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ABSTRACT: In [5] D.Barcenas and H. Leiva are introduced the notion of Cp-quasi-semigroups of bounded

linear operators, as a generalization of Cp-semigroups of operators. In this paper, we shall show the connections

between a different spectra of the Cp-quasi-semigroups by the spectra of their generators, specially, ascent,

descent essential ascent and essential descent, upper and lower semi-Fredholm and semi-Browder spectra.
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1. Introduction

Let X be a complex Banach space and B(X) the algebra of all bounded linear operators on X.
The theory of quasi-semigroups of bounded linear operators, as a generalization of semigroups of op-
erators, was introduced by Leiva and Barcenas [3], [4] ,[5]. Recently Sutrima, Ch. Rini Indrati and
others [11] are show some relations between a Cy-quasi-semigroup and its generator related to the time-
dependent evolution equation.

A two parameter commutative family {R(t,s)}, .50 € B(X) is called a strongly continuous quasi-
semigroup (or Cp-quasi-semigroup) of operators if for every ¢,s,7 > 0 and z € X, we have

1. R(t,0) = I, the identity operator on X,

[\]

. R(t,s+r)=R(t+r s)R(t, 1),

w

.l R(t — =0

i 1R(5) — 4] <0
4. there exists a continuous increasing mapping M : [0, +oo[— [0, +00[ such that,
[R(¢,8)|| < M(t+s).

For a Cy-quasi-semigroup {R(t, s)}t7s>0 on a Banach space X, let D be the set of all x € X for which
the following limits exist, -

lim R(0,8)x — x lim R(t,s)r — x and lim R(t—s,8)r —x
s—0t S s—0t S s—0t S
and R R
lim (t,8)x —x — lim (t—s,8)x— z
s—0+ S s—=0F s

In this case, for t > 0, we define an operator A(t) on D as

Atz = lim LT =T

s—0+ S

The family {A(t)}, is called infinitesimal generator of the Co-quasi-semigroups {R(t, s)}; ,~ and D

the domain for A(t), t > 0.
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Theorem 1.1. [11]
Let {R(t,s)}, y~0 be a Co-quasi-semigroup on X with generator {A(t)},~ then,

1. For each t >0, R(t,.) is strongly continuous on [0; 400l
2. For eacht >0 andz € X,

1 S
lim —/ R(t,h)xdh = x.
0

s—0t S
3. Ifx € D, t >0 and to, so > 0 then, R(to, so)x € D and

R(to, S())A(t)x = A(t)R(tQ, SQ)LC,

4. For each s >0, %R(t, s)x = A(t+ s)R(t,s)x = R(t,s)A(t + s)x; x € D.

. If A(.) is locally integrable, then for every x € D and s > 0,

[\

R(t,s)r =z + /OS A(t+ h)R(t, h)xdh.

6. If f:[0;400[— X is a continuous function, then for every t € [0;4o00]

s+r
lim / R, h)f(h)dh = R(t, 5)f(s).

Theorem 1.2. [11] Let A(t) be a closed and densely defined generator of a Coy-quasi-semigroup
{R(t,8)}; o>0 such that the resolvent R(A, A(t)) = (A — At)7t exists in S ={A € C: —0 <arg(\) <
6 with 0 €5, x[}.

If A € p(A(t)), then for all s > 0 we have

RN A(E)R(t, s) = R(t,s)R(A, A(t)).

In the semigroups theory, if A is an infinitesimal generator of a Cp-semigroup with domain D(A),
then A is a closed operator and D(A) is dense in X. That is not always true for any Cp-quasi-semigroup,
see [11].

In [8],]9],[10],[12], [13] the authors have studied the different spectra of the Cy-semigroup. In this pa-
per, we will study Cp-quasi-semigroups, we will investigate the relationships between the different spectra
of the Cp-quasi-semigroup and their generators, precisely for ascent, descent essential ascent and essential
descent, upper and lower semi-Fredholm and semi-Browder spectra.

