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Coupled fixed point theorems of JS-G-contraction on G-Metric Spaces

G. Sudhaamsh Mohan Reddy, V. Srinivas Chary, D. Srinivasa Chary, Stojan Radenović, Slobodanka Mitrovic

abstract: Jaradat has proven some fixed point results using JS-G-contraction on G-metric spaces. Choud-
hury et al. were derived coupled fixed point theorems for the G-metric spaces. The purpose of this paper is to
prove some coupled fixed point theorems of JS-G-contraction on G-metric spaces. Moreover, some example
is presented to illustrate the validity of our results.
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1. Introduction

In theory of fixed point, Banach contraction principle is a simple and powerful result. These are
several generalizations and extensions of the Banach contraction priciple in the existing literature. Jleli
and Samet [7] established new contraction that is ψ(d(fx, fy)) ≤ [ψ(d(x, y))]k , where k ∈ (0, 1) and
d(fx, fy) 6= 0, x, y ∈ X and ψ ∈ Ψ( For more details see [7], [8] ). Jaradat and Mustafa [8] introduced
new contraction called JS-G-contraction and they proved some fixed point results of such contraction in
the setting of G-metric spaces. T.Gnana Bhaskar et al. [5] have derived the coupled fixed point theorems
for metric spaces having mixed monotone property and Binayak S. Choudhury et al. [3] have generalized
and obtained the results of Gnana Bhaskar et al. of coupled fixed point theorems for G-metric spaces.
In this paper we derive the coupled fixed point theorems of JS-G-contraction on G- metric spaces.

2. Preliminaries

Definition 2.1. [10] Let X be a non-empty set and G : X × X × X → R+ be a function satisfying the
following

1. G(x, y, z) = 0 if x = y = z,

2. G(x, x, y) > 0 for all x, y ∈ X, with x 6= y,

3. G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with y 6= z,

4. G(x, y, z) = G(y, z, x) = G(z, x, y) = · · · (symmetry in all three variables),

5. G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangular inequality).

Then the function G is called a generalized metric or more specifically a G-metric on X and the pair
(X,G) is a G-metric space.

Example 2.2. [10] If X is a non empty subset of R, then the function G : X ×X ×X → [0,∞), given
by G(x, y, z) = |x− y| + |y − z| + |z − x| for all x, y, z ∈ X, is a G-metric on X.

Example 2.3. [19] Let X = {0, 1, 2} and let G : X × X × X → [0,∞) be the function given by the
following table.
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(x,y,z) G(x,y,z)
(0,0,0), (1,1,1), (2,2,2) 0

(0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0) 1
(1,2,2), (2,1,2), (2,2,1) 2

(0,0,2), (0,2,0), (2,0,0), (0,2,2), (2,0,2), (2,2,0) 3
(1,1,2), (1,2,1), (2,1,1), (0,1,2), (0,2,1), (1,0,2) 4

(1,2,0), (2,0,1), (2,1,0) 4

Then G is a G-metric on X, but it is not symmetric because G(1, 1, 2) = 4 6= 2 = G(2, 2, 1).

Definition 2.4. [12] Let (X,G) be a G-metric space, let {xn} be sequence of points of X, a point x ∈ X

is said to be the limit of the sequence {xn} if lim
n,m→∞

G(x, xn, xm) = 0 and we say that the sequence {xn}

is G-convergent to x. Thus, if xn → x in a G-metric space (X,G), then for any ǫ > 0, there exists a
positive integer N such that G(x, xn, xm) < ǫ, for all n,m ≥ N .

Definition 2.5. [15] Let (X,G) be a G-metric space. The sequence {xn} is said to be G-Cauchy if for
every ǫ > 0, there exists a positive integer N such that G(xn, xm, xl) <∈ for all n,m, l ≥ N .

Lemma 2.6. [10] Let (X,G) be a G- metric space, then the following are equivalent:

(1) {xn} is G-convergent to x.

(2) G(xn, xn, x) → 0, as n → ∞.

(3) G(xn, x, x) → 0, as n → ∞.

(4) G(xm, xn, x) → 0, as m,n → ∞.

Lemma 2.7. [10] If (X,G) be a G-metric space, then the following are equivalent:

(1) {xn} is G-Cauchy.

