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Existence, Error estimation, Rate of convergence, Ulam-Hyers stability, Well-posedness

and Limit Shadowing Property Related to a Fixed Point Problem
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abstract: In this paper we consider a fixed point problem where the mapping is supposed to satisfy
a generalized contractive inequality involving rational terms. We first prove the existence of a fixed point
of such mappings. Then we show that the fixed point is unique under some additional assumptions. We
investigate four aspects of the problem, namely, error estimation and rate of convergence of the fixed point
iteration, Ulam-Hyers stability, well-psoedness and limit shadowing property. In the existence theorem we use
an admissibility condition. Two illustrations are given. The research is in the line with developing fixed point
approaches relevant to applied mathematics.

Key Words:Metric space, Fixed point, Error correction, Rate of convergence, Ulam-Hyers stability,
Well- posedness, Limit shadowing property.

Contents

1 Introduction 1

2 Mathematical background 2

3 Main results 3

4 Error estimation and rate of convergence 5

5 Ulam-Hyers stablity 7

6 Well-Posedness and Limit shadowing property 8

1. Introduction

Our primary purpose in this paper is to establish a fixed point theorem for a mapping which satisfies
a contractive inequality involving rational terms and also some other conditions which are conceptual
extension of admissibility conditions. The latter has been used quite extensively in the recent develop-
ments of fixed point theory [1,8,10,19,20,23]. It is shown that the fixed point is unique if some additional
conditions are imposed. We investigate some aspects of the fixed point problem considered here. We
make an error estimation of the fixed point iteration which we construct in this paper. We also investigate
the rate of convergence of the iteration process. Such considerations have appeared in the fixed point
theory through works like [2,7,14,25].

Next we investigate the Ulam-Hyers stability of the fixed point problem. It is a type of stability which
was initiated by a mathematical question by Ulam [24] and subsequent partial answers by Hyers [9] and
Rassias [16]. The investigation of such stability has been performed in various contexts of mathematics
like functional equations [5,6], isometries [12,17], etc.

Finally we investigate the well-posedness and limit shadowing property of the problem. These are
two related properties of the fixed point problem. The study of well-posedness has appeared in several
recent works related to fixed point theory as for instances in [4,10,11,13,15,22].

The relevance of the present study lies in the theoretical development of fixed point methodologies
applicable to different domains of applied mathematics like differential equations, functional equations
etc. [3,21].
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2. Mathematical background

For the purpose of the following three definitions we formally state the following fixed point problem
to which they are related.

Problem (P): Let (X, d) be a metric space and F : X → X be a mapping. We consider the problem
of finding a fixed point of F , that is, the problem of finding x ∈ X such that

x = Fx. (2.1)

Definition 2.1 ( [10,18]). The problem (P) is called Ulam-Hyers stable if there exists c > 0 such that, for
any ǫ > 0 and y ∈ X with d(y, Fy) ≤ ǫ there exists a solution x∗ ∈ X of x = Fx such that d(y, x∗) ≤ c ǫ.

Definition 2.2 ( [22]). The problem (P) is called generalized Ulam-Hyers stable if there exists a function
φ : [0, ∞) → [0, ∞), which is monotone increasing, continuous at 0 with φ(0) = 0, such that for each
ǫ > 0 and for each solution u∗ ∈ X of the inequality d(x, Fx) ≤ ǫ there exists a solution x∗ ∈ X of
x = Fx such that d(u∗, x∗) ≤ φ(ǫ).

Remark 2.3. If φ : [0, ∞) → [0, ∞) is defined as φ(t) = c t for t ≥ 0, where c > 0 is a constant, then
Definition 2.2 reduces to Definition 2.1.

Definition 2.4 ( [10]). The problem (P) is called well-posed if (i) F has a unique fixed point x∗ ∈ X ,
(ii) d(xn, x

∗) → 0 as n → ∞, whenever {xn} is a sequence in X with d(xn, Fxn) → 0 as n → ∞.

Definition 2.5 ( [22]). The problem (P) has the limit shadowing property inX if, for any sequence {xn} ∈
X for which d(xn, Fxn) → 0 as n → ∞, it follows that there exists z ∈ X such that d(xn, Fnz) → 0 as
n → ∞.