Throughout this work, we need the following definitions and notations:
Let T be a closed linear operator on X with domain D(T') and C(X) the space of closed operators, we
denote by Rg(T'), N(T), p(T) and o(T), respectively the range, the kernel, the resolvent and the spectrum
of T, where o(T) = C\p(T') = {\ € C : AI — T'is not bijective}. The function resolvent of T" is defined
for all A € p(T) by R\, T) = (M —T)~ 1.
The ascent and descent of a closed operator T' are defined respectively by,

asc(T) = min{k € N : N(T*) = N(T**1)} ; des(T) = min{k € N : Rg(T*) = Rg(T**1)}.

with the convention inf (&) = oco.
The essential ascent and descent of a closed operator T are defined respectively by,

o asce(T) = min{k € N : dim[N(Tk“)/N(Tk)] < oo}
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o des.(T) := inf{k € N : dim Rg(Tk')/Rg(TkJrl) < 00}
The ascent, descent, essential ascent and essential descent spectra are defined by,
© Oase(T) ={A€C : asc Al =T) =00} 5 04es(T) = {A € C : des(M — T) = o0},
o Ousc.(T)={A€C :asccAN[-T)=00} ; 0ges,(T)={N€C : desc(\ = T) = c0}.
The sets of upper and lower semi-Fredholm and their spectra are defined respectively by,

o Py (X)={T€eC(X) : aT) :=dim(N(T)) < co and Rg(T)1is closed},
Ge (T)={AeC: \[—T ¢ &, (X)}.

e d_(X)={T€CX) : B(T) :=codim(Rg(T)) = dim(X/Rg(T)) < +oo},
ge (T)={A€C: N ~T¢d_(X))}.

An operator T' € C(X) is called semi-Fredholm, in symbol T' € ®(X), if T € &, (X) U P_(X).
An operator T' € C(X) is called Fredholm, in symbol T' € ®(X), if T' € &, (X) N d_(X).
The essential and semi-Fredholm spectra are defined by,

e 0. (T)={AeC: N -T¢d(X)}

o 0, (T)={AeC: AN -T ¢ PL(X)}

The sets of upper and lower semi-Browder and their spectra are defined respectively by,
o Bri(X)={T € ®4(X) : asc(T) < +o0} ; 05, (T) ={A€ C: X[ -T ¢ Br(X)}

e Bro(X)={Te®_(X) : des(T) < o0} ; 05, (T)={Ae€C: X[ -T ¢ Br_(X)}

An operator T' € C(X) is called semi-Browder, in symbol T' € Bry(X), it T' € Br(X) U Br_(X).
An operator T' € C(X) is called Browder, in symbol T' € Br(X), if T € Br(X)N Br_(X).
The semi-Browder and Browder spectra are defined by,

e 05, (T)={N€C:A[—T ¢ Bro(X)}.
« o5, (T)={\€C: X - T ¢ Br(X)}.

2. Main results

For later use, we introduce the following bounded linear operator acting on X and depending on the
parameters A € C and ¢,5 > 0 :

Di(t,s)x = [ XM R(t — h,h)xdh for all z € X.
We start by the following theorem,

Theorem 2.1. Let A(t) be a generator of a Co-quasi-semigroup {R(t,s)}, .~ such that A(t) is closed
and densely defined. Then for allt > s > 0 and all A € C, we have a

1. For all x € D,
D(t, s)(A — A(t))x = [e* — R(t — s, 8)]x,

2. For all x € X, we have Dy(t,s)x € D and

(M — A(t))Da(t, s)z = [e** — R(t — s, 5)].
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Proof. 1. By Theorem 1.1, we know that for all A > 0 and for all x € D,

OR(t — h,h)
on "

Therefore, we conclude that

= A)R(t — h,h)z = R(t — h, h)A(t)z.

Dats) AW = [ EMRE— b B [At)]dh

)
o xdh

/
/S sy OR(t —h, D
0

= [CTMR(E - b h)a] 4 )\/ AW R(t — h, h)adh
0 0
= R(t—s,s)x — ez + ADy(t, s)z. (%)
Finally, we obtain for all x € D

Dy(t,8)(M — A(t))z = [e** — R(t — s, 5)]x.

