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Characterization of Spherical and Plane Curves Using Rotation Minimizing Frames

Luiz C. B. da Silva

ABSTRACT: In this work, we study plane and spherical curves in Euclidean and Lorentz-Minkowski 3-spaces
by employing rotation minimizing (RM) frames. By conveniently writing the curvature and torsion for a
curve on a sphere, we show how to find the angle between the principal normal and an RM vector field for
spherical curves. Later, we characterize plane and spherical curves as curves whose position vector lies, up
to a translation, on a moving plane spanned by their unit tangent and an RM vector field. Finally, as an
application, we characterize Bertrand curves and slant helices as curves whose so-called natural mates are
spherical and general helices, respectively.
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1. Introduction

The usual way of studying curves is by means of the Frenet frame. But since its principal normal
always points to the center of curvature, it may result in unnecessary rotation. In this respect, the
consideration of rotation minimizing frames (RM frames, for short) may be of special interest [1,11]. The
basic idea is that the normal vector fields should rotate only the necessary amount to remain normal to
the tangent. The goal of this work is to study some properties of spherical and plane curves using RM
frames. We show how to find the angle between the principal normal and an RM vector for a C3 space
curve (the derivative of this angle gives the torsion). This is done by using a convenient expression for
the curvature function and torsion of a spherical curve. Subsequently, we generalize these expressions
for a generic curve by using osculating spheres. In addition, we address the problem of characterizing
curves whose position vector lies on a moving plane spanned by their unit tangent and an RM vector field
and prove that they are precisely the plane and spherical curves. Finally, as an application of spherical
curves and RM frames, we characterize Bertrand curves as the curves whose so-called natural mates [7]
are spherical. A notion of mate curves based on RM frames is also introduced and allows us to reverse
the above mentioned association between spherical and Bertrand curves.

The remaining of this work is divided as follows. In Section 2, we introduce RM frames and some
geometric background. In Section 3, we describe the behavior a twisted curve near its osculating sphere.
In Section 4, we establish a characterization of plane and spherical curves using RM frames. In Section
5, we present new characterizations of Bertrand curves and helices. Finally, in Section 6, we establish
similar results for curves in the Lorentz-Minkowski space.
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2. Preliminaries

Denote by E? the 3d Euclidean space, i.e., R?® equipped with the standard metric (x,y) = 21'3:1 TiYi-
Given a regular curve « : I — E? parameterized by its arc-length s, ||o/(s)|| = 1, we may equip it with the
Frenet frame {t,n, b}, whose equations of motion are t' = kn, n’ = —kt + 7b, and b’ = —7n, where &
and 7 are the curvature and torsion, respectively [12,13]. If & > 0 and 7 # 0, we say « is a twisted curve.
If k(s*) =0, a(s*) is called an inflection point.

Alternatwely, one may consider an orthonormal frame {t,n;,n,} with the additional property of n;
rotating around the unit tangent t only. The equation of motion of a rotation minimizing (RM) moving

frame is
t'(s) = k1(s) n1(s) + ka2(s) na(s), ni(s) = —r;(s) t(s). (2.1)

Now, writing n; = cosfn —sinfb and ny = sinfn + cosf b, the curvatures k1, ko relate to x and 7
by r1(s) + ika(s) = k(s)e?™) and 6'(s) = 7(s) [1,8]. An advantage of RM frames is that they can be
globally defined even if kK = 0 at some points [1]. On the other hand, they are not unique, since any
rotation of n; on the normal plane still gives an RM field, i.e., € is defined up to a constant. Nonetheless,
k1 and k2 determine « up to rigid motions [1]. Finally, RM frames allow for a simple characterization of
spherical and plane curves’

Theorem 2.1 (Bishop [1]). A regular C? curve o : I — B? lies on a sphere of radius v if and only if its
normal development curve (k1(s), ka(s)) lies on a line not passing through the origin where the distance
from the origin is r—'. In addition, normal development curves passing through the origin characterize
plane curves.