(2) for every ǫ > 0, there exists a positive integer N such that G(xn, xm, xm) <∈ for all n,m ≥ N .

Lemma 2.8. [6] If (X,G) be a G-metric space, then G(x, y, z) ≤ 2G(x, y, z) for all x, y ∈ X.

Lemma 2.9. [5] If (X,G) be a G-metric space, then The sequence {xn} is a G−Cauchy sequence if
and only if for every ǫ > 0, there exists a positive integer N such that G(xn, xm, xm) < ǫ for all
m > n ≥ N.

Definition 2.10. [13] Let (X,G) and (X
′

, G
′

) be two G-metric spaces and f : (X,G) → (X
′

, G
′

) be a
function, then f is said to be G-continous at a point a ∈ X if and only if it is G sequentially continuous
at x, that is, whenever {xn} is G-convergent to x, {f(xn)} is G-convergent to f(x).

Definition 2.11. [6] A G metric space (X,G) is called symmetric G-metric space if G(x, y, y) =
G(y, x, x) for all x, y ∈ X.

Definition 2.12. [10] A G−metric space (X,G) is said to be G-complete (or complete G-metric space)
if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

Definition 2.13. [5] An element (x, y) ∈ X×X ; when X is any non empty set, is called a coupled fixed
point of the mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 2.14. [3] Let (X,G) be a G-metric space. A mapping F : X×X → X is said to be continuous
if for any two G-convergent sequences {xn} and {yn} converging to x and y respectively, F (xn, yn) is
G-convergent to F (x, y).
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Jleli and Samet [7] introduced a new type of contraction which involves the following set of all functions
ψ : (0,∞) → (1,∞) satisfying the conditions:
(ψ1) ψ is non decreasing;
(ψ2) for each sequence tn ⊆ (0,∞), lim

n→∞
ψ(tn) = 1 if and only if lim

n→∞
tn = 0;

(ψ3) there exist r ∈ (0, 1) and L ∈ (0,∞] such that lim
t→0+

ψ(t)−1
tr

= L.

To be consistent with Jleli and Samet, we denote by Ψ the set of all functions ψ : (0,∞) → (1,∞)
satisfying the conditions (ψ1 − ψ3).
Also, they established the following result as a generalization of Banach contraction principle.

Theorem 2.15. Let (X, d) be a complete metric space and f : X → X be a mapping. Suppose that there
exist ψ ∈ Ψ and k ∈ (0, 1) such that x, y ∈ X, d(fx, fy) 6= 0 implies ψ(d(fx, fy)) ≤ [ψ(d(x, y))]k. Then
f has a unique fixed point.

In 2015, Hussain et al. [6] customized the above family of functions and proved a fixed point theorem
as a generalization of [6]. They customized the family of functions ψ : (0,∞) → (1,∞) to be as follows:
(ψ1) ψ is non decreasing and ψ(t) = 1 if and only if t = 0;
(ψ2) for each sequence {tn} ⊆ (0,∞), lim

n→∞
ψ(tn) = 1 if and only if lim

n→∞
tn = 0;

(ψ3) there exist r ∈ (0, 1) and L ∈ (0,∞] such that lim
t→0+

ψ(t)−1
tr

= L;

(ψ4) ψ(u+ v) ≤ ψ(u).ψ(v) for all u, v > 0.

To be consistent with Hussain et al [6], we denote by Ψ the set of all functions ψ : (0,∞) → (1,∞)
satisfying the conditions (ψ1 − ψ4).

Definition 2.16. [2] Let (X,G) be a G-metric space, and g : X → X be a self mapping. Then g is said
to be a JS-G-contraction whenever there exist a function ψ ∈ Ψ and positive real numbers r1, r2, r3, r4

with 0 ≤ r1 + 3r2 + r3 + 2r4 < 1 such that

ψ(G(gx, gy, gz)) ≤ [ψ(G(x, y, z))]r1 [ψ(G(x, gx, gz))]r2 [ψ(G(y, gy, gz))]r3

[ψ(G(x, gy, gy) +G(y, gx, gx))]r4 (2.1)

for all x, y, z ∈ X

Jaradat et al. [8] proved the following theorem.

Theorem 2.17. Let (X,G) be a complete G-metric space and g : X → X be a JS-G-contraction. Then
g has a unique fixed point.

