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abstract: In this manuscript, we provide some new results for the existence of fixed points for a certain
contractive condition of Geraghty type in the setting of partially ordered G-metric space. Also, we provide an
example to illustrate the usability of results. Our results generalize or extend many well known results in the
literature.

Key Words: G-Metric space, self-map, Banach Contraction, fixed point, poset, compatible map-
pings, comparable.

Contents

1 Introduction 1

2 Preliminaries 1

3 Main Results 3

1. Introduction

In 2005 Mustafa and Sims [17] introduced the notion of new structure of metric spaces called G−metric
spaces and derived some fixed point theorems in the setting of G−metric spaces. Thereafter, various
researchers find the generalizations of contraction mappings in such spaces and obtained beautiful results.
In this paper, we provide some new results for the existence of fixed points for a certain contractive
condition of Geraghty type in the setting of partially ordered G-metric space. Also, we provide an
example to illustrate the usability of results obtained. Our results generalize many well known results
of Gordji [7], Aydi [4], Al-Mohiameed [23] and Sharma et al. [21] in the setting of partially ordered
G−metric spaces.

2. Preliminaries

We begin with the definition of known known class of generalized metric spaces and two important
known examples.

Definition 2.1. [17] Let X be a non-empty set, and let G : X × X × X → R+, be a function satisfying
the following

1. G(x, y, z) = 0 if x = y = z,

2. G(x, x, y) > 0 for all x, y ∈ X, with x , y,

3. G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with y , z,

4. G(x, y, z) = G(y, z, x) = G(z, x, y) = · · · (symmetry in all three variables),

5. G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X (rectangular inequality).

Then the function G is called a generalized metric or more specifically a G−metric on X and the pair
(X, G) is a G−metric space.

Example 2.2. [27] If X is a non empty subset of R, then the function
G : X ×X ×X → [0, ∞), given by G(x, y, z) = |x−y|+ |y −z|+ |z −x| for all x, y, z ∈ X, is a symmetric
G−metric on X.
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Example 2.3. [27] Let X = {a, b}. Define G(a, a, a) = G(b, b, b) = 0, G(a, a, b) = 1, G(a, b, b) = 2, and
extend G to X3 by using the symmetry in the variables. Then it is clear that (X, G) is an asymmetric
G− metric space.

Definition 2.4. [23] Let (X, G) be a G−metric space, let {xn} be sequence of points of X, a point x ∈ X

is said to be the limit of the sequence {xn} if lim
n,m→∞

G(x, xn, xm) = 0 and we say that the sequence {xn}
is G−convergent to x. Thus, if xn → x in a G−metric space (X, G), then for any ǫ > 0, there exists a
positive integer N such that G(x, xn, xm) < ǫ, for all n, m ≥ N .

Definition 2.5. [19] Let (X, G) and (X
′

, G
′

) be G−metric spaces and let f : (X, G) → (X
′

, G
′

) be a
function, then f is said to be G−continous at a point a ∈ X if and only if, given ǫ > 0, there exists
δ > 0 such that for all x, y ∈ X; and G(a, x, y) < δ implies G

′

(f(a), f(x), f(y)) < ǫ. A function f is
G−continuous on X if and only if it is a G−continuous at all a ∈ X.

Definition 2.6. [17] Let (X, G) be a G−metric space. The sequence {xn} is said to be G−Cauchy if for
every ǫ > 0, there exists a positive integer N such that G(xn, xm, xl) < ǫ for all n, m, l ≥ N .

Definition 2.7. [17] A G−metric space (X, G) is said to be G−Complete (or Complete G−metric space)
if every G−Cauchy sequence in (X, G) is G−convergent in (X, G).

Definition 2.8. A partial order is a binary relation � over a set X satisfying the following properties.
For all a, b and c in X,

(1) Reflexivity : a � a (every element is related to itself)

(2) Antisymmetry : If a � b and b � a then a = b

(3) Transitivity : If a � b and b � c then a � c

A set X with a partial order � is called a partially ordered set(also called a Poset).

Example 2.9. The set of natural numbers equipped with the relation of divisibility is a Poset.

Definition 2.10. [21] For a, b elements of a partially ordered set X, if a � b or b � a, then a and b are
comparable.

Definition 2.11. [21] Let (X, �) be a partially ordered set and f, g : X → X are said to be
(2.8.1) Weakly increasing if f(x) � g(f(x)) and g(x) � f(g(x)) for all x ∈ X.
(2.8.2) Partially weakly increasing if f(x) � g(f(x)) for all x ∈ X.
(2.8.3) Weakly increasing with respect to H : X → X if f(X) ⊆ H(X), g(X) ⊆ H(X), if and only if for
all x ∈ X, f(x) � g(y), for all y ∈ H−1(f(x)) , g(x) � f(y), for all y ∈ H−1(g(x)).

Example 2.12. [4] Let X = [0, 1] be endowed with usual ordering and f, g : X → X be define by
f(x) = x2 and g(x) =

√
x. Since f(x) = x2 � g(f(x)) = g(x2) = x, it is easy to see that (f, g) is

partially weakly increasing. But g(x) =
√

x � x = f(g(x)) for all x ∈ X implies (g, f) is not partially
weakly increasing.

Definition 2.13. [21] Let (X, �) be a partially ordered set and f, g : X → X then
(2.9.1) f is called weak annihilator of g if f(g(x)) � x for all x ∈ X.

(2.9.2) f is called dominating if x � f(x) for all x ∈ X.

Example 2.14. [21] Let X = [0, 1] be endowed with usual ordering and f, g : X → X be define by
f(x) = x2 and g(x) = x3. Since f(g(x)) = x6 � x, for all x ∈ X thus f is a weak annihilator of g.

Example 2.15. [21] Let X = [0, 1] be endowed with usual ordering and f : X → X be define by
f(x) = x

1
3 since x � x

1
3 = f(x) for all x ∈ X so f is a dominating map.

Definition 2.16. [21] A subset W of a partially ordered set X is called well ordered if every pair of
elements of W are comparable.
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Definition 2.17. [21] Suppose f and g are self maps of a G−metric space (X, G). If
lim

n→∞

G(f(g(xn)), g(f(xn)), g(f(xn))) = 0 for every sequence {xn} in X with lim
n→∞

f(xn) = lim
n→∞

g(xn) = u

for some u ∈ X, then the pair (f, g) is said to be compatible.
Weakly compatible if they commute at their coincidence points, that is, if f(x) = g(x) for some x ∈ X

then f(g(x)) = g(f(x)).

Now, we define a more general class of functions.

Definition 2.18. F is the family of functions α : R+ → [0, 1) with

(1) R+ = {t ∈ R : t > 0},

(2) α(tn) → 1 implies tn → 0.

Note 1. (1) We do not assume that α is continuous in any sense.

(2) We only require that if α gets near one, it does so only near zero.

3. Main Results

Our first new result is the next:

Theorem 3.1. Let (X, �) be a partially ordered set and there exists a metric G in X such that (X, G) is
a complete metric space and f : X → X be a non-decreasing self mapping such that there exists x0 ∈ X

with x0 � f(x0) satisfying
(3.1.1) G(f(x), f(y), f(z)) ≤ α(G(x, y, z))G(x, y, z), for all x, y, z ∈ X with x � y � z;
(3.1.2) either f is continuous or there exist a non-decreasing sequence {xn} in X such that
xn → x then xn � x, for all n ∈ N. Then f has a fixed point in X. Further, if assume the following
(3.1.3) For any x, y, z ∈ X, there exists u ∈ X which is comparable to x, y, z. Then f has a unique fixed
point in X.

