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Existence of Solutions for a p-Laplacian System with a Nonresonance Condition Between
the First and the Second Eigenvalues

Sara Dob, Hakim Lekhal, Messaoud Maouni

ABSTRACT: In this article, we study the existence of positive solutions for the quasilinear elliptic system

—Apu(z) = fi(z,v(z)) + hi(z) inQ,
—Apv(z) = fo(x,u(x)) + ha(z) inQ,
u=v=0 on 99,

where f;(z,s), (i =1,2) locates between the first and the second eigenvalues of the p-Laplacian. To prove the
existence of solutions, we use the Leray-Schauder degree.
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1. Introduction

Systems of quasilinear elliptic equations present some new and interesting phenomena, which are not
present in the study of a single equation. Many publications have appeared concerning quasilinear elliptic
systems we refer the readers to ([4], [10]).

In recent years, the eigenvalue problems for p-Laplacian operators have been extensively studied (see
[3],[6], [7], [8]). The main purpose of this article is to prove the existence of solutions for a quasilinear
elliptic system when the second terms on the two equations f;(x,s), (i = 1,2) locates between the first
and the second eigenvalue of the p-Laplacian. This result can be seen as a generalization of the result
obtained by A. Anane and N. Tsouli in [3].

In this paper, we study the existence of positive solution for the nonlinear elliptic system

—Apu(z) = fi(z,v(z)) + hi(zx) in Q,
—Apv(x) = folz,u(x)) + he(z) in Q, (1.1)
u=v=0 on 0f,

where A,u = div(|Vu|P~2Vu) is the p-Laplacian operator with the exponent p, 1 < p < oo and  is a
smooth bounded region in R” for n > 1.

Through this paper, h; € W1 (Q) with i = 1,2 and p’ the Holder conjugate of p. As to the nonlinearities
fi (i=1,2), we assume that they are Carathéodory functions from  x R to R such that

max |f;(z, )| € LP(Q), VR; >0, (1.2)

ls|<

A < Li(z) <Ei(x) < A2 ae. in Q,

b (1.3)
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where
li(x) = lim inf filz, )

s—+oo |s|p728’ k‘l(x)_ lim sup

s—»+oo |5|P*25’

and A1 (resp., A2) is the first (resp., the second) eigenvalue of the problem

—Apu = NulP~2u  in Q,
u=0 on 9.

First inequality in (1.3) means: "less or equal almost everywhere with strict inequality on a set of positive
measure”. we also assume that the inequalities in (1.3) holds for i = 1,2:

Ve, >0, Inle) >0: 0 —e; < L&D ys| > n(e;), ae. in €,

|s|P—2s"

(1.4)
Ve, > O, 37](81) >0: fi(@,s) < Ay + Eiy V|S| > 77(51'), a.e. in Q.

[s]P—2s

Recently, A. Anane and N. Tsouli [3] study the existence of solutions for the Dirichlet problem —A,u =
flz,u) + h(z) in Q, v =0 in 99, when f(z,u) locates between the first and the second eigenvalues of
the p-Laplacian (A,), using Leray-Schauder topological degree.

Their work is based on the absurd reasoning, they arrived at a contradiction by using different lemmas
and the variation characterization of Ay, more precisely the monotonicity of Ay. Our work is based on
the same method of proof.

The main result of this paper is the following theorem.

Theorem 1.1. Fori = 1,2, assume that f; satisfies (1.2), (1.3) and (1.4). Then for any h; € W17 (2),
(1.1) admits a weak solution (u,v) in WyP(2) x Wy P(Q).

As usual, a weak solution of system (1.1) is any (u,v) € Wy (Q) x W, ?(Q) such that

/|Vu|p*2VuV<p1dx+/|Vv|p*2VvVg02dx: /fl(x,v)goldx—k/ fo(z, u)pydx
Q Q Q Q
+<h15 ()01> + <h27 ¢2>a
for every ¢, € W=7 (Q), (i = 1,2), where (.,.) denotes the duality product between W17 (Q) and
Wy (92).

Next, let us define by (T%)sc[0,1) the family of operators from Wy P () x Wy P (2) to Wy P () x Wy P(Q)
defined by

(Ti(u,v)\  (—A! 0 (1 —t)aq |[ulP~2u +tfi(z,v) + th
Ti(w,v) = (T;(u,v)> - ( 0 —A;l) . ((1 —t)a;|v|p_20+tf21(x,u)+th;>’ (1.5)

where oy, i = 1,2 are some fixed numbers with A\; < a; < Ag.
We consider the space U = W, *(Q) x Wy () endowed with the norm

It )l = Nl + 01 (L6)

V =LP(Q) x LP(Q), Y = LV (Q) x L” (Q) and Z = W17 (Q) x W1 (Q). In the sequel, ||.||z»(q) and
[[-[[ » (o) Will denote the usual norms on LP(£2) and L¥'(Q), respectively.