Our first result is the following;

3. Main Results

Theorem 3.1. Let (X,G) be a G-metric space, and let f : X × X → X be a mapping. Suppose there
exist a function ψ ∈ Ψ and positive real numbers r1, r2, r3, r4 with 0 ≤ r1 + 3r2 + r3 + 2r4 < 1 such that

ψ(G(f(x, u), f(y, v), f(z, w)) ≤ [ψ(G(x, y, z))]r1 [ψ(G(x, f(x, u), f(z, w)))]r2

[ψ(G(y, f(y, v), f(z, w)))]r3

[ψ(G(x, f(y, v), f(y, v)) +G(y, f(x, u), f(x, u)))]r4 (3.1)

for all x, y, z, u, v, w ∈ X. Then f has a unique coupled fixed point.
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Proof. Let x0 ∈ X be arbitrary. For x0 ∈ X, we define the sequence {xn} by xn = fn(x0, u0) =
f(xn−1, un−1). If there exist n0 ∈ N such that (xn0

, un0
) = (xn0+1, un0+1), then (xn0

, un0
) is a fixed

point of f , and we have nothing to prove. Thus we suppose that xn 6= xn+1 that is
G(f(xn, un), f(xn, un), f(xn, un)) > 0 for all n ∈ N. Now, we will prove that lim

n→∞
G(xn, xn+1, xn+1) = 0.

from (3.1), we get that

1 < ψ(G(xn, xn+1, xn+1)) =ψ(G(f(xn−1, un−1), f(xn, un), f(xn, un))

≤ [ψ(G(xn−1, xn, xn))]r1

[ψ(G(xn−1, f(xn−1, un−1), f(xn, un)))]r2

[ψ(G(xn, f(xn, un), f(xn, un)))]r3

[ψ(G(xn−1, f(x
n
, un), f(xn, un))

+G(xn, f(xn−1, un−1), f(xn−1, un−1)))]r4

= [ψ(G(xn−1, xn, xn))]r1 [ψ(G(xn−1, xn, xn+1))]r2

[ψ(G(xn, xn+1, xn+1))]r3 [ψ(G(xn−1, xn+1, xn+1)

+G(xn, xn, xn))]r4

= [ψ(G(xn−1, xn, xn))]r1 [ψ(G(xn−1, xn, xn+1))]r2

[ψ(G(xn, xn+1, xn+1))]r3 [ψ(G(xn−1, xn+1, xn+1))]r4

using (G5) and (ψ4), we get

ψ(G(xn−1, xn, xn+1)) ≤ ψ(G(xn−1, xn, xn) +G(xn, xn, xn+1))

≤ ψ(G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1))

≤ ψ(G(xn−1, xn, xn)) + ψ(2G(xn, xn+1, xn+1))

= ψ(G(xn−1, xn, xn))ψ(G(xn, xn+1, xn+1)

+G(xn, xn+1, xn+1))

≤ ψ(G(xn−1, xn, xn))[ψ(G(xn, xn+1, xn+1))]2

and

ψ(G(xn−1, xn+1, xn+1)) ≤ ψ(G(xn−1, xn, xn) +G(xn, xn+1, xn+1))

≤ ψ(G(xn−1, xn, xn))ψ(G(xn, xn+1, xn+1))

Therefore

1 < ψ(G(xn, xn+1, xn+1)) ≤ [ψ(G(xn−1, xn, xn))]r1 [ψ(G(xn−1, xn, xn))]r2

[ψ(G(xn, xn+1, xn+1))]2r2 [ψ(G(xn, xn+1, xn+1))]r3

[ψ(G(xn−1, xn, xn))]r4 [ψ(G(xn, xn+1, xn+1))]r4

by recording the product terms of the above inequality, then using the induction, we get that

1 < ψ(G(xn, xn+1, xn+1)) ≤ [ψ(G(xn−1, xn, xn))]
r1+r2+r4

1−2r2−r3−r4

.

.

.