Proof. Assume that x0 be an arbitrary point in X with x0 � f(xo). Define xn = fn(x0), n = 1, 2, 3, · · · .
Since f is a non-decreasing function, by induction we obtain that

x0 � f(x0) � f2(x0) � · · · � fn(x0) � fn+1(x0) � · · · . (3.1)

Since xn � xn+1 for each n ∈ N then by (3.1.1), we have

G(xn+1, xn+2, xn+3) = G(xn+1, xn+2, xn+3)

= G(fn+1x0, fn+2x0, fn+3x0)

≤ α(G(fnx0, fn+1x0, fn+2x0))G(fnx0, fn+1x0, fn+2x0)

≤ α(G(xn, xn+1, xn+2))G(xn, xn+1, xn+2)

≤ G(xn, xn+1, xn+2).

Therefore, the sequence {G(xn, xn+1, xn+2)} is non-increasing and bounded below. Thus there exists
t ≥ 0 such that lim

n→∞

G(xn, xn+1, xn+2) = t. Since α(t) → 1 implies t → 0 then there exist r ∈ [0, 1) and

ǫ > o such that α(t) → r for all t ∈ [t, t + ǫ]. We can take ν ∈ N such that t ≤ G(xn, xn+1, xn+2) ≤ t + ǫ,
for all n ∈ N with n ≥ ν. Since

G(xn+1, xn+2, xn+3) ≤ α(G(xn, xn+1, xn+2))G(xn, xn+1, xn+2)

≤ rG(xn, xn+1, xn+2), (3.2)

for all n ∈ N with n ≥ ν. Therefore, we have

∞∑

n=1

(G(xn, xn+1, xn+2)) ≤
ν∑

n=1

(G(xn, xn+1, xn+2)

+
∞∑

n=1

rn(G(xν , xν+1, xν+2) < ∞.
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Hence {xn} is a G− Cauchy sequence. Since X is complete, {xn} converges to some point of u ∈ X .
Now, we prove that u is a fixed point of f . If f is continuous, then

u = lim
n→∞

xn = lim
n→∞

fn(x0) = lim
n→∞

fn+1(x0) = f( lim
n→∞

fn(x0)) = f(u). (3.3)

Hence u = f(u).
Suppose that there exists a non-decreasing sequence {xn} in X such that xn → x. Consider

G(f(u), u, u) ≤ G(f(u), f(xn), f(xn)) + G(f(xn), f(xn), u)

≤ α(G(xn, xn, u))G(xn, xn, u) + G(xn+1, xn+1, u)

≤ G(xn, xn, u) + G(xn+1, xn+1, u).

since G(xn, xn, u) → 0 then we get f(u) = u.
To prove the uniqueness of the fixed point, assume that w (w , u) is another fixed point of f .

From (3.1.3), there exists x ∈ X which is comparable to u and w. Monotonically implies that fn(x) is
comparable to fn(u) = u and fn(w) = w for n = 0, 1, 2, · · ·
Moreover,

G(u, w, fn(x)) = G(fn(u), fn(w), fn(x))

≤ α(G(fn−1(u), fn−1(w), fn−1(x)))

G(fn−1(u), fn−1(w), fn−1(x))

≤ G(fn−1(u), fn−1(w), fn−1(x))

= G(u, w, fn−1(x))

Consequently, the sequence ξu
n = G(u, w, fn(x)) is non-negative and decreasing and

so lim
n→∞

G(u, u, fn(x)) = ξu ∈ X . Similarly we can show that the sequence ξw
n = G(w, w, fn(x)) is non

negative and decreasing and so lim
n→∞

G(w, w, fn(x)) = ξw ∈ X .

Now similarly the above method we can choose r1, r2 ∈ [0, 1) and t ∈ N such that

G(u, u, fn(x)) ≤ α(G(u, u, fn−1(x)))G(u, u, fn−1(x))

≤ r1G(u, u, fn−1(x))

G(w, w, fn(x)) ≤ α(G(w, w, fn−1(x)))G(w, w, fn−1(x))

≤ r2G(w, w, fn−1(x)), (3.4)

for all n ∈ N with n > t1. Finally

G(u, u, w) ≤ G(u, u, fn(x)) + G(fn(x), w, w)

≤ rn−t1

1 G(u, u, f t1(x0)) + rn−t1

2 G(w, w, f t1 (x0)) (3.5)

for all n ∈ N with n > t1. Therefore by taking n → ∞ in (3.5), we have G(u, u, w) = 0. Therefore u = w.
�

Now we announce our second new result:

Theorem 3.2. Let (X, �) be a partially ordered set and there exists a metric G on X such that (X, G)
is a complete G− metric space. Let f, g, h, S, T and U : X → X be given mappings satisfying
(3.2.1) f(X) ⊆ U(X), g(X) ⊆ T (X) and h(X) ⊆ S(X),
(3.2.2) for every comparable elements x, y, z ∈ X,
G(f(x), g(y), h(z)) ≤ α(G(S(x), T (y), U(z)))G(S(x), T (y), U(z)) where α ∈ F

(3.2.3) The pairs (U, f), (T, g)and (S, h) are partially weakly increasing,
(3.2.4) f, g, h are dominating and weak annihilator maps of U, T and S respectively.
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(3.2.5) there exist a non decreasing sequence {xn} with xn � yn for all n and yn → u implies xn � u.

(3.2.6) either
(3.2.6.1) (f, S), (g, T ) are compatible, pair (h, U) is weakly compatible and f , g or S, T are continuous
maps.

(OR)

(3.2.6.2) (g, T ), (h, U) are compatible, pair (f, S) is weakly compatible and g, h or T , U are continuous
maps.

(OR)

(3.2.6.3) (h, U), (f, S) are compatible, pair (g, T ) is weakly compatible and h,f or U , S are continuous
maps. Then f, g, h, S, T and U have a common fixed point. Moreover,f, g, h, S, T and U have one common
fixed point if and only if the set of common fixed point of f, g, h, S, T and U is well ordered.

Proof. Let x0 be an arbitrary point in X . Since f(X) ⊆ U(X), g(X) ⊆ T (X) and h(X) ⊆ S(X), we
can construct sequences {xn}, {yn} and {zn} in X such that y3n−1 = f(x3n−2) = U(x3n−1), y3n =
g(x3n−1) = T (x3n) and y3n+1 = h(x3n) = S(x3n+1) for all n ∈ N. From (3.2.4), we write

x3n−2 � f(x3n−2) = U(x3n−1) � f(U(x3n−1)) � x3n−1,

x3n−1 � g(x3n−1) = T (x3n) � T (g(x3n)) � x3n

and
x3n � h(x3n) = S(x3n+1) � S(h(x3n+1)) � x3n+1.

Thus, we have xn � xn+1, for all n ≥ 1. Put x = x3n, y = x3n+1, z = x3n+2 in (3.2.2), we get

G(f(x3n), g(x3n+1), h(x3n+2)) ≤ α(G(S(x3n), T (x3n+1), U(x3n+2)))G(S(x3n), T (x3n+1), U(x3n+2)),

that is,

G(y3n+1, y3n+2, y3n+3) ≤ α(G(y3n, y3n+1, y3n+2))G(y3n, y3n+1, y3n+2). (3.6)

If there exist n ∈ N such that G(y3n, y3n+1, y3n+2) = 0 then it follows from (3.6) that y3n = y3n+1 = y3n+2.
This leads to ym = y3n+1 for any m ≥ 3n. This implies that {ym} is a G− Cauchy sequence.