Remark 1.2. Hypotheses (1.2) and (1.4) give us the growth conditions
|fi(z,8)] < ag|s|P~t +bi(x) V|s| €R, ae inQ, (1.7)

where a; > 0 and b;(.) € LP' ().
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Remark 1.3. Equations (1.2) and (1.4) imply

Ve; >0, 3Jb.. € LP(Q) such that
Is[P(Ar — &5) = be, () < sfi(w,5) < [s[P(A2 + &) — be, (2), (1.8)
Vs € R, a.e. in Q.

Lemma 1.4. T; is continuous and compact.

Proof. We have, T; : U — U; to prove the Lemma, we have

U(—>V7>Y‘—>Z§>U, (1.9)

such that the Nemytskii operator

A vV =Y
(U,’U) = (fl(xvv)va(xau))v

and

are continuous and compact. ]

2. A priori estimate

To prove theorem (1.1), we first establish the following estimate:
3R > 0 such that Vt € [0,1],V(u,v) € dB(0, R) such that [I — T3)(u,v) # 0,

where B(0, R) denotes the ball of center 0 and radius R in U.
For, we assume by contradiction that

Yn >0, 3t, €[0,1], F(un,v,) € U with

[(en, vn)|l1,p = n such that Ty, (tn, vn) = (Un, V). (2.1)
Let w, = (Win,w2,) = (5=, %). We still denoted by (w,) the subsequence of (w,) which converges
weakly in U, strongly in V' and a.e. in  to w.
We can also suppose that ¢,, converges to ¢t € [0,1]. That to reach a contradiction, we need the following
lemmas.

Lemma 2.1. If the sequence g, = (gin, gon) are defined by

fi(xynwwr(fl)i‘*'ln)
np—1

Jin = 5 1= 17 2) (22)

then gin are bounded in L¥' (), and they admit subsequences gi, converging weakly to some g; in LP' ().
Proof. From (1.7), we have
|fil, 8)| < ails[P~H + bi(2),

then

bi(z)

np—1’

as b;(z) in L? (Q) and Wi~y Pt € L¥ (Q), s0 gin become bounded in L¥' (Q).

Consequently, there exists a subsequence, still denoted by ¢;,, converging weakly to g; in L (Q). O

|gin (%) < @ilwig1yien P+



4 S. Do, H. LEKHAL, M. MAOUNI

Lemma 2.2. w; #0,i=1,2.
Proof. We have that w,, verifies

/|Vw1n|pdx+/ |Vwap|Pde =(1 — t,) [ /|w1n|de+a2/ w3 Pla]
/gln wlnd$+/g2n(x)w2nda:
Q

+ P < hl,wln Woy, > } (23)
We get from lemma (2.1)
1=(1-1) [oq/ |wy |Pdx + ag/ |wa [Pdz] + t[/ g1(x)widz +/ 92(x)wodz]; (2.4)
Q Q Q Q
from the diffrent properties of the weak and strong convergences we get that w; # 0, ¢ = 1, 2. O
Lemma 2.3. Let A={z € Q:w;(x)#0, (i=1,2)}, then
gi =0 a.e. in Q\ A wherei=1,2.
Proof. The inequality (1.7) gives us for every i (i = 1,2)
— bl(x) .
|9in ()] < @ilwig1yivinlPT + =1 e QA4 (2.5)
S0 . .
Iginll Lo (o a) < @illwir—vytrnll foonay + FHbiHLP’(Q\A)' (2.6)
From lemma (2.2), we have
i [lginll ooy =0 (=1,2) (27)

Let D={x € Q\A:¢9; 40, (i=1,2)}. By lemma (2.1) we get, for ¢,(z) = sign[gi(x)]xp(x) € LP(D)

such that
0 ;x¢D,
XD(x):{l s €D
that
Jin [ gu@oes = [ g eis = [ o) (28)

but, we have by (2.7)
[ lataiar =0, =12 (29)
D
consequently, meas(D) = 0 which implies

gi =0 a.e. in Q\ A where i =1, 2.

O
Lemma 2.4. Leti=1,2 and
g9:(x)
gi(x) = {'w(r)iﬂ—l)iﬂp2“’($)7:+(—1>7?+1 on A, (2.10)
ﬁi on \ A7
where 3; are fived numbers such that A\ < 3; < A2, then
A1 < gi(z) < A aee in Q. (2.11)

#
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Proof. For i = 1,2, firstly we define new subsets us follow

By, ={x € A w1yt (2)gi(x) < Li(@)|wiy(—1yirr ()P},
By, ={x € A: wip—1yitr (@) gi(x) > ki () |[w;p(—1yier (2) P},

then we prove that meas(B;,) = meas(By,) = 0.
By remark (1.3), we have that Ve; >0, 3b., € L” (2) such that

b,
|wig(—1yi1nlP(li — i) — n—sp S Wi (—1)itinGin < |Wip(—1yitin | (ki +e5) + nsp

By integrating in the first inequality and letting n — oo, then e — 0, we deduce

/ 0 1yt (2)g2(2) — g 1y () PLi())dz > 0,

Bli

and from the definition of the subset Bj,, we get

/ s (—1yit1 (2)g:(@) — [wis(—1yoss () PLi())dz < 0.