Definition 2.6. Let X be a nonempty set and α : X ×X → [0, ∞). A mapping F : X → X is said to
be α-dominated if α(x, Fx) ≥ 1, for x ∈ X .

The above definition is illustrated though the following example.

Example 2.7. Let X = [0, 1] be equipped with usual metric. Let F : X → X and α : X ×X → [0, ∞)
be respectively defined as follows:

Fx =
sin2 x

16
, for x ∈ X and α(x, y) =

{

ex+y, if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
8 ,

0, otherwise.

As Fx ∈ [0, 1
16 ], for all x ∈ [0, 1], it follows that α(x, Fx) ≥ 1, for all x ∈ [0, 1], that is, F is a α-

dominated mapping.

Definition 2.8 ( [20]). A function α : X × X → [0, ∞), where X is a nonempty set, is said to have
triangular property if for x, y, z ∈ X , α(x, y) ≥ 1 and α(y, z) ≥ 1 =⇒ α(x, z) ≥ 1.

Definition 2.9 ( [19]). Let (X, d) be a metric space and α : X ×X → [0, ∞). Then X is said to have
regular property with respect to α (or α- regular property) if for every sequence {xn} in X converging
to x ∈ X, α(xn, xn+1) ≥ 1, for all n =⇒ α(xn, x) ≥ 1, for all n.

Remark 2.10. For the metric space X and the mapping α as in Example 2.7, it can be easily verified
that α has triangular property and X is regular with respect to α.

Let (X, d) be a metric space and α : X × X → [0, ∞) be a mapping. We designate the following
properties by (A1), (A2) and (A3):

(A1) X has regular property with respect to α;

(A2) α has triangular property;

(A3) for every x, x∗ ∈ X , there exists a u ∈ X such that α(x, u) ≥ 1 and α(x∗, u) ≥ 1.
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3. Main results

In this section we establish a fixed point result. We discuss its uniqueness under some additional
assumptions. We deduce some corollaries of the main result and illustrate it with an example.

Theorem 3.1. Let (X, d) be a complete metric space, F : X → X and α : X ×X → [0, ∞). Suppose
that F is α-dominated and there exists k ∈ (0, 1) such that for x, y ∈ X with α(x, y) ≥ 1,

d(Fx, Fy) ≤ k max
{

d(x, y),
d(x, Fx) + d(y, Fy)

2
,
d(x, Fy) + d(y, Fx)

2
,

d(x, Fx) d(y, Fy)

1 + d(x, y)
,
d(y, Fx) d(x, Fy)

1 + d(x, y)

}

. (3.1)

Also, suppose that the property (A1) holds. Then F has a fixed point in X.

Proof. Let x0 ∈ X be arbitrary. We construct a sequence {xn} in X such that

xn+1 = Fxn, for all n ≥ 0. (3.2)

As F is α-dominated, we have

α(xn, Fxn) = α(xn, xn+1) ≥ 1, for all n ≥ 0. (3.3)

Let
rn = d(xn, xn+1), for all n ≥ 0. (3.4)

By (3.1), (3.2), (3.3) and (3.4), we have

d(xn+1, xn+2) = d(Fxn, Fxn+1)

≤ k max
{

d(xn, xn+1),
d(xn, Fxn) + d(xn+1, Fxn+1)

2
,

d(xn, Fxn+1) + d(xn+1, Fxn)

2
,
d(xn, Fxn) d(xn+1, Fxn+1)

1 + d(xn, xn+1)
,

d(xn+1, Fxn) d(xn, Fxn+1)

1 + d(xn, xn+1)

}

= k max
{

d(xn, xn+1),
d(xn, xn+1) + d(xn+1, xn+2)

2
,
d(xn, xn+2)

2
,

d(xn, xn+1) d(xn+1, xn+2)

1 + d(xn, xn+1)
, 0

}

≤ k max
{

d(xn, xn+1),
d(xn, xn+1) + d(xn+1, xn+2)

2
,

d(xn, xn+1) + d(xn+1, xn+2)

2
, d(xn+1, xn+2)

}

= k max
{

rn,
rn + rn+1,

2

rn + rn+1

2
, rn+1

}

= k max
{

rn, rn+1

}

, [ as
rn + rn+1

2
≤ max {rn, rn+1} ] .