We shall show that

lim
n→∞

G(yn, yn+1, yn+2) = 0 (3.7)

Now suppose that G(y3n, y3n+1, y3n+2) > 0 for all n ∈ N. Put x = x3n+2, y = x3n+1 and z = x3n in
(3.2.2), we get

G(f(x), g(y), h(z)) = G(f(x3n+2), g(x3n+1), h(x3n))

= G(y3n+3, y3n+2, y3n+1)

≤ α(G(S(x3n+2), T (x3n+1), U(x3n)))G(S(x3n+2), T (x3n+1), U(x3n))

≤ α(G(y3n+2, y3n+1, y3n))G(y3n+2, y3n+1, y3n). (3.8)

Using 0 ≤ α < 1, we get

G(y3n+3, y3n+2, y3n+1) ≤ G(y3n+2, y3n+1, y3n). (3.9)

similarly we write

G(y3n+2, y3n+1, y3n) ≤ G(y3n+1, y3n, y3n−1). (3.10)

for x = x3n, y = x3n+1 and z = x3n+2 in (3.2.2). From (3.9) and (3.10), for any n ∈ N, we get

G(yn+2, yn+1, yn) ≤ G(yn+1, yn, yn−1). (3.11)
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Therefore the sequence {G(yn+1, yn, yn−1)} is monotonic decreasing. Hence, there exists r ≥ 0 such that

lim
n→∞

G(yn+1, yn, yn−1) = r (3.12)

From (3.8), we have
G(y3n+3, y3n+2, y3n+1)

G(y3n+2, y3n+1, y3n)
≤ α(G(y3n+2, y3n+1, y3n)) < 1.

Letting n → ∞ in the above inequality, and using (3.12), we get lim
n→∞

α(G(y3n+2, y3n+1, y3n)) = 1. By

the property of α, it follows that r = 0, hence (3.7) holds.
Now to check that {yn} is a G− Cauchy sequence. It suffices to prove that {y3n} is a G− Cauchy
sequence. To do this, we proceed by contradiction. Suppose that {y3n} is not a G− Cauchy sequence.
Then for any ǫ > 0, there exists three sequences of positive integers m(k) and n(k)such that for all
positive integers k, m(k) > n(k) > k, we have

G(y3m(k), y3n(k), y3n(k)) > ǫ,

G(y3m(k), y3n(k)−2, y3n(k)−2) ≤ ǫ. (3.13)

Therefore we use (3.13) and triangular inequality, we get

ǫ < G(y3m(k), y3n(k), y3n(k))

≤ G(y3m(k), y3n(k)−2, y3n(k)−2) + G(y3n(k)−2, y3n(k)−1, y3n(k)−1) + G(y3n(k)−1, y3n(k)−1, y3n(k))

≤ ǫ + G(y3n(k)−2, y3n(k)−1, y3n(k)−1) + G(y3n(k)−1, y3n(k), y3n(k)).

Letting k → ∞ in the above inequality and using (3.7) we get

lim
k→∞

G(y3m(k), y3n(k), y3n(k)) = ǫ. (3.14)

Again using the triangular inequality, we have
G(y3n(k), y3m(k), y3n(k)) ≤ G(y3n(k), y3m(k)−1, y3m(k)−1) + G(y3m(k)−1, y3m(k), y3n(k))
|G(y3n(k), y3m(k)−1, y3m(k)−1) − G(y3n(k), y3m(k), y3n(k))| ≤ G(y3m(k), y3m(k)−1, y3n(k)).
Letting again k → ∞ in the above inequality and using (3.7) and (3.14) we get

lim
k→∞

G(y3n(k), y3m(k)−1, y3m(k)−1) = ǫ. (3.15)

On the other hand, we have

G(y3n(k), y3m(k), y3n(k)) ≤ G(y3n(k), y3n(k)+1, y3n(k)+1) + G(y3n(k)+1, y3m(k), y3n(k))

= G(y3n(k), y3n(k)+1, y3n(k)+1) + G(fx3n(k), gx3m(k)−1, hx3n(k)−1)

using (3.7) and (3.14) and letting k → ∞ in the above inequality, we get

ǫ ≤ lim
k→∞

G(fx3n(k), gx3m(k)−1, hx3n(k)−1). (3.16)

Choose x = x3n(k) and y = x3m(k)−1 and z = x3m(k)−1 in (3.2.2), we get

G(fx3n(k), gx3m(k)−1, hx3m(k)−1) ≤ α(G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1)))

G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1))

< G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1)).

Letting again k → ∞ in the above inequality and using (3.7) and (3.15), we get

lim
k→∞

G(fx3n(k), gx3m(k)−1, hx3m(k)−1) ≤ ǫ. (3.17)



Existence of Fixed Points in G-Metric Spaces 7

Combining (3.16) and (3.17), we get lim
k→∞

G(fx3n(k), gx3m(k)−1, hx3m(k)−1) = ǫ. Since y3n(k) , y3m(k)−1,

then

G(fx3n(k), gx3m(k)−1, hx3m(k)−1)

G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1))
≤ α(G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1))) < 1.

Using the fact

ǫ = lim
k→∞

G(fx3n(k), gx3m(k)−1, hx3m(k)−1) = lim
k→∞

G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1)).

Hence we get lim
k→∞

α(G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1))) = 1. Using the property of α, we get

lim
k→∞

G(S(x3n(k)), T (x3m(k)−1), U(x3m(k)−1)) = 0. Hence lim
k→∞

G(y3n(k), y3m(k)−1, y3m(k)−1) = 0, which is

a contradiction with (3.14). Therefore, {y3n} is a G− Cauchy sequence. Since (X, G) is a complete G−
metric space, there exists u ∈ X such that

lim
n→∞

y3n = u. (3.18)

Therefore

lim
n→∞

y3n+1 = lim
n→∞

U(x3n+1) = lim
n→∞

f(x3n) = u. (3.19)

lim
n→∞

y3n+2 = lim
n→∞

T (x3n+2) = lim
n→∞

g(x3n+1) = u. (3.20)

lim
n→∞

y3n+3 = lim
n→∞

S(x3n+3) = lim
n→∞

h(x3n+2) = u. (3.21)

Assume that S is continuous. Since f, S are compatible, we have

lim
n→∞

f(S(x3n+2)) = lim
n→∞

S(f(x3n+2)) = S(u). (3.22)

Also, x3n+1 � gx3n+1 = T x3n+2. Now,

G(f(S(x3n+2)), g(x3n+1), h(x3n+1)) ≤ α(G(S(S(x3n+2)), T (x3n+1), U(x3n+1)))

G(S(S(x3n+2)), T (x3n+1), U(x3n+1)).

Letting n → ∞ in the above inequality and using (3.20) and (3.22)
we get G(S(u), u, u) < G(S(u), u, u), hence S(u) = u. Now (x3n+1) � g(x3n+1) and g(x3n+1) → u as
n → ∞, x3n+1 � u and (3.2.2) becomes

G(f(u), g(x3n+1), h(x3n+1)) ≤ α(G(S(u), T (x3n+1), U(x3n+1)))G(S(u), T (x3n+1), U(x3n+1)).