By,

Whereupon
/ s (1)1 (2)9i () — 14 1y (@)PLi()]de = 0,

By,

i

which implies meas(B;,) = 0. The second inequality give us meas(By,) = 0.
In the second step, from the definition of g;, we obtain

li(z) < gi(z) < ki(x) ae. in A,
and hypothesis (1.3) allow us to write
A1 < gi(x) < Ag ace. in A.

Since g; = 3, in Q\ A, then
A< gi < A2 in Q) A.

The inequalities (2.17) and (2.18) leads to
A < g}(l‘) < Ay a.e. in Q.
From (2.18), (2.19) and the fact that mes(Q\ A) # 0, we obtain

A < gl(x) < Ay a.e. in Q.
#

Lemma 2.5. Ifi= 1,2, then w; is a solution of

—Apw; = mylwiP"2w;  in
w; =0  on 09,

where mi(z) = (1 — t)ay + t§i+(,1)i+1 (x).

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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Proof. We first prove that w; (i = 1,2) is a solution of

—pri = (1 — t)()é¢|wi|1’—2’wi =+ tgi_;’_(_l)H»l in Q, (221)
w; =0 on OfN.
From [3], we have that w;, (i = 1,2) satisfies
—Apwin = (1 = tp)|[Win P72 Win + tn [gig (—1)i+1n + 5=7hi]  in Q,
n (2.22)
wip =0  on 9N.

We know that for i = 1,2, (—A,)(w;n) are bounded in W~ (), so we can extract from it a subsequence
(win) (for simplicity of the notation), and a distribution L; € W~1#" such that

(—Ap)(win) — Li,

weak

in particular
lim < —prm,wi >=< L;,w; > .

n—-+4oo
Since
-2
< =D pWip, Win, —w; > = (1 — tn)ai/ [Win P~ Win (Win, — w;)dz
Q
1
+tn] | Gir(—1yitin(Win — wi)dz + RS ERN iy Win — w; > |,
Q
it holds
lim < —Apwipn, winp —w; >=0.
n—-+oo
But, we have
lim < —prm, Wiy, —w; > = lim < —prm,wm >— lim < —prm,wi >
n—-4oo n—4o0o n—4oo
= lim < —prm,wm > — < Lj,w; >
n—+oo
p— O,

consequently
lim < —prm,wm >=< L;,w; > .

n—-+oo
We also know that (—A,) is an operator of type (M), so we get
Li = _pri-
Passing to the limit in (2.22) gives (2.21), but by lemma (2.3), we have

(1 = t)aiwi|P 72 + tg;p (—1yier = mi|wiP"*w;  ae. in Q,

which implies that w; is a solution of (2.20) for every ¢ sush that ¢ = 1, 2. O

Now, we can prove our estimate.

To reach the contradiction, we set A1 (€2, m;(z)) (resp., A\2(£2, m;(z)) to be the first (resp., the second)
eigenvalue of the problem with weight
—Apu = Am;(z)|ulP~2u  in Q,
u=0 on 0.
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For i = 1,2, we use lemma (2.4) and the fact that A\; < a; < Ao, to get

A1 < omyi(z) < Ay ae. in
£

now, by the strict monotonicity property of the first eigenvalue [9] and the second eigenvalue [2], we have
)\1(9, ml) < )\1(9, )\1) = ].,

and
1= 22(Q, \2) < Aa(Q,m;),
so clearly

Al(Q,mi) <l< )\Q(Q,mi).

But by lemmas (2.2) and (2.5), for every ¢ (sush that ¢ = 1,2), 1 is an eigenvalue of (—A,) for the weights
m;, which contradicts the definition of the second eigenvalues A2 (£2, m;).
From above we deduce that the estimation holds true.

3. Proof of the main result

Using the homotopy invariance of the degree map, which through the homotopy T} yields
deg(I - TOa B(Oa R)v 0) = deg(‘[ - Tlv B(Ov R)a 0)

As Ty is odd, so following the theory of Borsuk, we get that deg(I — Ty, B(0, R),0) is an odd integer and
so nonzero. This implies that there exists (u,v) € B(0, R) such that T} (u,v) = (u,v). Hence, system
(1.1) has a positive solution.

This completes the proof.
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