2. Let p € p(A(t)). From Theorem 1.2, we have for all z € X
R(p, A(t))R(t, s)x = R(t, 5)R(p, A(t)) -

Hence, for all x € X we conclude

R, A®)Da(t,s)z = R(u, A(t)) /0 SeA(S‘h)R(t—h,h)xdh

/ g AR, A))R(t — h, h)zdh

0

= / ) AT Rt — b, h)R(p, A(t))xdh
0
DA(ta S)R(M, A(t))x

Therefore, we obtain for all z € X

Di(t,s)x = /eMS*”R(t—h,h)xdh
0

- / 5 TR — b h) (e — A(E)R(p, A(t))zdh

E— / ’ TN R — by h)R(p, A()xdh — | *CTMR(E — hy h)A@®)R(p, A(t))zdh

E]

— M/S MS**L)R(M,A( )R(t — h,h)zdh — | "M R(t — h, h)A(t)R(p, A(t))zdh

MR — hoh)zdh — [ T R(E — hy R)[A(L)R(, At))z])dh

\

PR, A

uR(p, A(t)) D i s)z — Da(t, s)[A(t)R(u, fl(t))w]

= puR(p, A(t))Da(t, s)x — [R(t — 5,8)R (1, A(t))x — €*R(u, A(t))x + ADA(L, )R, A(t))x
R, A() DAL, s)z — R, A(E) R(E — 5, 8)z + R, A(t))x — AR(ps, A(t)) Da(t, s)z

R(p, A(t)) |uDx(t, s)x — R(t — s, 8)x + ez — ADA(t, )z

*

Therefore, for all x € X we deduce Dy(t, s)z € D and we have

(11— A(t))Dx(t, 8)x = uDx(t, s)x — R(t — s, 8)x + e 2 — ADx(t, 5)z.
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Finally, if 4 — X\ we obtain for all z € X,

(M — A(t))Da(t, s)x = [e* — R(t — s, 5)]x.

For t > 0, we fix DY = D(A(t)") = X, A(t)° = I, and for n € N we define by recurrence:
D" = D(AM)") :={x € D(AR)" ) : A)" 'z € D(A(t))},
At)"z = A)A(t)" tx pour x inD(A(H)"),

We introduce :
X = D(A(t)°) 2 D(A(t)) 2 D(A(t)*) 2 ... 2 D(A()").

Corollary 2.2. Let A(t) be a generator of the Co-quasi-semigroup {R(t,s)}, ,~q such that A(t) is closed
and densely defined. Then for all t > s > 0 and all A € C, we obtain B

1. Forallx € X,
(A — A(t))"[Dx(t, s)|"x = [e* — R(t — s,5)]"x.
2. For all x € D",
[Dy(t, s)|* (M — [A(t)])"x = [e*®* — R(t — s,5)]"x.
. N[X — A(t)] € N[e** — R(t — s, 5)].
. Rgle — R(t — s,5)] € Rg[\ — A(t)].
)" € Nle** = R(t — s, 5)]".
. Rgle* — R(t — s,5)]" C Rg[\ — A(t)]".
. Rg™[e* — R(t — s,5)] € Rg™[\ — A(2)].

I N S S
~
~
I
b
—~
~

Proof. It’s automatic by Theorem 2.1. O

To obtain the results concerning the semi-Fredholm and semi-Browder spectra we need the following
theorem.

Theorem 2.3. Let A(t) be a generator of the Co-quasi-semigroup {R(t,s)}, ;~q such that A(t) is closed
and densely defined. Then for allt > s > 0 and all A € C, we have a

1 S

1. (N[—=A(t))La(t, s)+px\(s)Dx(t,s) = I, where I is identity operator, Ly(t,s) = —/ e Dy (t, h)dh
$Jo

Le=As,

and ¢y(s) =
Moreover, the operators Ly(t,s), Dx(t,s) and (A — A(t)) are mutually commuting.
2. For all n € N*, there exists an operator Fy ,(t,s) € B(X) such that,
(AL — A(t)"[La(t, s)]™ + Fan(t, s)Da(t,s) = 1.
Moreover, the operator F ,(t,s) is commute with each one of Dx(t,s) and Lx(t,s).
3. For all n € N*, there exists an operator By ,(t,s) € B(X) such that,
(A — A(t))"Ban(t,s) + [Fxn(t,s)]"[Da(t,s)]" = 1.