Letting n → ∞ in the above inequality and using (3.19) we get G(f(u), u, u) < G(S(u), u, u), hence
f(u) = u. Since f(X) ⊆ U(X), there exist a point v ∈ X such that f(u) = U(v). Suppose that h(v) ,
U(v). Since u � f(u) = U(v) � f(U(v)) � v implies u � v. From (3.2.2) we obtain G(U(v), h(v), h(v)) =
G(f(u), h(v), h(v)) ≤ G(S(u), U(v), U(v)) = G(u, u, u) = 0, which is a contradiction. Hence U(v) = h(v).
Since h and U are weakly compatible, therefore h(u) = h(f(u)) = h(U(v)) = U(h(v)) = U(f(u)) = U(u).
Thus u is a coincidence point of h and U . Now, since x3n � f(x3n) and f(x3n) → u as n → ∞, implies that
x3n � u. From (3.2.2) we get G(f(x3n), h(u), h(u)) ≤ α(G(S(x3n), U(u), U(u)))G(S(x3n), U(u), U(u)). If
lim

n→∞

G(S(x3n), U(u), U(u)) = 0 then G(u, U(u), U(u)) = 0. Hence U(u) = u.

If lim
n→∞

G(S(x3n), Uu), U(u)) , 0. Letting n → ∞ in the above inequality and using (3.21), we get

1 =
G(u, h(u), h(u))

G(u, U(u), U(u))
=

lim
n→∞

G(f(x3n), h(u), h(u))

lim
n→∞

G(S(x3n), U(u), U(u))
≤ lim

n→∞

α(G(S(x3n), U(u), U(u))) ≤ 1.
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Using property of α, we get lim
n→∞

G(S(x3n), U(u), U(u)) = 0, which is a contradiction. Hence u = U(u).

Therefore, f(u) = h(u) = S(u) = U(u) = u. Assume that T is continuous since g and T are compatible,
we have

lim
n→∞

g(T (x3n+3)) = lim
n→∞

T (g(x3n+3)) = T (u).

Also (x3n+2) � h(x3n+2) = S(x3n+3). Now

G(f(x3n+2), g(T (x3n+3)), h(x3n+2)) ≤α(G(S(x3n+2), T (T (x3n+3)), U(x3n+2)))

G(G(S(x3n+2), T (T (x3n+3)), U(x3n+2))).

Letting n → ∞ in the above inequality, we get G(u, T (u), u) < G(u, T (u), u), hence T (u) = u. From
(3.2.2) becomes G(f(u), g(u), h(u)) ≤ α(G(S(u), T (u), U(u)))G(S(u), T (u), U(u)) implies G(u, gu, u) ≤
G(u, u, u) ≤ 0. Hence g(u) = u. Therefore, from above, we have f(u) = g(u) = h(u) = S(u) = T (u) =
U(u) = u. Similarly, the result follows when (3.2.6.2) holds, (3.2.6.3) holds. Suppose that the set of
common fixed points of f, g, h, S, T and U is well ordered and u and v (u , v) are any two fixed points
of f, g, h, S, T and U . From (3.2.2), we have

G(f(u), g(v), g(v)) ≤ α(G(S(u), T (v), T (v)))G(S(u), T (v), T (v))

G(u, v, v) ≤ α(G(u, v, v))G(u, v, v)

G(u, v, v) < G(u, v, v),

which is a contradiction. Therefore u = v that is unique common fixed point of f, g, h, S, T and U .
Conversely, if f, g, h, S, T and U have only one common fixed point then the set of common fixed point
of f, g, h, S, T and U being singleton is well ordered. �

On the similar lines of Theorem 3.2, we have the following results.

Theorem 3.3. Let (X, �) be a partially ordered set and there exists a metric G on X such that (X, G)
is a complete G− metric space. Let f, g, h, S, T and U : X → X be given mappings satisfying
(3.3.1) f(X) ⊆ U(X), g(X) ⊆ T (X) and h(X) ⊆ S(X),
(3.3.2) for every comparable elements x, y, z ∈ X,
G(f(x), g(y), h(z)) ≤ α(G(S(x), T (y), U(z)))G(S(x), T (y), U(z)) , where α ∈ F

(3.3.3) The pairs (U, f), (T, g)and (S, h) are partially weakly increasing,
(3.3.4) f, g, h are dominating and weak annihilator maps of U, T and S respectively.
(3.3.5) there exist a non decreasing sequence {xn} with xn � yn for all n and yn → u implies xn � u.

(3.3.6) either
(3.3.6.1) (f, S), (g, T ) are compatible, (h, U) is weakly compatible and f , g or S, T are continuous maps.

(OR)

(3.3.6.2) (g, T ), (h, U) are compatible, (f, S) is weakly compatible and g, h or T , U are continuous maps.

(OR)

(3.3.6.3) (h, U), (f, S) are compatible, (g, T ) is weakly compatible and h,f or U , S are continuous maps.
and (3.3.7) G(f(x), g(y), h(z)) ≤ α(M(x, y, z))M(x, y, z), where

M(x, y, z) = max{G(S(x), T (y), U(z)), G(f(x), S(x), S(x)), G(g(y), T (y), T (y)), G(h(z), U(z), U(z)),

1

3
(G(S(x), g(y), h(z)) + G(f(x), T (y), h(z)) + G(f(x), g(y), U(z)))}

for allx, y, z ∈ X with x � y � z and α ∈ ̥. Then f, g, h, S, T and U have a common fixed point.
Moreover, the common fixed point of f, g, h, S, T and U is unique if and only if the set of common fixed
point of f, g, h, S, T and U is well ordered.
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Proof. Let x0 be an arbitrary point in X . Since f(X) ⊆ U(X) then there exists x1 ∈ X such that
f(x0) = U(x1), since g(X) ⊆ T (X) then there exists x2 ∈ X such that g(x1) = T (x2), since h(X) ⊆ S(X)
then there exists x3 ∈ X such that h(x2) = S(x3). on continuing this process, We can construct sequences
{xn}, {yn} and {zn} in X such that y3n−1 = f(x3n−2) = U(x3n−1), y3n = g(x3n−1) = T (x2n), y3n+1 =
h(x3n) = S(x2n+1) for all n = 1, 2, 3, · · · From conditions (3.3.3) and (3.3.4) we have x3n−2 ≤ f(x3n−2) =
U(x3n−1) ≤ f(U(x3n−1)) ≤ x3n−1, x3n−1 ≤ g(x3n−1) = T (x2n) ≤ T (g(x3n)) ≤ x3n and x3n ≤ h(x3n) =
S(x3n+1) ≤ S(h(x3n+1)) ≤ x3n+1. Thus, for all n ≥ 1 we obtain x1 ≤ x2 ≤ ....... ≤ xn ≤ xn+1. that is a
non decreasing sequence. Now we prove that yn is a G− Cauchy sequence in X . For this let us consider
that G(y3n, y3n+1, y3n+2) > 0 for every n. If not then y3n = y3n+1 = y3n+2, for some n, therefore using
(3.3.7) we have