≤ [ψ(G(x0, x1, x1))](
r1+r2+r4

1−2r2−r3−r4
)n

(3.2)

Taking limit as n → ∞, and noting that r1+r2+r4

1−2r2−r3−r4
< 1, we get
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lim
n→∞

ψ(G(xn, xn+1, xn+1)) = 1 (3.3)

which implies by ψ2 that

lim
n→∞

G(xn, xn+1, xn+1) = 0. (3.4)

From the condition ψ3, there exist 0 < r < 1 and L ∈ (0,∞] such that

lim
n→∞

ψ(G(xn, xn+1, xn+1)) − 1

[G(xn, xn+1, xn+1)]r
= L.

Suppose that L < ∞. In this case, let B1 = L
2 > 0. From the definition of the limit, there exist n0 ∈ N

such that

|
ψ(G(xn, xn+1, xn+1)) − 1

[G(xn, xn+1, xn+1)]r
− L| ≤ B1,

for all n > n0. This implies that

ψ(G(xn, xn+1, xn+1)) − 1

[G(xn, xn+1, xn+1)]r
≥ L−B1 =

L

2
= B1,

for all n > n0. Then

n.[G(xn, xn+1, xn+1)]r ≤ A1.n.[ψ(G(xn, xn+1, xn+1)) − 1],

where A1 = 1
B1
.

Now for L = ∞, let B2 > 0 be an arbitrary number, from the definition of the limit, there exist
n1 ∈ N such that

|
ψ(G(xn, xn+1, xn+1)) − 1

[G(xn, xn+1, xn+1)]r
| ≥ B2,

for all n > n1. Then

n.[G(xn, xn+1, xn+1)]r ≤ A2.n.[ψ(G(xn, xn+1, xn+1)) − 1],

where A2 = 1
B2
.

Thus, in both cases, there exist A = max{A1, A2} > 0 and np = max{n0, n1} ∈ N such that

n.[G(xn, xn+1, xn+1)]r ≤ A.n.[[ψ(G(xn, xn+1, xn+1))]α
n

− 1], where , α = r1+r2+r4

1−2r2−r3−r4
. But,
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lim
n→∞

n.[[ψ(G(x0, x1, x1))]α
n

− 1]

= lim
n→∞

[[ψ(G(x0, x1, x1))]α
n

− 1]
1
n

= lim
n→∞

αn.ln(α).ln(ψ(G(x0, x1, x1)))[[ψ(G(xn, xn+1, xn+1))]α
n

]
−1
n2

= lim
n→∞

(−n2).αn.ln(α).ln(ψ(G(x0, x1, x1)))[[ψ(G(xn, xn+1, xn+1))]α
n

]

= lim
n→∞

(−n2).ln(α).ln(ψ(G(x0, x1, x1)))[[ψ(G(xn, xn+1, xn+1))]α
n

]

αn1

= lim
n→∞

−n2

αn1
. lim
n→∞

ln(α).ln(ψ(G(x0, x1, x1)))[[ψ(G(xn, xn+1, xn+1))]α
n

]

= 0.ln(α).ln(ψ(G(x0, x1, x1)))

= 0

where α1 = 1
α
. Which implies that lim

n→∞
n.[G(xn, xn+1, xn+1)]r = 0, thus there exist n2 ∈ N such that

G(xn, xn+1, xn+1) ≤ 1

n
1
r

, for all n > n2. Now, for m > n > n2, we have

G(xn, xm, xm) ≤
m−1
∑

i=n

G(xi, xi+1, xi+1) ≤
m−1
∑

i=n

1

i
1
r

∞
∑

i=1

1

i
1
r

.

Since 0 < r < 1, then
∞
∑

i=1

1

i
1
r

is G-convergent and hence G(xn, xm, xm) → 0 as m,n → ∞. Thus, we

proved that {xn} is a G-Cauchy sequence. Completeness of (X,G) ensures that there exists x∗ ∈ X

such that xn → x∗ as n → ∞. Now we shall show that (x∗, u∗) is a coupled fixed point of f. Using (G5)
we get that

G(x∗, x∗, f(x∗, u∗)) ≤G(x∗, x∗, xn+1) +G(xn+1, xn+1, f(x∗, u∗))

G(x∗, x∗, xn+1) +G(f(xn, un), f(xn, un), f(x∗, u∗)) (3.5)

and

G(xn, xn+1, f(x∗, u∗)) ≤ G(xn, xn+1, x
∗) +G(x∗, x∗, f(x∗, u∗)) (3.6)