Moreover, the operator By ,,(t,s) is commute with each one of Dx(t,s) and Fx,(t,s).
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Proof. 1. Let u € p(A(t)). By theorem 2.1, for all x € X we have D) (¢,h)x € D and hence, for all
t,s >0,

sLx(t,s)r = /eiAhDA(t,h)xdh
0

-/ "R, A1) (1 — A(8)Da(t, hedh,
0

= R AW /0 "M D, (., B)adh — /0 "o A DA (1 h)dh]

= R(p, A@))[psLa(t, s)z — /OS e M A(t)Dx(t, h)xdh]

Therefore for all x € X, we have Ly(¢,s)r € D and

sl — AW La(t $)2 = psLa(t, $)z — /0 "M A() D (1, h)adh,

Thus

A(t)(sLa(t, 5)z) = /0 "M A() D (1, h)adh,

Hence, we conclude that
(M — A(t))(sLa(t,s)x) = AsLx(t,s)x — /5 e M A(t)Da(t, h)zdh
0
= AsLa(t,s)x — /S e M [)\D,\ (t,h)x — ez + R(t — h, h)x] dh (Theorem2.1)
0
= AsLa(t,s)z — ,\/S e M Dy (t, h)zdh + / xdh — / e M R(t — h, h)xdh
0 0 0

= AsLa(t,s)z — AsL(t,8)z + sz — e * / M R(E — b, h)zdh
0

= sz—e Dy(t,s)x

= [s—sea(s)Dalt )],

Therefore, we obtain (A — A(t))La(t, s) + ¢, (s)Da(t,s) = I.
And since the family {R(t,s)}, .~ is commutative, then for all £ > s > h > 0, we have D)(, h) R(t—
s,8) = R(t — s,8)Dy(t, h). -
Hence, for all s,r,t > h > 0, we have D) (t, s)Dx(t,7) = Dx(t,7)Dx(t, s).
Thus,
DA(ta S)LA (tv 5) = Lk(ta S)DA (tv 5)

Since for all z € X, A(t)La(t, s)z = [ e M A(t)Dx(t,h)zdh and for all z € D, A(t)Dx(t,h)x =
Dy (t, h)A(t)z, then we obtain for all € D,

(M — A(t))La(t,s)x = AL(t,s)x — A(t)Lx(t)x

VN / = A() DA (t, h)adh
0

= AL\(t,8)x — /8 e MDy(t, h)A(t)xdh
0
= ALx(t,s)x — Lx(t,s)A(t)z

La(t, s)(M — A(t))a.
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2. For all n € N*, we obtain
(AL = A@))LA(L, 8)]" = [I—@r(s)Dalt, s)]"

= ) Cil-pA(s)Da(t,9)]'
=0
= I+ Cil-g\(s)Da(t,9)]'
=1

- I DAtSZ [—Da(t, )]~
= - Dy(t, s)FA,n(t, s),
Where

Fy n(t,s) ZC” o\ ()] [=Da(t, s)]"~

Therefore, we have
(AT — A(t)"[La(t, 8)]" + Da(t, s)Fx n(t,s) =I.

Finally, for commutativity, it’s clear that F) ,, (¢, s) commute with each one of Dy(t,s) and Lx(t,s)
since the operators Ly(t,s), Dx(t,s) and (A — A(t)) are mutually commuting.

3. We have Dy(t,8)Fx n(t,s) =1 — (M — A(t))"[La(t, )], then for all n € N*
I—A(®)"[La(t,5)]"]"
= I=3 Gl — A@)"[Latt )"

i=1

[Da(t, s)Fan(t,s)" = [I—(A

= T—(\—A(t ZC” (M — A()" DL (¢, 5)]™
= I—=(AT—A@®)" Bx,n(t,s),
Where B ,,(t,s) = > 1, CL(A — A(t))"=D[Ly(t, s)]". Hence, we obtain
[Da(t, )" [Fxn(t, )]" + (AL — A())" Ban(t, s) = 1.

Finally, the commutativity is clear.