G(y3n+1, y3n+2, y3n+3) = G(f(x3n), g(x3n+1), h(x3n+2)) ≤ α(M(x3n, x3n+1, x3n+2))M(x3n, x3n+1, x3n+2)

where

M(x3n, x3n+1, x3n+2) =max{G(S(x3n), T (x3n+1), U(x3n+2)), G(f(x3n), S(x3n), S(x3n)),

G(g(x3n+1), T (x3n+1), T (x3n+1)), G(h(x3n+2), U(x3n+2), U(x3n+2)),

1

3
(G(S(x3n), g(x3n+1), h(x3n+2)) + G(T (x3n+1), f(x3n), h(x3n+2))

+ G(U(x3n+2), f(x3n), g(x3n+1)))}
=max{G(y3n, y3n+1, y3n+2), G(y3n+1, y3n, y3n), G(y3n+2, y3n+1, y3n+1),

G(y3n+3, y3n+2, y3n+2),
1

3
(G(y3n, y3n+2, y3n+3) + G(y3n+1, y3n, y3n+3)

+ G(y3n+2, y3n+1, y3n+2))}

=max{0, 0, 0, G(y3n+3, y3n+2, y3n+2),
1

3
(G(y3n, y3n+1, y3n+3)

+ G(y3n, y3n+1, y3n+3) + 0)}

=max{0, 0, 0, G(y3n, y3n+1, y3n+3),
2

3
(G(y3n, y3n+1, y3n+3)}

=G(y3n, y3n+1, y3n+3) = G(y3n+1, y3n+2, y3n+3)

hence

G(y3n+1, y3n+2, y3n+3) =G(f(x3n), g(x3n+1), h(x3n+2))

≤α(G(y3n+1, y3n+2, y3n+3))G(y3n+1, y3n+2, y3n+3)

using 0 ≤ α < 1, we get

G(y3n+1, y3n+2, y3n+3) < G(y3n+1, y3n+2, y3n+3)

which is a contradiction. Hence we must have y3n+1 = y3n+2 = y3n+3. Similarly, we obtain y3n+2 =
y3n+3 = y3n+4 and so on. Thus {yn} be a constant sequence and {y3n} is the common fixed point of
f, g, h, S, T and U. Now we suppose G(y3n, y3n+1, y3n+2) > 0 for every n, since x = x3n, y = x3n+1 and
z = x3n+2 are comparable elements so using (3.3.7), we have

G(y3n+1, y3n+2, y3n+3) = G(f(x3n), g(x3n+1), h(x3n+2))

≤ α(M(x3n, x3n+1, x3n+2))M(x3n, x3n+1, x3n+2) (3.23)
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where

M(x3n, x3n+1, x3n+2) = max{G(S(x3n), T (x3n+1), U(x3n+2)), G(f(x3n), S(x3n), S(x3n)),

G(g(x3n+1), T (x3n+1), T (x3n+1)), G(h(x3n+2), U(x3n+2), U(x3n+2)),

1

3
(G(S(x3n), g(x3n+1), h(x3n+2)) + G(T (x3n+1), f(x3n), h(x3n+2))

+ G(U(x3n+2), f(x3n), g(x3n+1))}
= max{G(y3n, y3n+1, y3n+2), G(y3n+1, y3n, y3n), G(y3n+2, y3n+1, y3n+1),

G(y3n+3, y3n+2, y3n+2),
1

3
(G(y3n, y3n+2, y3n+3)

+ G(y3n+1, y3n+1, y3n+3) + G(y3n+2, y3n+1, y3n+2))}
= max{G(y3n, y3n+1, y3n+2), G(y3n+1, y3n+2, y3n+3),

1

3
(G(y3n, y3n+1, y3n+2) + 0 + 0)}

= max{G(y3n, y3n+1, y3n+2), G(y3n+1, y3n+2, y3n+3)}

Now M(x3n, x3n+1, x3n+2) is either G(x3n, x3n+1, x3n+2) or G(y3n+1, y3n+2, y3n+3).
If M(x3n, x3n+1, x3n+2) = G(y3n+1, y3n+2, y3n+3) then from (3.3.7), we have

G(y3n+1, y3n+2, y3n+3) = G(f(x3n), g(x3n+1), h(x3n+2)) ≤ α(G(y3n+1, y3n+2, y3n+3))

G(y3n+1, y3n+2, y3n+3)

using 0 ≤ α < 1, we get G(y3n+1, y3n+2, y3n+3) < G(y3n+1, y3n+2, y3n+3) which is a contradiction. hence
M(x3n, x3n+1, x3n+2) = G(y3n, y3n+1, y3n+2) and from (3.3.7), we have

G(y3n+1, y3n+2, y3n+3) = G(f(x3n), g(x3n+1), h(x3n+2)) ≤ α(G(y3n, y3n+1, y3n+2))G(y3n, y3n+1, y3n+2)
(3.24)

using 0 ≤ α < 1, we get G(y3n+1, y3n+2, y3n+3) ≤ G(y3n, y3n+1, y3n+2). Similarly put x = x3n−1, y = x3n

and z = x3n+1 in (3.3.7), we have G(y3n, y3n+1, y3n+2) ≤ G(y3n−1, y3n, y3n+1).
Hence for any n, G(y3n, y3n+1, y3n+2) ≤ G(y3n−1, y3n, y3n+1) ≤ ...... ≤ G(y2, y1, y0) implies that the
sequence {G(yn+2, yn+1, yn)} is monotonically non increasing sequence. Hence there exist r ≥ 0 such
that

lim
n→∞

G(yn+2, yn+1, yn) = r (3.25)

using (3.24), we have G(y3n+1,y3n+2,y3n+3)
G(y3n,y3n+1,y3n+2) ≤ α(G(y3n, y3n+1, y3n+2)) < 1, letting n → ∞ and using (3.25),

we have lim
n→∞

α(G(y3n, y3n+1, y3n+2)) = 1, since α ∈ ̥ yields that r = 0. Consequently

lim
n→∞

α(G(yn+2, yn+1, yn)) = 0 (3.26)

Now we claim that {y3n} is a G−Cauchy sequence. suppose on the contrary that {y3n} is not a G−Cauchy
sequence then for any ǫ > 0 and there exist an integers 3mk and 3nk with 3mk > 3nK > k for all k > 0
such that G(y3mk

, y3nk
, y3nk

) ≥ ǫ and

G(y2mk−2, y2nk−1, y2pk
) < ǫ (3.27)

from triangle inequality, we have

ǫ ≤ G(y3mk
, y3nk

, y3nk
) = G(y3mk

, y3nk−2, y3nk−2) + G(y3nk−2, y3nk−1, y3nk−1) + G(y3nk−1, y3nk
, y3nk

)

≤ ǫ + G(y3nk−2, y3nk−1, y3nk−1) + G(y3nk−1, y3nk
, y3nk

).
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Letting k → ∞ and using (3.26), we have

lim
k→∞

G(y3mk
, y3nk

, y3nk
) = ǫ (3.28)

Now for all k > 0 from (3.26) and (3.27), we have

ǫ ≤ G(y3mk
, y3nk

, y3nk
)

≤ G(y3mk
, y3mk−1, y3mk−1) + G(y3mk−1, y3nk

, y3nk
)

implies that ǫ ≤ lim
k→∞

G(y3mk−1, y3nk
, y3nk

) on the other hand from (3.26)and (3.28), we have

G(y3mk−1, y3nk
, y3nk

) ≤ G(y3mk−1, y3mk
, y3mk

) + G(y3mk
, y3nk

, y3nk
) implies that

lim
k→∞

G(y3mk−1, y3nk
, y3nk

) ≤ ǫ. Hence

lim
k→∞

G(y3mk−1, y3nk
, y3nk

) = ǫ. (3.29)