Therefore,

d(xn+1, xn+2) ≤ k max
{

rn, rn+1

}

. (3.5)

Suppose that 0 ≤ rn < rn+1. From (3.4) and (3.5), we have

rn+1 = d(xn+1, xn+2) ≤ k rn+1,

which is a contradiction. Therefore, rn+1 ≤ rn, for all n ≥ 0. Then from (3.5), we have

d(xn+1, xn+2) = rn+1 ≤ k rn = k d(xn, xn+1), for all n ≥ 0. (3.6)
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By repeated application of (3.6), we have

d(xn+1, xn+2) ≤ k d(xn, xn+1) ≤ k2 d(xn−1, xn) ≤ ... ≤ kn+1 d(x0, x1). (3.7)

With the help of (3.7), we have

∞
∑

n=1

d(xn, xn+1) ≤

∞
∑

n=1

kn d(x0, x1) =
1

1− k
d(x0, x1) < ∞,

which implies that {xn} is a Cauchy sequence in X . As X is complete, there exists x ∈ X such that

lim
n→∞

xn = x. (3.8)

By (3.3), (3.8) and the assumption (A1), we have α(xn, x) ≥ 1, for all n ≥ 0. Using (3.2), we have

d(xn+1, Fx) = d(Fxn, Fx)

≤ max
{

d(xn, x),
d(xn, Fxn) + d(x, Fx)

2
,
d(xn, Fx) + d(x, Fxn)

2
,

d(xn, Fxn) d(x, Fx)

1 + d(xn, x)
,
d(x, Fxn) d(xn, Fx)

1 + d(xn, x)

}

= k max
{

d(xn, x),
d(xn, xn+1) + d(x, Fx)

2
,
d(xn, Fx) + d(x, xn+1)

2
,

d(xn, xn+1) d(x, Fx)

1 + d(xn, x)
,
d(x, xn+1) d(xn, Fx)

1 + d(xn, x)

}

. (3.9)

Taking limit as n → ∞ in (3.9) and using (3.8), we have

d(x, Fx) ≤ k max
{

0,
d(x, Fx)

2
,
d(x, Fx)

2
, 0, 0

}

= k
d(x, Fx)

2
,

which implies that d(x, Fx) = 0, that is, x = Fx, that is, x is a fixed point of F .

Theorem 3.2. In addition to the hypothesis of Theorem 3.1, suppose that (A2) and (A3) hold. Then F

has a unique fixed point.

Proof. By Theorem 3.1, the set of fixed points of F is nonempty. If possible, let x and x∗ be two fixed
points of F . Then x = Fx and x∗ = Fx∗. Our aim is to show that x = x∗. By the assumption (A3),
there exists u ∈ X such that α(x, u) ≥ 1 and α(x∗, u) ≥ 1. Put u0 = u. Then α(x, u0) ≥ 1. Let
u1 = Fu0. Similarly, as in the proof of Theorem 3.1, we inductively define a sequence {un} such that

un+1 = Fun, for all n ≥ 0. (3.10)

As F is α-dominated, we have

α(un, un+1) ≥ 1, for all n ≥ 0. (3.11)

Arguing similarly as in proof of Theorem 3.1, we prove that {un} is a Cauchy sequence in X and there
exists p ∈ X such that

lim
n→∞

un = p. (3.12)

We claim that

α(x, un) ≥ 1, for all n ≥ 0. (3.13)
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In fact, we shall use mathematical induction. As α(x, u0) ≥ 1 and α(u0, u1) ≥ 1, by the assumption
(A2), we have α(x, u1) ≥ 1. Therefore, our claim is true for n = 1. We assume that α(x, um) ≥ 1
holds for some m > 1. Now by (3.11), α(um, um+1) ≥ 1. Then applying the assumption (A2), we have
α(x, um+1) ≥ 1 and this proves our claim.