We start by this result.
Proposition 2.4. Let A(t) be a closed and densely defined generator of a Cy—quasi-semigroup
{R(t,8)}; 40 on a Banach space X. If Rgle*® — R(t — s,5)]P is closed, then Rg[\I — A(t)]P is also
closed. a
Proof. Let (yn)nen € X such that y, — y € X and there exists (x,)nen € D satisfying
(M = A(t)Pxy, = yn.
By (3) of theorem 2.3, for all n € N*, there exists Fi ,(,s), Bxp(t,s) € B(X) such that,

(AL = A())"Bxp(t; ) + [Fap(t, )P [Da(t, 8)]” = 1.
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Hence, we conclude that

[ — R(t — s, 8)P[Fap(t,8)]Pan = Dx(t,s)P (A — A(t))P[Fp(t, 8)]Px, ,  (by theorem 2.1)
= [F\p(t,8)]PDx(t, s)P(N\] — A(t))Pxy,
= [FN;D(t’ s)]pDA (t’ s)pyn

= Yn— (/\I —A t))pBM;D(ta S)Qn-

Thus,
Yn — (M — A(t))’Bap(t, 8)yn € Rg[eAS — R(t — s,5)]P.

Therefore, Rg[e*® — R(t — s,5)]P is closed, B ,(t,s) is bounded linear and y,, — (Al — A(t))? By ,(t, 8)yn
converges to y — (A — A(t))? By »(t, s)y, we conclude that

y — (M — A(t))P By p(t, )y € Rg[e™ — R(t — s, 5)]P.
Then there exists z € X such that
[e* — R(t — s,8)]Pz =y — (A — A(t))? Bx (1, 8)y.
Hence, we have
y = [ —R(t—s,8)"2+ (M — A(t))Bxy(t,9))y;

= (M —A(t))PDa(t,s)Pz+ (M — A(t))P B p(t, s)y;
(A — A(t))P[Dx(t, s)Pz + By p(t, s)y].

Finally, we obtain
y € Rg(AN — A(t))P.

U
Theorem 2.5. Let A(t) be a closed and densely defined generator of a Co— quasi-semigroup { R(t, S)}t,sZO
on a Banach space X. For allt > s > 0, we have
1. €7+ AW C o (R(t —s,5))\{0} .
2. %~ AW C 5 (R(t —s,5))\{0}.
3. 7= C g, (R(t—s,5))\{0} .

Proof. 1. Suppose that e** ¢ o, (R(t—s,s)), then there exists n € N such that afe** —R(t—s,s)] = n
and Rg[e*® — R(t — s,5)] is closed.
By corollary 2.2, we have
N(M — A(t)) C N[e* — R(t — s, 5)],

then
a(M — A(t)) < n.

On the other hand, from proposition 2.4, we deduce that Rg(AI — A(t)) is closed.
Therefore A\I — A(t) € ® (D), Then\ ¢ o, (A(t)).

2. Suppose that e** ¢ o, (R(t — s, s)), then there exist n € N such that B[e** — R(t — s, s)] = n.
By corollary 2.2, we obtain
Rgle — R(t — s,5)] € Rg(M — A(t)),
then (A — A(t)) < n and hence, A ¢ o._(A(t))
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3. It is automatic by the previous assertions of this theorem.
O

Remark 2.6. Note that the inclusion {e**,\ € 0. (A(t))} C g.(R(t — 5,5))\{0} , where o, € {0, ,
Oc_, Oy} 18 strict as shown in the following example.

Example 2.7. Let R(t,s) = T'(s) where {T'(s)},~ is the translation group on the space Car(R) of all 2w
periodic continuous functions on R and denote its generator by A (see [10, Paragraph 1.4.15]). From [10,
Examples 2.6.iv] we have, o(A(t)) = 0(A) = iZ, then e”(A()s is at most countable, therefore e7+(A(*)s
are also.

The spectra of the operators T'(s) are always contained in I' = {z € C : |z|] = 1} and contain the
eigenvalues e™** for k € Z. Since (T (s)) is closed, it follows from [10, Theorem IV.3.16] that o(T(s)) = I’
whenever s/27 ¢ Q, then o(T'(s)) is not countable, so o, (R(t — s,s))\{0} are also.

To obtain a results for ascent and descent spectra we need the following proposition.