Similarly for all k, from (3.26) and (3.27), we have
G(y3mk

, y3nk
, y3nk

) ≤ G(y3mk
, y3nk+1, y3nk+1) + G(y3nk+1, y3nk

, y3nk
) implies that

ǫ ≤ lim
k→∞

G(y3mk
, y3nk+1, y3nk+1) on the other hand from (3.26)and (3.28), we have

G(y3mk
, y3nk+1, y3nk+1) ≤ G(y3nk

, y3nk
, y3nk+1) + G(y3nk

, y3nk+1, y3mk
) implies that

lim
k→∞

G(y3mk
, y3nk+1, y3nk+1) ≤ ǫ. Hence

lim
k→∞

G(y3mk
, y3nk+1, y3nk+1) = ǫ (3.30)

G(y3nk+1, y3nk+1, y3mk
) =G(f(x3nk

), g(x3nk
), h(x3mk−1))

≤ α(M(x3nk+1, x3nk
, x3mk−1))M(x3nk

, x3nk
, x3mk−1) (3.31)

where

M(x3nk
, x3nk

, x3mk−1) =max{G(Sx3nk
, T x3nk

, Ux3mk−1)), G(f(x3nk
), S(x3nk

), S(x3nk
)),

G(g(x3nk
), T (x3nk

), T (x3nk
)), G(h(x3mk−1), U(x3mk−1), U(x3mk−1)),

1

3
(G(S(x3nk

), g(x3nk
), h(x3mk−1)) + G(T (x3nk

), f(x3nk+1), h(x3mk−1))+

G(U(x3mk−1), f(x3nk
), g(x3nk

)))}
=max{G(y3nk

, y3nk
, y3mk−1), G(y3nk+1, y3nk

, y3nk
),

G(y3nk+1, y3nk
, y3nk

), G(y3mk
, y3mk−1, y3mk−1),

1

3
(G(y3nk

, y3nk+1, y3mk
) + G(y3nk

, y3nk+1, y3mk
)+

G(y3mk−1, y3nk+1, y3nk+1)}

letting k → ∞ and using (3.26), (3.29) and (3.30), we have
lim

k→∞

M(x3nk
, x3nk

, x3mk−1) = max{ǫ, 0, 0, 0, 1
3 (ǫ + ǫ + ǫ)} = ǫ.

Therefore from (3.31)
G(f(x3n

k
),g(x3n

k
),h(x3m

k
−1))

M(x3n
k

,x3n
k

,x3m
k

−1) < α(M(x3nk
, x3nk

, x3mk−1)) < 1.

Using fact that ǫ = lim
k→∞

G(f(x3nk
), g(x3nk

), h(x3mk−1)) = lim
k→∞

M(x3nk
, x3nk

, x3mk−1), we get

lim
k→∞

α(M(x3nk
, x3nk

, x3mk−1)) = 1 since α ∈ ̥, hence M(x3nk
, x3nk

, x3mk−1) = 0 which is a contradic-

tion. Hence y3n is a G− Cauchy sequence by completeness of X there exist a point u in X such that
{y3n} and its subsequences {y3n+1}, {y3n+2} and {y3n+3} are also converges to u . That is

lim
n→∞

y3n+1 = lim
n→∞

U(x3n+1) = lim
n→∞

f(x3n) = u (3.32)

lim
n→∞

y3n+2 = lim
n→∞

T (x2n+2) = lim
n→∞

g(x3n+1) = u (3.33)

lim
n→∞

y3n+3 = lim
n→∞

S(x2n+3) = lim
n→∞

h(x3n+2) = u. (3.34)
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Suppose that S is continuous and by compatibility of (f, S), we have

lim
n→∞

f(S(x3n+2)) = lim
n→∞

S(f(x3n+2)) = S(u). (3.35)

Again since x3n+1 ≤ gx3n+1 = T x3n+2, using (3.3.7), we have

G(f(x3n+1), g(x3n+1), h(x3n+1)) =G(f(S(x3n+2)), g(x3n+1), h(x3n+1))

≤ α(M(S(x3n+2), x3n+1, x3n+1))M(S(x3n+2), x3n+1, x3n+1) (3.36)

where

M(S(x3n+2), x3n+1, x3n+1) =max{G(S(Sx3n+2), T (x3n+1), U(x3n+1)),

G(f(S(x3n+2)), S(S(x3n+2)), S(S(x3n+2))),

G(g(x3n+1), T (x3n+1), T (x3n+1)),

G(h(x3n+2), U(x3n+1), U(x3n+1)),

1

3
(G(S(S(x3n+2)), g(x3n+1), h(x3n+1))

+ G(T (x3n+1), f(S(x3n+2)), h(x3n+1))

+ G(U(x3n+1), f(S(x3n+2)), g(x3n+1)))}

letting n → ∞ and using (3.32), (3.33), (3.34) and (3.35), we have

lim
n→∞

M(S(x3n+2), x3n+1, x3n+1) =max{G(S(u), u, u), G(S(u), S(u), S(u))G(u, u, u), G(u, u, u),

1

3
(G(S(u), u, u) + G(u, S(u), u) + G(u, S(u), u))}

=maxG(S(u), u, u), 0, 0, 0, G(S(u), u, u)

=G(S(u), u, u).

Therefore from (3.36) as n → ∞, we have
G(S(u), u, u) ≤ α(G(S(u), u, u))G(S(u), u, u) < G(S(u), u, u) yields that

S(u) = u. (3.37)

Since x3n+1 ≤ gx3n+1 and gx3n+1 → u as n → ∞,x3n+1 ≤ u. From (3.3.7), we have

G(f(x3n+1), g(x3n+1), h(x3n+1)) =G(f(u), g(x3n+1), h(x3n+1))

≤ α(M(u, x3n+1, x3n+1))M(u, x3n+1, x3n+1) (3.38)

where

M(u, x3n+1, x3n+1) =max{G(S(u), T (x3n+1), U(x3n+1)), G(f(u), S(u), S(u)),

G(g(x3n+1), T (x3n+1), T (x3n+1)), G(h(x3n+1), U(x3n+1), U(x3n+1)),

1

3
(G(S(u), g(x3n+1), h(x3n+1)) + G(T (x3n+1), f(u), h(x3n+1))

+ G(U(x3n+1), f(u), g(x3n+1)))}

letting n → ∞ and using (3.32), (3.33), (3.34) and (3.37), we have

lim
n→∞

M(u, x3n+1, x3n+1) =max{G(u, u, u), G(f(u), u, u), G(u, u, u),

G(u, u, u),
1

3
(G(u, u, u) + G(u, f(u), f(u)) + G(u, f(u), u))

=max{0, G(f(u), u, u), 0, 0,
2

3
G(f(u), u, u)}

=G(f(u), u, u).
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Therefore from (3.38) as n → ∞, we have
G(f(u), u, u) ≤ α(G(f(u), u, u))G(f(u), u, u) < G(f(u), u, u). yields that

f(u) = u. (3.39)

Suppose that T is continuous and by compatibility of (g, T ), we have

lim
n→∞

g(T (x3n+3)) = lim
n→∞

T (g(x3n+3)) = T (u). (3.40)