By (3.1) and (3.13) we have, for all n ≥ 0

d(x, un+1) = d(Fx, Fun)

≤ k max
{

d(x, un),
d(x, Fx) + d(un, Fun)

2
,
d(x, Fun) + d(un, Fx)

2
,

d(x, Fx) d(un, Fun)

1 + d(x, un)
,
d(x, Fun) d(un, Fx)

1 + d(x, un)

}

= k max
{

d(x, un),
d(un, un+1)

2
,
d(x, un+1) + d(un, x)

2
,

0,
d(x, un+1) d(un, x)

1 + d(x, un)

}

. (3.14)

Taking limit as n → ∞ in (3.14) and using (3.12), we have

d(x, p) ≤ k max
{

d(x, p), 0,
d(x, p) + d(p, x)

2
, 0,

d(x, p) d(p, x)

1 + d(x, p)

}

≤ k max
{

d(x, p), d(x, p), d(x, p)
}

= k d(x, p), (3.15)

which is a contradiction unless d(x, p) = 0, that is, x = p. Similarly, we can prove that x∗ = p. Hence we
have x = x∗, that is, the fixed point of F is unique.

We present the following illustrative examples in support of Theorems 3.1 .

Example 3.3. Using the metric space X , mappings α and F as in Example 2.7, we see that α has
triangular property and X is regular with respect to α (see Remark 2.10) and F is a α-dominated

mapping. Take k =
1

4
.

Let x, y ∈ X with α(x, y) ≥ 1. Then x ∈ [0, 1] and y ∈ [0, 1
8 ]. Therefore, it is required to verify the

inequality in Theorem 3.1 for x ∈ [0, 1] and y ∈ [0, 1
8 ]. Now, d(x, y) =| x− y | and

d(Fx, Fy) =|
sin2 x

16
−

sin2 y

16
|=

1

16
| sin(x − y) sin(x+ y) |≤

1

16
| sin(x− y) |≤

| x− y |

16

=
1

4

| x− y |

4
=

1

4

d(x, y)

4

≤
1

4
max

{

d(x, y),
d(x, Fx) + d(y, Fy)

2
,
d(x, Fy) + d(y, Fx)

2
,

d(x, Fx) d(y, Fy)

1 + d(x, y)
,
d(y, Fx) d(x, Fy)

1 + d(x, y)

}

.

Then it follows that the inequality in Theorem 3.1 is satisfied for all x, y ∈ X with α(x, y) ≥ 1. Hence
all the conditions of Theorem 3.2 are satisfied and 0 is the unique fixed point of F .

4. Error estimation and rate of convergence

We now study the rate at which the iteration method of finding the fixed point of the problem (P)
converges if the initial approximation to the fixed point is sufficiently close to the desired fixed point.

Definition 4.1. The problem (P) is said to be of order r or has the rate of convergence r if (i) F has
a unique fixed point x, (ii) r is the positive real number for which there exists a finite constant C > 0
such that Rk+1 ≤ C Rr

k, where Rk = d(x, xk) is the error in kth iterate. The constant C is called the
asymptotic error.
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When r = 1 we say that the problem (P) is linearly convergent.

Theorem 4.2. Let (X, d) be a complete metric space, F : X → X and α : X ×X → [0, ∞). Suppose

that F satisfies all the assumptions of Theorem 3.2. Then Rn+1 ≤
kn+1

(1− k)
d(x1, x0).

Proof. By Theorem 3.2, F has a unique fixed point x ∈ X . Let x0 ∈ X be the initial approximation
of x and x1 = Fx0. Similarly, as in the proof of Theorem 3.1, we define a sequence {xn} such that
xn+1 = Fxn, for all n ≥ 0. Then arguing similarly as in proof of Theorem 3.1, we can show that

(a) (3.3) and (3.7) are satisfied;
(b) {xn} is a Cauchy sequence in X and converges to a fixed point of F in X .

As, we consider that x is the unique fixed point of F , we have limn→∞ xn = x. By (3.3), (3.8) and the
assumption (A1), we have α(xn, x) ≥ 1 for all n ≥ 0. Then we have

Rn+1 = d(x, xn+1) = d(Fx, Fxn) = d(Fxn, Fx)

≤ k max
{

d(xn, x),
d(xn, Fxn) + d(x, Fx)

2
,
d(xn, Fx) + d(x, Fxn)

2
,

d(xn, Fxn) d(x, Fx)

1 + d(xn, x)
,
d(x, Fxn) d(xn, Fx)

1 + d(xn, x)

}

≤ k max
{

d(xn, x),
d(xn, xn+1)