Proposition 2.8. Let A(t) be a closed and densely defined generator of a Cy—quasi-semigroup
{R(t,5)}, >0 on a Banach space X. For allt > s > 0, we have

1. If desle* — R(t — s,5)] = n, then des[\ — A(t)] <n
2. If asc[e® — R(t — s,5)] = n, then asc]\] — A(t)] <n
Proof.

1. Let y € Rg[A\I — A(t)]™, then there exists x € D™ (domain of A(t)™) satisfying,
(M —A@) "z =y.

Since des[e*® — R(t — s,5)] = n, therefore Rg[e® — R(t — s,5)]" = Rgl[e*® — R(t — s, s)]" 1. Hence,
there exists z € X such that

[e* — R(t —s,8)]"x = [ — R(t — s5,5)]" 2.
On the other hand, by theorem 2.3, we have,
(A — A(t))" Ban(t, 8) + [Fan(t,s)]"[Da(t,s)]" =1,

Thus we have,

Yy (M — A(t)"x
= (M = A@®)"[(M = A#))"Ban(t, s) + [Fxn(t, s)]"[Dar(t, )]"]x
= (M —A(t))" (M — A(t))"Ban(t,s)x + [FA n(t, 8)]" (A — A(t))"[Dx(t, s)"]x
= (M = A@1)* By n(t, $)x + [Fan(t,s)]"[e* — R(t — s,8)]"x
= (M A(t))Q"BAm(t, s)x + [Fan(t, s)]" [[e)‘9 R(t—s s)]"“z]
= (M = A()*"Ban(t, s)x + [Fan(t,s)|"[(M — A(t))" ' [Da(t, 5)]" 2]
(A — A" TN — A@)" ' Ban(t, s)x + [Fan(t, s)]"[Da(t, s)]" 2]

Therefore, we conclude that y € Rg[\ — A(t)]"™! and hence,
Rg[M — A(t)]™ = Rg[\ — A(t)]" .

Finally, we conclude that
des(\ — A(t)) <n
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2. Let x € N(M — A(t))"*! and we suppose that asc[e*® — R(t — s, 5)] = n, then we obtain
N[e — R(t — 5,8)]" = N[e* — R(t — s, 5)]" .
From corollary 2.2, we have
N(AT — A(t)" C N[e* — R(t — s, 5)]" 11,

hence
x € N[e* — R(t — 5,5)]".

Thus we have,

(M — A(t)"z

(A —A@)"[(M — A1) Ban(t, s) + [Exn(t, s)]"[Da(t, 8)]" |2

(M — A(£))?" B (t, 8)x + [Fan(t, )] (M — A(t))"[Da(t, s)]™x

= Byn(t,s)(M\ — A(t))"*l()\l - A(t))”“x + [Fxn(t, s)]"[e)‘S — R(t —s,8)]"x
0.

Therefore, we obtain z € N(A — A(t))™ and hence

asc(A — A(t)) < n.
t

Theorem 2.9. Let A(t) be a closed and densely defined generator of a Co—quasi-semigroup {R(t,s)}, ;>
on a Banach space X. t > s >0, we have B

1. gfasc(A))s C O'aSC(R(t -5 S))\{O}
b, A C g (Rl 5, SI\O).

Proof. Immediately comes from proposition 2.8. O

The following theorem examines the semi-Browder spectrum.

Theorem 2.10. Let A(t) be a closed and densely defined generator of a Co—quasi-semigroup
{R(t, 5)}15,520 on a Banach space X. For all A € C and all t > s > 0, we have

1. 75 (A5 C o (R(t—s,5))\{0}.
9. e7pr- (AW C o (R(t — 5, 5))\{0}.
3. P AW C o (R(t— s,5))\{0}.
Proof. 1. Suppose that e** ¢ oBr, (R(t—s,s)), then there exist n,m € N such that ale*—R(t—s,s)] =

m, Rgle — R(t — s, s)] is closed and asc[e*® — R(t — s, s)] = n. From corollary 2.2 and Propositions
2.4 and 2.8, we obtain

a(A — A(t)) <m, Rg(AI — A(t)) is closed and asc(A] — A(t)) < n.