Again since x3n+2 ≤ hx3n+2 = Sx3n+3, using (3.3.7), we have

G(f(x3n+2), g(T (x3n+3)), h(x3n+2)) ≤ α(M(x3n+2, T x3n+3, x3n+2))M(x3n+2, T x3n+3, x3n+2) (3.41)

where

M(x3n+2, T x3n+3, x3n+2) =max{G(S(x3n+2), T T (x3n+3), U(x3n+2)),

G(f(x3n+2), S(x3n+2), S(x3n+2)), G(g(T (x3n+3)), T (T (x3n+3)), T (T (x3n+3))),

G(h(x3n+2), U(x3n+2), U(x3n+2)),
1

3
(G(S(x3n+2), g(T (x3n+3)), h(x3n+2))+

G(T (T (x3n+3)), f(x3n+2), h(x3n+2)) + G(U(x3n+2), f(x3n+2), g(T (x3n+3))))}

letting n → ∞ and using (3.32), (3.33), (3.34) and (3.35), we have

lim
n→∞

M(x3n+2, T (x3n+3), x3n+2) =max{G(u, T (u), u), G(u, u, u), G(T (u), T (u), T (u)), G(u, u, u),

1

3
(G(u, T (u), u) + G(T (u), u, u) + G(u, u, T (u)))}

=maxG(T (u), u, u), 0, 0, 0, G(T (u), u, u)

=G(T (u), u, u).

Therefore from (3.41) as n → ∞, we have
G(u, T (u), u) ≤ α(G(T (u), u, u))G(T (u), u, u) < G(T (u), u, u). yields that

T (u) = u. (3.42)

Since x3n+2 ≤ h(x3n+2) and h(x3n+2) → u as n → ∞,x3n+2 ≤ u. From (3.3.7), we have

G(f(u), g(u), h(x3n+2)) ≤ α(M(u, u, x3n+2))M(u, u, x3n+2) (3.43)

where

M(u, u, x3n+2) =max{G(S(u), T (u), U(x3n+2)), G(f(u), S(u), S(u)), G(g(u), T (u), T (u)),

G(h(x3n+2), U(x3n+2), U(x3n+2)),
1

3
(G(S(u), g(u), h(x3n+2))+

G(T (u), f(u), h(x3n+2)) + G(U(x3n+2), f(u), g(u)))}

letting n → ∞ and using (3.32), (3.33), (3.34) and (3.37), we have

lim
n→∞

M(u, u, x3n+2) =max{G(u, u, u), G(u, u, u), G(g(u), u, u), G(u, u, u),

1

3
(G(u, g(u), u) + G(u, u, u) + G(u, g(u), u))}

= max{0, G(g(u), u, u), 0, 0,
2

3
G(g(u), u, u)}

= G(g(u), u, u).
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Therefore from (3.43) as n → ∞, we have
G(f(u), gu, hx3n+2) ≤ α(G(g(u), u, u))G(g(u), u, u) < G(g(u), u, u). yields that

g(u) = u. (3.44)

Since f(X) ⊆ U(X) then there exists a point v ∈ X such that u = f(u) = U(v).
Suppose that h(v) , U(v). Since u ≤ f(u) = U(v) ≤ f(U(v)) ≤ v implies that u ≤ v and using (3.3.7),
we have

G(U(v), h(v), h(v)) = G(f(u), h(v), h(v)) ≤ α(M(u, v, v))M(u, v, v) (3.45)

where

M(u, v, v) =max{G(S(u), U(v), U(v)), G(f(u), S(u), S(u)), G(h(v), U(v), U(v)), G(h(v), U(v), U(v)),

1

3
(G(S(u), h(v), h(v)) + G(T (v), f(u), h(v)) + G(U(v), U(v), h(v)))}

=max{G(u, u, u), G(u, u, u), G(h(v), U(v), U(v)), G(h(v), U(v), U(v)),

1

3
(G(U(v), h(v), h(v)) + G(U(v), U(v), h(v)) + G(U(v), U(v), h(v)))}

=G(U(v), h(v), h(v)).

Therefore from (3.45), we have G(U(v), h(v), h(v)) < G(U(v), h(v), h(v)) yields that Uv = hv. Now by
the weakly compatibility of the pair (h, U), h(u) = h(f(u)) = h(U(v)) = U(h(v)) = U(f(u)) = U(u).
That is u is a coincidence point of h and U . Next since x3n+2 ≤ h(x3n+2) and h(x3n+2) → u as n → ∞
implies x3n+2 ≤ u. From (3.3.7), we have

G(f(u), g(u), h(x3n+2)) ≤ α(M(u, u, x3n+2))M(u, u, x3n+2) (3.46)

where

M(u, u, x3n+2) =max{G(S(u), T (u), U(x3n+2)), G(f(u), S(u), S(u)), G(g(u), T (u), T (u)),

G(h(x3n+2), U(x3n+2), U(x3n+2)),
1

3
(G(S(u), g(u), h(x3n+2))

+ G(T (u), f(u), h(x3n+2)) + G(U(x3n+2), f(u), g(u)))}
letting n → ∞ and using (3.32), (3.33), and (3.34), we have

lim
n→∞

M(u, u, x3n+2) =max{G(u, u, u), G(u, u, u), G(u, u, u), G(hu, u, u),

1

3
(G(u, u, h(u)) + G(g(u, u, h(u)) + G(u, u, u))}

=max{G(h(u), u, u), 0, 0, 0, G(h(u), u, u)}
=G(h(u), u, u).

Therefore from (3.3.31) as n → ∞, we have
G(fu, g(u), h(u)) ≤ α(G(h(u), u, u))G(h(u), u, u) < G(h(u), u, u). Therefore h(u) = u. Therefore f(u) =
g(u) = h(u) = S(u) = T (u) = U(u) = u. Therefore u is a common fixed point of f, g, h, S, T, U .
Suppose that the set of common fixed points of f, g, h, S, T and U is well ordered and let u and v be any
two distinct fixed points of f, g, h, S, T and U then from (3.3.7), we have

G(f(u), g(v), h(v)) ≤ α(M(u, v, v))M(u, v, v) (3.47)

where

M(u, v, v) =max{G(S(u), T (v), U(v)), G(f(u), S(u), S(u)), G(g(v), T (v), T (v)), G(h(v), U(v), U(v)),

1

3
(G(S(u), g(v), h(v)) + G(T (v), f(u), h(v)) + G(U(v), f(u), g(v)))}

=max{G(u, v, v), G(u, u, u), G(v, v, v), G(v, v, v),
1

3
(G(u, v, v) + G(v, u, v) + G(v, u, v)}

=G(u, v, v).
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From (3.3.32), we have G(f(u), g(v), h(v)) ≤ α(G(u, v, v))G(u, v, v) implies G(u, v, v) < G(u, v, v) which
is a contradiction. Therefore u = v. Therefore common fixed point of f, g, h, S, T and U is unique.
Conversely, if f, g, h, S, T and U have only one common fixed point then the set of common fixed point
of f, g, h, S, T and U being singleton is well ordered. �

In the sequel we give some corollaries of our theoretical results:
If we take f = g = h and S = T = U in the Theorem 3.2, we have the following result.