2
,
d(xn, x) + d(x, xn+1)

2
, 0,

d(x, xn+1) d(xn, x)

1 + d(xn, x)

}

≤ k max
{

d(xn, x),
d(xn, x) + d(x, xn+1)

2
,
d(xn, x) + d(x, xn+1)

2
,

0,
d(x, xn+1) d(xn, x)

1 + d(xn, x)

}

= k max
{

Rn,
Rn +Rn+1

2
,
Rn +Rn+1

2
,
Rn+1 Rn

1 +Rn

}

≤ k max
{

Rn,
Rn +Rn+1

2
,
Rn +Rn+1

2
, Rn+1

}

= k max
{

Rn, Rn+1

}

, [ as
Rn +Rn+1

2
≤ max {Rn, Rn+1} ] . (4.1)

Suppose that Rn+1 > Rn ≥ 0. Then we have Rn+1 ≤ k Rn+1. As 0 < k < 1 and Rn+1 > 0, it leads to a
contradiction. Therefore, Rn+1 ≤ Rn. Hence it follows from (4.1) that

Rn+1 ≤ k Rn ≤ k [d(xn+1, xn) +Rn+1], (4.2)

that is,

Rn+1 ≤
k

(1− k)
d(xn+1, xn), (4.3)

which, by (3.7), implies that

Rn+1 ≤
kn+1

(1− k)
d(x1, x0).

Remark 4.3. In general, the speed of the iteration depends on the value of k; the smaller is the value
of k, the faster would be the convergence.

Remark 4.4. Above theorem shows that if 0 < k < 1 the error in taking the point xn instead of x

does not exceed
kn

1− k
d(x1, x0). This error can be made less than a preassigned real number ε > 0, if
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n ≥
[

log
(d(x1, x0)

ε (1− k)

)

log
(1

k

)

]

+ 1, where [y] denotes the greatest integer function. This gives the number of

iterations n needed to bring the point xn within ε distance of the actual fixed point.

Remark 4.5. By Theorem 3.2, F has unique fixed point x. The inequality (4.2), that is, Rn+1 ≤ k Rn

shows that the fixed point problem (P) is linearly convergent with asymptotic error k.

5. Ulam-Hyers stablity

In this section we discuss Ulam-Hyers stablity of fixed problem (P) via α− dominated mapping. For
this purpose we consider the fixed point problem (P) and the inequality

d(x, Fx) ≤ ǫ, where ǫ > 0. (5.1)

We consider the following assumption which we use in the theorem of this section.
(A4) For any solution x∗ of x = Fx and any solution u∗ of (5.1), one has α(x∗, u∗) ≥ 1.

Theorem 5.1. In addition to the hypothesis of Theorem 3.2, suppose that (A4) holds. Then the fixed
point problem (P) is Ulam-Hyers stable.

Proof. By Theorem 3.2, F has unique a fixed point x∗ ∈ X . Therefore, x∗ is a solution of x = Fx. Let
u∗ ∈ X be a solution of (5.1). Then d(u∗, Fu∗) ≤ ǫ. By the assumption (A4), we have α(x∗, u∗) ≥ 1.
Using (3.1), we have

d(x∗, u∗) = d(Fx∗, u∗) ≤ d(Fx∗, Fu∗) + d(Fu∗, u∗)

≤ k max
{

d(x∗, u∗),
d(x∗, Fx∗) + d(u∗, Fu∗)

2
,
d(x∗, Fu∗) + d(u∗, Fx∗)

2
,

d(x∗, Fx∗) d(u∗, Fu∗)

1 + d(x∗, u∗)
,
d(u∗, Fx∗) d(x∗, Fu∗)

1 + d(x∗, u∗)

}

+ d(Fu∗, u∗)

≤ k max
{

d(x∗, u∗),
ǫ

2
,
d(x∗, u∗) + d(u∗, Fu∗) + d(u∗, x∗)

2
, 0,

d(u∗, x∗) [d(x∗, u∗) + d(u∗, Fu∗)]

1 + d(x∗, u∗)

}

+ ǫ

≤ k max
{

d(x∗, u∗),
ǫ

2
,
d(x∗, u∗) + ǫ+ d(u∗, x∗)

