

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 · · · 1 1 1 0 · · · 0 0
1 −λ · · · 1 1 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
1 1 · · · −λ 1 0 0 · · · 0 0
1 1 · · · 1 −λ 0 0 · · · 0 0
1 0 · · · 0 0 −λ 1 · · · 1 1
0 0 · · · 0 0 1 −λ · · · 1 1
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 1 1 · · · −λ 1
0 0 · · · 0 0 1 1 · · · 1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2n×2n

.

Firstly, adding the negative of the (n+ 2)− th row to all the rows below it, and then adding the sum of
all the colums between (n+ 3)− th and 2n− th to the (n+ 2)− th column, we get

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 · · · 1 1 0 0 · · · 0 0
1 −λ · · · 1 0 0 0 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 1 · · · −λ 0 0 0 · · · 0 0
1 0 · · · 0 −λ (n − 1) 1 · · · 1 1
0 0 · · · 0 1 (n − 2 − λ) 1 · · · 1 1
0 0 · · · 0 0 0 −(1 + λ) · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 0 0 0 0 · · · −(1 + λ) 0
0 0 · · · 0 0 0 0 · · · 0 −(1 + λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2n×2n
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In the last determinant, aij = 0 where i = n + 3, · · · , 2n and j = 1 · · · , n + 2. This determinant is
equal to the product of its left upper side (n + 2) × (n + 2) square determinant and right bottom side
(n− 3)× (n− 3) square determinant as below:

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 1 . . . 1 0
1 −λ 1 . . . 0 0
1 1 −λ . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 0 0 . . . −λ n − 1
0 0 0 . . . 1 (n − 2 − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n+2)×(n+2)

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(1 + λ) 0 . . . 0
0 −(1 + λ) . . . 0
0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . −(1 + λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n−3)×(n−3)

The second determinant is diagonal and its value is the product of diagonal entries, (−1 − λ)n−3.
Calculating the first determinant according to the last row, we get

= (−1− λ)n−3





















(−1)2n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 1 . . . 1 0
1 −λ 1 . . . 1 0
1 1 −λ . . . 1 0
...

...
...

. . .
...

...
1 1 1 · · · −λ 0
1 0 0 . . . 0 n− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n+1)×(n+1)

+(n− 2− λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 1 . . . 1 1
1 −λ 1 . . . 1 0
1 1 −λ . . . 1 0
...

...
...

. . .
...

...
1 1 1 · · · −λ 0
1 0 0 . . . 0 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n+1)×(n+1)





















.

Calculating the both determinants according to the last columns, and afterwards, by using suitable editing
and the polynomials of Kn and Kn−1 we get the result.

�

Theorem 3.12. The characteristic polynomial of Sn ∨e
v Sn is

Pol(Sn ∨e
v Sn) = −λ2n−2 + (−λ)n−1

(

λ2 − n+ 1
)

Pol(Sn).

Proof. For clearence, we illustrate the edge joining graph at v of Sn, where e joins central vertices of
Sn’s.

Figure 8: Edge joining graph at v, Sn ∨e
v Sn.

Firstly, getting the characteristic polynomial of Sn∨
e
v Sn, |Sn ∨e

v Sn − λI2n| and then by using similar
operations, we get the result easily. �

Theorem 3.13. The characteristic polynomial of Pn ∨e
v Pn is

Pol(Pn ∨e
v Pn) = −λPol(Pn)Pol(Pn−1)− Pol2(Pn−1)− Pol(Pn)Pol(Pn−2).
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Proof. It is clearly seen at Figure 9 that the edge joining graph at v of Pn’s is equal to the graph of P2n.

Figure 9: Edge joining graph at v, Pn ∨e
v Pn.

By Eqn. 3.1, we obtain the result. �
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