To find an RM frame we may compute the angle between a normal vector field and the principal
normal. In order to be RM, we should have §’ = 7 [8]. The drawback here is the need of a Frenet frame
globally defined, i.e., no inflection point should be allowed, otherwise 7 may be not defined. On the other
hand, the problem is easy to solve for o C S%(p,r). The normalized position vector N = (a —p) is
RM: dN/ds = o//r. (The curvature associated with N is then 1 = —1.) This is an 1mp0rtant step
in the implementation of the double reflection method for computing approximations of RM frames [17].
Another remarkable feature of RM frames along spherical curves is that they are path independent, i.e., if

two spherical curves connect q; to go in S?(p, ) and their normals at g; coincide, then their normals at go
(a p)

must also coincide [ 7]. Notice that for the remaining RM vector field ng = o x , one has rg = —=,
where J = (o —p,a’ x ) is the spherical curvature [16]. By noting that o/’ = —1 f —|— 4 2%/, one sees

that J is a multiple of the geodesic curvature of o C S%(p,r): J =rr,. In addition, the curvature and

torsion of a spherical curve are K = £ /14 J? and 7 = % [13,16]. This allows us to find the angle 6
between an RM and the principal normal as 6(s) = arctan J(s) + constant.

3. Behavior of a twisted curve near an osculating sphere

We say that o and 8 in E® have a contact of order k if a(sg) = B(sf) and all the higher order
derivatives, up to k, also coincide: a(®(so) = 8% (s%) for 1 < i < k. For example, the tangent line has a
contact of order 1 with its reference curve, while the osculating circle has a contact of order 2 [12]. (At an
inflection point the tangent line has a contact of order 2, in which case we say that the osculating circle
has an infinity radius.) Further, we say that a curve a and a surface ¥ has a contact of order k if there
exists a curve in ¥ which has a contact of order k with « and all the other curves has a lower, or equal,
order of contact?. For example, the osculating plane has a contact of order 2 with its reference curve,
while the osculating sphere has a contact of order 3: when 7 = 0, the osculating plane has a contact of
order 3 and the osculating sphere has an infinity radius. At a twisted point, the center and radius of the
osculating sphere are respectively [12]

1 .1d /1 1 1[4 /1\]?

1 An attempt to extend these ideas in order to characterize curves that lie on a surface is described in Ref. [6].
2 For a level set surface ¥ = G~1(c), an order k contact is equivalent to B(i)(sg) =0 (1 <i<k), where § = Goa«a and
¢ = B(s5) = also) [12].
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Remark 3.1. It is possible to prove Theorem 2.1 using osculating spheres. This is useful when we do
not have good orthogonality properties as, e.g., in spaces equipped with a degenerate metric [5]. However,
the use of osculating spheres demands that the curve must be C* and also that 7 # 0, while in Bishop’s
approach one needs just a C? condition and no restriction on the torsion.

Using the concept of osculating spheres, we would intuitively say that every C* curve is locally
spherical. In this case, it is tempting to ask whether the normals to the osculating spheres form an RM
vector field. Unfortunately, this strategy does not work unless the curve is spherical. Indeed, using that

s = p's/TRs and P§ = b, where

B d [(p'(s) 1
() = 7(S)ols) + ( . ) and p= 1. (3.2)

direct computation of the derivative of N = (v — Pg)/Rs leads to

L) e () e

Then, the vector field N = (o — Pg)/Rs minimizes rotation if and only if « is spherical, i.e., when ¢ = 0.
(The condition to be spherical corresponds to ¢ = 0 [12,13], which by direct examination of Eq. (3.3) is
a necessary and sufficient condition to have N and t parallel.)

Now we investigate the possibility of extending x = % V1+JZand 7 = J'/(1+J?), valid for spherical
curves [13], for a generic curve. Let X3 = S?(Ps, Rg) be the osculating sphere of a at a(s). Near a fixed

point a(sg), we can obtain a spherical curve 5 : (sg — €, 50 + €) = Xy, by projecting o on g,

a(t) — ag
Bt) =ror—i— (3.4)
[leu(t) — aol|
where ag = Ps(sp) and 19 = Rg(so). Since the osculating sphere has a contact of order 3 with the curve
and k and 7 are 2nd and 3rd order differential invariants, respectively, the torsion 7, and the curvature
ko of a C3 regular twisted curve a and the torsion 75 and the curvature kg of its (osculating) spherical
projection § coincide at so: ka(So) = kg(s0) and T4 (so) = 75(s0). Thus, we can write

VIt 2(s0), (3.5)

o) = Rt

and
{a(s0) = Ps(s0),a’(s0) x a”(s0)) _ J'(s0) k(s0)s(s0)
1+ J2(s0) 14 J2(s0) 1+ J2(so)’

where J(s) = (a(s) — Ps(s),a’(s) x a”’(s)) and ¢ is defined in Eq. (3.2).