Hence, by the properties of ψ we get that

ψ(G(x∗, x∗, f(x∗, u∗))) ≤ ψ(G(x∗, x∗, xn+1))ψ(G(xn+1, xn+1, f(x∗, u∗))) (3.7)

ψ(G(xn, xn+1, f(x∗, u∗))) ≤ ψ(G(xn, xn+1, x
∗))ψ(G(x∗, x∗, f(x∗, u∗))) (3.8)

Thus,

[ψ(G(xn, xn+1, f(x∗, u∗)))]r2+r3 ≤[ψ(G(xn, xn+1, x
∗))]r2+r3

[ψ(G(x∗, x∗, f(x∗, u∗)))]r2+r3 (3.9)
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However, by using (3.1), (ψ4) and (3.9) we have

ψ(G(xn, xn+1, f(x∗, u∗))) = ψ(G(f(xn, un), f(xn, un), f(x∗, u∗)))

≤ [ψ(G(xn, xn, x
∗))]r1 [ψ(G(xn, xn+1, f(x∗, u∗)))]r2

[ψ(G(xn, xn+1, f(x∗, u∗)))]r2

[ψ(G(xn, xn+1, xn+1) +G(xn, xn+1, xn+1))]r4

= [ψ(G(xn, xn, x
∗))]r1

[ψ(G(xn, xn+1, f(x∗, u∗)))]r2+r3

[ψ(G(xn, xn+1, xn+1))]2r4

≤ [ψ(G(xn, xn, x
∗))]r1 [ψ(G(xn, xn+1, x

∗))]r2+r3

[ψ(G(x∗, x∗, f(x∗, u∗)))]r2+r3

[ψ(G(xn, xn+1, xn+1))]2r4 (3.10)

Now, substituting (3.10) in (3.7) we get that

ψ(G(x∗, x∗, f(x∗, u∗))) ≤ ψ(G(x∗, x∗, xn+1))[ψ(G(xn, xn, x
∗))]r1

[ψ(G(xn, xn+1, x
∗))]r2+r3

[ψ(G(x∗, x∗, f(x∗, u∗)))]r2+r3

[ψ(G(xn, xn+1, xn+1))]2r4 (3.11)

Hence,

1 ≤ [ψ(G(x∗, x∗, f(x∗, u∗)))]1−r2−r3 ≤ ψ(G(x∗, x∗, xn+1))[ψ(G(xn, xn, x
∗))]r1

[ψ(G(xn, xn+1, x
∗))]r2+r3

[ψ(G(xn, xn+1, xn+1))]2r4 (3.12)

By taking the limit as n → ∞ and using (3.4), (ψ2), proposition (1.3) and the convergence of {xn}
to x∗ in the above equation we get that

ψ(G(x∗, x∗, f(x∗, u∗))) = 1 (3.13)

which implies by (ψ1) that G(x∗, x∗, f(x∗, u∗)) = 0 and so x∗ = f(x∗, u∗). Thus (x∗, u∗) is a coupled
fixed point of f. Finally to show the uniqueness, assume that there exist (x∗, u∗) 6= (x

′

, u
′

) such that
x

′

= f(x
′

, u
′

). By (G2), G(x
′

, x
′

, x∗) = G(f(x
′

, u
′

), f(x
′

, u
′

), f(x∗, u∗)) > 0. Thus, by (3.1) we get

ψ(G(x
′

, x
′

, x∗)) = ψ(G(f(x
′

, u
′

), f(x
′

, u
′

), f(x∗, u∗)))

≤ [ψ(G(x
′

, x
′

, x∗))]r1 [ψ(G(x
′

, f(x
′

, u
′

), f(x∗, u∗)))]r2

[ψ(G(x
′

, f(x
′

, u
′

), f(x∗, u∗)))]r3

[ψ(G(x
′

, f(x
′

, u
′

), f(x
′

, u
′

)) +G(x
′

, f(x
′

, u
′

), f(x
′

, u
′

)))]r4

= [ψ(G(x
′

, x
′

, x∗))]r1 [ψ(G(x
′

, x
′

, x∗))]r2

[ψ(G(x
′

, x
′

, x∗))]r3

[ψ(G(x
′

, x
′

, x
′

)) + G(x
′

, x
′

, x
′

))]r4

= [ψ(G(x
′

, x
′

, x∗))]r1+r2+r3

which leads to a contraction because r1 + r2 + r3 < 1. Therefore, f has a unique coupled fixed point. �

The following result is a direct consequence of theorem 3.1 by taking ψ(t) = e
√
t in (3.1)



8 G. S. M. Reddy, V. S. Chary, D. S. Chary, Stojan Radenović, Slobodanka Mitrovic

Corollary 3.2. Let (X,G) be a G-metric space, and let f : X × X → X be a mapping. Suppose there
exist a nonnegative real numbers r1, r2, r3, r4 with 0 ≤ r1 + 3r2 + r3 + 2r4 < 1 such that

√

G(f(x, u), f(y, v), f(z, w))

≤ r1.
√

G(x, y, z) + r2.
√

G(x, f(x, u), f(z, w))

+ r3.
√

G(y, f(y, v), f(z, w))

+ r4.
√

G(x, f(y, v), f(y, v)) +G(y, f(x, u), f(x, u)) (3.14)

for all x, y, z, u, v, w ∈ X. Then f has a unique coupled fixed point.

Remark 3.3. Note that condition (3.14) is equivalent to

G(f(x, u), f(y, v), f(z, w))

≤ r2
1 .G(x, y, z) + r2

1 .G(x, f(x, u), f(z, w))

+ r2
3 .G(y, f(y, v), f(z, w))

+ r2
4 .[G(x, f(y, v), f(y, v)) +G(y, f(x, u), f(x, u))]

+ 2r1r2

√

G(x, y, z)G(x, f(x, u), f(z, w))

+ 2r1r3

√

G(x, y, z)G(y, f(y, v), f(z, w))

+ 2r1r4

√

G(x, y, z)[G(x, f(y, v), f(y, v)) +G(y, f(x, u), f(x, u))]

+ 2r2r3

√

G(x, y, z)[G(x, f(x, u), f(z, w)) +G(y, f(y, v), f(z, w))]

+ 2r2r4

√

G(x, f(x, u), f(z, w))[G(x, f(y, v), f(y, v)) +G(y, f(x, u), f(x, u))]

+ 2r3r4

√

G(y, f(y, v), f(z, w))[G(x, f(y, v), f(y, v)) +G(y, f(x, u), f(x, u))]

Next, by taking r2 = r3 = r4 = 0 in corollary (3.1), we obtain the following corollary.

Corollary 3.4. Let (X,G) be a G-metric space, and let f : X × X → X be a mapping. Suppose
there exists a positive real number 0 < r1 < 1 such that G(f(x, u), f(y, v), f(z, w)) ≤ r2

1G(x, y, z) for all
x, y, z, u, v, w ∈ X. Then f has a unique coupled fixed point.

Finally, by taking ψ(t) = e
n
√
t in (3.1), we get the following corollary.

Corollary 3.5. Let (X,G) be a G-metric space, and let f : X × X → X be a mapping. Suppose there
exist a positive real numbers r1, r2, r3, r4 with 0 ≤ r1 + 3r2 + r3 + 2r4 < 1 such that

n

√

G(f(x, u), f(y, v), f(z, w)) ≤ r1.
n

√

G(x, y, z) + r2.
n

√

G(x, f(x, u), f(z, w))

+ r3.
n

√

G(y, f(y, v), f(z, w))

+ r4.
n

√

G(x, f(y, v), f(y, v)) +G(y, f(x, u), f(x, u))

for all x, y, z, u, v, w ∈ X. Then f has a unique coupled fixed point.

Remark 3.6. By specifying ri = 0 for some i ∈ {1, 2, 3, 4} in remark (3.1) and corollary (3.1), we can
get several results.

Example 3.7. Let X = [0,∞) and let G(x, y, z) = max{|x− y|, |y− z|, |z− x|} for all x, y, z ∈ X. Then

(X,G) is a G-metric space. Let f(x, y) = x+y
8 and ψ(t) = e

√
t. Then clearly all conditions of theorem

3.1 are satisfied with ri = 1√
8
; i = 1, 2, 3, 4, and (x, y) = (0, 0) is a coupled fixed point of f.
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