Corollary 3.4. Let (X, �) be a partially ordered set and there exists a metric G on X such that (X, G)
is a complete G− metric space. Let f, T : X → X be given mappings satisfying

(1) f(X) ⊆ T (X),

(2) for every comparable elements x, y, z ∈ X,
G(f(x), f(y), f(z)) ≤ α(G(T (x), T (y), T (z)))G(T (x), T (y), T (z)), where α ∈ F

(3) The pairs (T, f) are partially weakly increasing,

(4) f is dominating and weak annihilator maps of T .

(5) there exist a non decreasing sequence {xn} with xn � yn for all n and yn → u implies xn � u.

(6) (f, T ) is compatible, weakly compatible and f or T is continuous map.

Then f, T have a common fixed point. Moreover, f, T have one common fixed point if and only if the set
of common fixed point of f, T is well ordered.

If we take f = g = h and S = T = U in the Theorem 3.3, we have the following result.

Corollary 3.5. Let (X, �) be a partially ordered set and there exists a metric G on X such that (X, G)
is a complete G− metric space. Let f, T : X → X be given mappings satisfying

(1) f(X) ⊆ T (X),

(2) for every comparable elements x, y, z ∈ X,
G(f(x), f(y), f(z)) ≤ α(G(T (x), T (y), T (z)))G(T (x), T (y), T (z)), where α ∈ F

(3) The pairs (T, f) are partially weakly increasing,

(4) f is dominating and weak annihilator maps of T .

(5) there exist a non decreasing sequence {xn} with xn � yn for all n and yn → u implies xn � u.

(6) (f, T ) is compatible, weakly compatible and f or T is continuous map.

(7) G(f(x), f(y), f(z)) ≤ α(M(x, y, z))M(x, y, z), where

M(x, y, z) = max{G(S(x), T (y), U(z)), G(f(x), S(x), S(x)), G(g(y), T (y), T (y)), G(h(z), U(z), U(z)),

1

3
(G(S(x), g(y), h(z)) + G(T (y), f(x), h(z)) + G(U(z), f(x), g(y)))}

for all x, y, z ∈ X with x � y � z and α ∈ ̥ Then f, T have a common fixed point. Moreover, f, T have
one common fixed point if and only if the set of common fixed point of f, T is well ordered.

The following example support our theoretical results:
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Example 3.6. Let X = [0, ∞) be endowed with the usual G− metric G(x, y, z) = |x−y|+ |y−z|+ |z −x|,
and ≤ be the usual ordering on R. We define a new ordering � on X such that x � y if and only if y ≤ x,

for all x, y ∈ X. Define f, g, h, T, S, U : X → X as f(x) = ln(1+ x
6 ), g(x) = ln(1+ x

12 ), h(x) = ln(1+ x
18 ),

U(x) = e6x − 1, T (x) = e12x − 1 and S(x) = e18x − 1. Here f(X) ⊆ U(X), g(X) ⊆ T (X), h(X) ⊆ S(X).
Now for each x ∈ X we have 1 + x

6 ≤ ex, 1 + x
12 ≤ ex, 1 + x

18 ≤ ex, so f(x) = ln(1 + x
6 ) ≤ x,

g(x) = ln(1 + x
12 ) ≤ x, h(x) = ln(1 + x

18 ) ≤ x. It implies that x � f(x), x � g(x), x � h(x). So

f, g, h are dominating maps. Also for each x ∈ X, we have f(U(x)) = ln(1 + T (x)
6 ) = ln(1 + e6x

−1
6 ) =

ln(5+e6x

6 ) = ln(e3x. 5e−3x+e3x

6 ) = 3x + ln(5e−3x+e3x

6 ) ≥ x. This implies that f(U(x)) ≤ x. Also, g(T (x)) =

ln(1 + S(x)
12 ) = ln(1 + e12x

−1
12 ) = ln(11+e12x

12 ) = ln(e6x. 11e−6x+e6x

12 ) = 6x + ln(11e−6x+e6x

12 ) ≥ x. This implies

that g(T (x)) ≤ x. Further, h(S(x)) = ln(1 + Ux
18 ) = ln(1 + e18x

−1
18 ) = ln(17+e18x

18 ) = ln(e9x. 17e−9x+e9x

18 ) =

9x + ln(17e−9x+e9x

18 ) ≥ x. This implies that h(S(x)) ≤ x. Thus f, g, h are weak annihilators of U, T

and S respectively. Since f(U(x)) ≤ x, x ≤ f(x), f(U(x)) ≤ f(x). Hence (U, f) is partially weakly
increasing. Also since, g(T (x)) ≤ x, x ≤ g(x), g(T (x)) ≤ g(x) and hence (T, g) is partially weakly
increasing. Similarly h(S(x)) ≤ x, x ≤ h(x), h(S(x)) ≤ h(x) and (S, h) is partially weakly increasing.
Now there exist a non-decreasing sequence {xn} = 1

n
in X such that 1

n
→ 0, f(xn) = ln(1 + xn

6 ) =

ln(1 + 1
6n

) → 0 and S(xn) = e18xn − 1 = e
18
n − 1 → 0 as n → ∞. Also f(S(xn)) = ln(1 + S(xn)

6 ) → 0 and

S(f(xn)) = e18f(xn) −1 → 0. Therefore lim
n→∞

G(f(S(xn)), S(f(xn)), S(f(xn))) = 0, that is the pair (f, S)

is compatible and continuous maps. Similarly the pair (g, T ) is also compatible and continuous maps. 0
is the coincidence point of the pair (h, U) and we have h(U(0)) = h(0) = 0 = U(0) = U(h(0)). Therefore
the pair (h, U) is weakly compatible. Now, we define α(t) = 1

1+t
if t ∈ (0, ∞) and α(t) = 0 if t = 0 then

for tn = 1
n

, lim
n→∞

α(tn) = lim
n→∞

1
1+ 1

n

→ 1. It implies that lim
n→∞

tn = 1
n

→ 0. Thus α ∈ ̥. For x, y, z ∈ X,

we have

G(f(x), g(y), h(z)) = |f(x) − g(y)| + |g(y) − h(z)| + |h(z) − f(x)|
= | ln(1 +

x

6
) − ln(1 +

y

12
)| + | ln(1 +

y

12
) − ln(1 +

z

18
)| + | ln(1 +

z

18
) − ln(1 +

x

6
)|

≤ |1 +
x

6
− 1 − y

12
| + |1 +

y

12
− 1 − z

18
| + |1 +

z

18
− 1 − x

6
|

≤ 1

12
|2x − y| +

1

36
|3y − 2z| +

1

18
|z − 3x|

=
1

72
|12x − 6y| +

1

216
|18y − 12z| +

1

108
|6z − 18x|

≤ 1

72
|e12x − e6y| +

1

216
|e18y − e12z| +

1

108
|e6z − e18x|

=
1

72
G(T (x), U(y), U(y)) +

1

216
G(S(y), T (z), T (z)) +

1

108
G(U(z), S(x), S(x))

≤ 1

36
[
1

2
G(T (x), U(y), U(y)) +

1

6
G(S(y), T (z), T (z)) +

1

3
G(U(z), S(x), S(x))]

≤ 1

36
M(x, y, z) ≤ α(M(x, y, z))M(x, y, z).

It holds if 1
36 ≤ α(M(x, y, z)) < 1, for all x, y, z ∈ X. Thus all the conditions of Theorem 3.3 are satisfied

and 0 is the unique common fixed point f, g, h, S, T and U.
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