Ta(s0) = (3.6)

Remark 3.2. From the expressions above we see that 6(s) = arctan J(s) is only valid for spherical
curves. In analogy with the study of the normals to the osculating spheres, the discrepancy between the
results for a spherical and a generic curve is proportional to ¢, which vanishes only for a curve on a
sphere.

4. Rotation minimizing frames and spherical and plane curves

Now, we address the problem of characterizing those curves whose position vector lies, up to a trans-
lation, on a moving plane spanned by their unit tangent and an RM vector field, i.e., curves such that

a(s) —p = A(s) t(s) + B(s) ni(s), (4.1)

for some fixed point p and some functions A and B. This problem has to do with the more general
quest of studying curves that lie on a given (moving) plane generated by two chosen vectors of a moving
trihedron, such as normal and rectifying curves, i.e., curves that lie on their normal or rectifying planes,
respectively. It is known that normal and rectifying curves correspond to spherical curves and geodesics
on a cone [2,3], respectively. Now, we have
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Theorem 4.1. Up to a translation, the position vector of a C? regular curve o : I — E? lies on a moving
plane spanned by its unit tangent and a rotation minimizing vector field if and only if « is either a plane
or a spherical curve.

Proof. If « lies on an RM moving plane span{t,n; }, « — p = At + Bn;, then

A/ — IilB =1
t = (A/ — HlB)t + (B/ + IilA)Ill + ko Ang = B +rkiA=0 . (42)
liQA =0

If ko(s) = 0 for all s, then ny is a constant vector and, consequently, « lies in the plane normal to ns.
On the other hand, if A(s) = 0 for all s, it follows from the second equation of (4.2) that B is a constant.
In this case, « —p = Bn; and « is spherical. (It lies on a sphere of radius |B| and center p.)
Conversely, if « is a plane curve, then the normal v to the plane is constant and, consequently, should
be RM: v/ = 0. On the other hand, if the curve is spherical, the normal v = %(a — p) minimizes rotation
and, trivially, « — p € span{t, v}, with v an RM vector field. O

5. Characterization of Bertrand curves and helices

The natural mate of a regular curve o : I — E? is the curve 8 such that tg = n, i.e., (s) = [ n(u)du.
In Ref. [7], it is proposed the question “Which Frenet curve has a spherical natural mate?”. In this
section, we characterize curves with spherical natural mates in terms of Bertrand curves: « is said to be
a Bertrand curve if there exists a curve v such that o and - have the same principal normal. Bertrand
curves are characterized by a linear relation between their curvature and torsion, see Theorem 23.1 of
Ref. [12]. In addition, we use the concept of mate curves to characterize slant helices, i.e., curves whose
principal normal makes a constant angle with a fixed direction [10], in terms of general helices, i.e., curves
that make a constant angle with a fixed direction [12].

If {t,n, b} is the Frenet frame of «, then we may consider {n, b, t} as an orthonormal moving frame
along the natural mate 3, whose equation of motion is

d n 0 7 —k n
S\ ¢ kK 0 0 t

Consequently, the Frenet frame leads to an RM frame for its natural mate. Thus, if kg and 75 denote
the curvature and torsion of the natural mate, we can write

T =rkpgeosl, Kk = —kgsinb, § = 75. (5.2)

From these correspondences, we can devise an alternative proof for the known expressions for the curvature
and torsion of a natural mate [7]:

2

K T\/
— V2 + 72 and :7(—). 5.3
K3 k%2472 and 74 ol (5.3)
As observed by Deshmukh et al. [7], it is straightforward to see that the natural mate is a plane curve if
and only if « is a generalized helix, i.e., if and only if the ratio 7 :  is constant [12]: 74 =0 < (7/k)' = 0.
On the other hand, from Theorem 2.1, § is spherical if and only if k and 7 are linearly related, i.e., if
and only if « is a Bertrand curve. Thus, we have the important characterization

Theorem 5.1. A reqular curve o : I — E? has a spherical natural mate if and only if it is a Bertrand
curve.

Deshmukh et al. showed that if o has constant curvature, then its natural mate is spherical. The
converse was shown to be true if the natural mate is spherical but not planar, see Theorem 2 of Ref.
[7]. Taking into account Theorem 5.1, it is worth mentioning that curves with constant curvature have a
Bertrand partner, see Theorem 23.3 of [12].

A curve o : I — E? is a slant helix if and only if its principal normal n = t. makes a constant angle
with a constant direction c. Therefore, we concluded that
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Theorem 5.2. A regular curve o : I — E? is a slant heliz if and only if its natural mate is a general
heliz.