2
, 0,

d(u∗, x∗) [d(x∗, u∗) + ǫ]

1 + d(x∗, u∗)

}

+ ǫ

≤ k max
{

d(x∗, u∗),
ǫ

2
,
2 d(x∗, u∗) + ǫ

2
, 0, d(x∗, u∗) + ǫ

}

+ ǫ

= k [d(x∗, u∗) + ǫ] + ǫ,

which implies that

d(x∗, u∗) ≤
(k + 1) ǫ

1− k
. (5.2)

Let us define a function φ : [0, ∞) → [0, ∞) as φ(t) = (k+1) t

1−k
. Then by (5.2), we have

d(x∗, u∗) <
(k + 1) ǫ

1− k
= φ(ǫ).

Since φ is monotone increasing, continuous and φ(0) = 0. Therefore, the fixed point problem (P) is
Ulam-Hyers stable.
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6. Well-Posedness and Limit shadowing property

In this section we discuss the well-posedness and Limit shadowing property of fixed point problem
(P) via α− dominated mapping. For this purpose we use the following assumption.

(A5) If x∗ is any solution of x = Fx and {xn} is any sequence in X with d(xn, Fxn) → 0 as n → ∞,
then α(xn, x∗) ≥ 1, for all n.

Theorem 6.1. In addition to the hypothesis of Theorem 3.2, suppose that the assumption (A5) holds.
Then the fixed point problem (P) is well-posed. Also, the problem (P) has limit shadowing property.

Proof. By Theorem 3.2, F has a unique fixed point x∗ ∈ X . Then x∗ is a solution of x = Fx. Let {xn}
be a sequence in X with d(xn, Fxn) → 0 as n → ∞. By the assumption (A5), we have α(xn, x∗) ≥ 1,
for all n. Using (3.1), we have

d(xn, x∗) = d(xn, Fx∗) ≤ d(xn, Fxn) + d(Fxn, Fx∗) = d(Fxn, Fx∗) + d(xn, Fxn)

≤ k max
{

d(xn, x
∗),

d(xn, Fxn) + d(x∗, Fx∗)

2
,
d(xn, Fx∗) + d(x∗, Fxn)

2
,

d(xn, Fxn) d(x
∗, Fx∗)

1 + d(xn, x∗)
,
d(x∗, Fxn) d(xn, Fx∗)

1 + d(xn, x∗)

}

+ d(xn, Fxn)

≤ k max
{

d(xn, x
∗),

d(xn, Fxn)

2
,
d(xn, x

∗) + d(x∗, Fxn)

2
, 0,

d(x∗, Fxn) d(xn, x
∗)

1 + d(xn, x∗)

}

+ d(xn, Fxn)

≤ k max
{

d(xn, x
∗),

d(xn, Fxn)

2
,
d(xn, x

∗) + d(x∗, xn) + d(xn, Fxn)

2
,

[d(x∗, xn) + d(xn, Fxn)] d(xn, x
∗)

1 + d(xn, x∗)

}

+ d(xn, Fxn)

= k max
{

d(xn, x
∗),

d(xn, Fxn)

2
,
2 d(xn, x

∗) + d(xn, Fxn)

2
, d(x∗, xn) + d(xn, Fxn)

}

+ d(xn, Fxn)

≤ k max
{

d(xn, x
∗),

d(xn, Fxn)

2
, d(xn, x

∗) +
d(xn, Fxn)

2
, d(x∗, xn) + d(xn, Fxn)

}

+ d(xn, Fxn)

= k [d(x∗, xn) + d(xn, Fxn)] + d(xn, Fxn),

which implies that

d(x∗, xn) ≤
(1 + k)

1− k
d(xn, Fxn).

Then it follows that limn→∞ d(xn, x
∗) = 0, that is, xn → x∗ as n → ∞. Hence the fixed point problem

(P) is well-posed.
As x∗ ∈ X is the unique fixed point of F and limn→∞ d(xn, x

∗) = 0, for any arbitrary sequence {xn}
in X with d(xn, Fxn) → 0 as n → ∞, it follows that limn→∞ d(xn, F

nx∗) = limn→∞ d(xn, x
∗) = 0.

Hence, the problem (P) has limit shadowing property.
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