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On Quasi Focal Curves with Quasi Frame in Space

Talat Körpinar

abstract: In this study, we firstly characterize focal curves by considering quasi frame in the ordinary
space. Then, we obtain the relation of each quasi curvatures of curve in terms of focal curvatures. Finally, we
give some new conditions with constant quasi curvatures in the ordinary space.
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1. Backround on Quasi Frame

By way of design and style, this is model to kind of a moving frame with regards to a particle. In
the quick stages of regular differential geometry, the Frenet-Serret frame was applied to create a curve in
location. After that, Frenet-Serret frame is established by way of subsequent equations for a presented
framework [1-18],
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where κ = ‖t‖ and τ are the curvature and torsion of γ, respectively.
The quasi frame of a regular curve γ is given by

tq= t,nq =
t ∧ k

‖t ∧ k‖
,bq = tq∧nq,

where k is the projection vector [4].
For simplicity, we have chosen the projection vector k = (0, 0, 1) in this paper. However, the q-frame

is singular in all cases where t and k are parallel. Thus, in those cases where t and k are parallel the
projection vector k can be chosen as k = (0, 1, 0) or k = (1, 0, 0).

If the angle between the quasi normal vecctor nq and the normal vector n is choosen as ψ, then
following relation is obtained between the quasi and FS frame.

tq = t,

nq = cosψn+ sinψb,

bq = − sinψn+ cosψb,

such that short computation by using Eqs. (1 − 3) yields that the variation of parallel adapted quasi
frame is given by

∇tq
tq = κ1nq + κ2bq,

∇tq
nq = −κ1tq + κ3bq,

∇tq
bq = −κ2tq − κ3nq,

where
κ1 = κ cosψ, κ2 = −κ sinψ, κ3 = ψ′ + τ,
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and
tq × nq = bq, nq × bq = tq, bq × tq = nq.

In this paper, we study quasi focal curves in the Euclidean 3-space. We characterize quasi focal curves
in terms of their focal curvatures.

2. Quasi Focal Curves with Quasi Frame In E
3

The focal curve of α is given by
β = α+ φ1nq + φ2bq, (2.1)

where the coefficients φ1, φ2 are smooth functions of the parameter of the curve γ, called the first and
second focal curvatures of γ, respectively.

Theorem 2.1. Let γ : I −→ E
3 be a unit speed curve and β its focal curve on E

3. Then,

β = α+ e
−

∫

κ1κ3

κ2
ds(
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κ2
dsκ3
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ds+C)nq + (
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ds+C))bq, (2.2)

where C is a constant of integration.

Proof. Assume that α is a unit speed curve and β its focal curve in E
3.

So, by differentiating of the formula (2.1), we get

β′ = (1 − κ1φ1 − κ2φ2)tq + (φ′

1 − κ3φ2)nq + (φ′

2 + κ3φ1)bq

From above equation, the first 2 components vanish, we get

1 − κ1φ1 − κ2φ2 = 0,

φ′

1 − κ3φ2 = 0.

Using the above equations, we obtain

φ′

1 −
κ3

κ2
(1 − κ1φ1) = 0,

φ′

1 +
κ1κ3

κ2
φ1 =

κ3

κ2
.

By integrating this equation, we find

φ1 = e
−

∫

κ1κ3

κ2
ds(
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e

∫
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dsκ3

κ2
ds+ C),
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By means of obtained equations, we express (2.2). This completes the proof of the theorem.

As an immediate consequence of the above theorem, we have:

Corollary 2.2. Let α : I −→ E
3 be a unit speed curve and β its focal curve on E

3. Then, the focal

curvatures of β are

φ1 = e
−

∫

κ1κ3

κ2
ds(

∫

e

∫
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κ2
dsκ3

κ2
ds+ C),
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φ2 =
1
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Proof. From above theorem, we have above system, which completes the proof.

In the light of Theorem 2.1, we express the following corollary without proof:

Corollary 2.3. Let γ : I −→ E
3 be a unit speed curve and β its focal curve on E

3. If κ1,κ2,κ3 are

constant then, the focal curvatures of β are

φ1 = (
1

κ1
+ e

−
κ1κ3

κ2
s
C),

φ2 =
1

κ2
−

κ1

κ2
(

1

κ1
+ Ce

−
κ1κ3

κ2
s).
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Turkey.

E-mail address: talatkorpinar@gmail.com


	Backround on Quasi Frame
	Quasi Focal Curves with Quasi Frame In E3