Moreover, using the characterization of general helices in terms of their torsion and curvature, we can
recover the known characterization of slant helices in terms of their torsion and curvature [10]:

2 l
e (T) = = constant. (54)
(,{2 + 7—2)§ K Ky

We can extend the notion of mate curves to RM frames. More precisely, we say that + is an RM mate
of o if t,, is an RM vector field along a. Thus, equipping o with an RM frame,

d t 0 K1 K2 t
d_ n; = —KR1 0 0 n; N (55)
5\ ny —k2 0 0 ny
leads to a Frenet frame for its RM mate 7,
d n; 0 K1 0 n;
d_ —t —_ —K1 0 —KR2 —t . (56)
s no 0 K2 0 no

Thus, the curvature and torsion of the RM mate are respectively given by s, = rcos([7) and 7, =
—ksin( [ 7).

In a sense, RM mate is a dual concept of natural mate and, consequently, we should expect character-
izations for RM mates dual to the characterizations of natural mates. Indeed, it follows from Eq. (5.5)
and Theorem 2.1 that

Theorem 5.3. A regular curve is a spherical (or plane) curve if and only if its RM mate is a Bertrand
curve (or generalized helix, respectively).

6. Spherical curves in Lorentz-Minkowski space

In the Lorentz-Minkowski space E3, i.e., R? equipped with the indefinite metric (x,y)1 = x1y1 +22y2 —
w3y3, we have three types of spheres: hyperbolic planes H3(p,r), de Sitter spaces S7(p,r), and lightlike
cones C%(p) [6,14].

Let a : I — E} be a regular curve parameterized by arc-length s and consider that « is a non-null
curve on HZ(r) or S2(r) (without loss of generality, the sphere is assumed to be centered at the origin,
i.e,, p = 0). We may equip a with its Saban frame {t,u,t x; u} [16], where u = a/r. Adopting the
notation €, = (t,t); € {—1,1} and ¢, = (u,u); € {—1,1}, we may write o’ as

o = qt,d") 1t + e (u,a”)u— e, (t xgu,a”) 1t X1 u
€r€ €1€
—T—Qu +%J1 o X1, (6.1)

where J; = {«, @’ X1 a’)1. Supposing that t’ is non-null and using that in this case o’/ = ¢,xn, we have
(also notice that (o, @)1 = const. = (a, )1 = —¢;)

K2(s) = 6:;" (1 — € le(s)) (6.2)

Observe that, as happens in Fuclidean space, the spherical curvature Jj is just a constant multiple of the
geodesic curvature of v on HZ(r) or S3(r).

Now, let us compute the torsion in terms of J;. From the expressions n = ¢,a” /k, b = ¢,a’ x1 ' /K,
and 7 = (n’,b);, we have

T=—(n,b) = —<%o/’, %o/ x1a”) = :;:; (o — Jia x1 o, x1a’")1. (6.3)
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NOW, using the 1dent1ty <A X1 B,C X1 D>1 = <A,D>1<B,C>1 — <A, C>1<B,D>1 for A = O/, B = «,
C =¢/,and D = o, we find that (¢’ x; o,/ x1 ") = 0. Finally, the torsion of a non-null curve with
non-null principal normal is

€teu Ji(s)
—_tw = ) 6.4
7(s) K2(s)r2 1(5) 1— e J2(s) (64)
Integration of the above equation gives 7 = (arccoth ;) if « is spacelike (¢, = +1) and 7 =
(arctan Jq)' if « is timelike (¢, = —1). This is compatible with the fact that the normal plane of a

spacelike (timelike) curve has to be timelike (spacelike) and, therefore, rotations are parameterized by
hyperbolic (usual, respectively) trigonometric functions [6,15]. On the other hand, if t = o’ is spacelike
but t' = o’ is lightlike, then Eq. (6.1) leads to J; = +r constant. It is worth mentioning that in such
case « has to be a plane curve, see Remark 7 of [6]. (This plane has to be lightlike, Proposition 4.2 of
[9.)

Remark 6.1. The characterization of plane and spherical curves in terms of the normal development
curve s — (k1(s), k2(8)), see Theorem 2.1, is also valid in B} [6]. This is the key step to prove Theorems
4.1, 5.1, 5.2, and 5.3. Thus, these theorems are valid in E$ as well. (For the study of natural mates in
E$ see, e.g., [{]: notice Choi et al. name the natural mates as principal-donor curves.)
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