Therefore A\I — A(t) € &, (D) and asc(A — A(t)) < +oc and hence, X ¢ o, (A(t)).

2. Suppose that e** ¢ o, (R(t — s,5)), then there exist n,m € N such that B[e** — R(t — s,5)] =m
and des[e*® — R(t — s,5)] = n. By corollary 2.2 and Proposition 2.8, we obtain

BN — A(t)) < m and des(A\ — A(t)) < n.
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Therefore A\ — A(t) € ®_(D) and des(AI — A(t)) < +o00 and hence, A ¢ op,_(A(t)).

3. It is automatic by the previous assertions of this theorem and proposition 2.4.
O

Proposition 2.11. Let A(t) be a closed and densely defined generator of a Co—quasi-semigroup
{R(t,5)}, >0 on a Banach space X. For allt > s > 0, we have

1. If des.[e?® — R(t — s,8)] = n, then desc [\ — A(t)] < n.
2. If asc.[e™ — R(t — s,5)] = n, then asc.] M — A(t)] < n.

Proof. 1. Suppose that des.[e*® — R(t — s,s)] = n, Since Rg[e™ — R(t — s,5)]" C Rg(A — A(t))" we
define the linear surjective application ¢ by

é: Rg(M — A(t))" — Rgle* — R(t — s,5)]"/Rg[e* — R(t — s,5)]" 1,
y=W\ —A@t)"z +— [e* —R(t—s,s)]"z+ Rg[e™ — R(t — s,5)]" L.

Thus, by isomorphism Theorem, we obtain
Rg(AI — A(t))"/N(¢) = Rg[e — R(t — 5,5)]" /Rg[e* — R(t — 5,5)]"*".

Therefore
dim(Rg(\ — A(t))"/N(¢)) = des.[e — R(t — s,5)] = n.

And since N(¢) C Rgle™ — R(t — s,8)|"*t C Rg(A — A(t))"*!, then
Rg(M — A(t))" /Rg(A] — A(t))" " € Rg(AI — A(t))" /N ().

Then, dim(Rg(AI — A(t))"/R(AI — A(t))" ) < dim(Rg(M — A(t))"/N(¢)) = n.
Finally, we obtain that des.(A\ — A(t)) <n

2. Suppose that
asce[e™ — R(t — s,8)] = n.

And since N(AI — A)"*t C N[e** — R(t — s,5)]" !, we define the linear application v by

Y N — A@)" = Ne* — R(t —s,8)]" " /N[e* — R(t — 5,5)]",
z +— x4+ N[eM—R(t—s,s)"

Thus, by isomorphism Theorem, we obtain
N(A = A(#))" /N () ~ Rg(t) C N[eX — R(t — s, )" /N[> = R(t — s, 5)]".

Therefore
dim(N(M — A)"TLN () < asce[e* — R(t — s,8)] = n.

And since N(¢) C N[e*® — R(t — s,5)]" € Rg(M — A(t))", then
N — A@)™1 /N — A(#))" € N(AT = A@)™ /N ().

Finally, we obtain asce(A — A)) < n.

We will discuss in the following result the essential ascent and descent spectrum.

Theorem 2.12. Let A(t) be a closed and densely defined generator of a Co—quasi-semigroup
{R(t, 5)}15,520 on a Banach space X. For allt > s > 0, we have
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1. e%asee (As C g (R(t — s, 5))\{0}.
2. eUdsce(A(t))s C 04dsc, (R(t - S, 5))\{0}

Proof. 1. Suppose that , e*® ¢ 044, (R(t — s,5)). Then there exists n € N satisfying

asce[e — R(t — s,8)] = n.
Therefore, by Proposition 2.11, we obtain asc.[A\I — A(t)] < n and hence

A ¢ Tasce (A(t))

2. Suppose that
e ¢ 4o, (R(t — 5,5)).
Then there exists n € N satisfying
desc[e* — R(t — s,5)] = n.

Therefore, by Proposition 2.11, we obtain des.[A\ — A(t)] < n and hence \ & 4.5, (A(1)).
(]

Remark 2.13. The inclusions of the previous theorem 2.4 and 2.6 is strict. Because according to ezample
2.7, the spectra e%es=(A1)s oacs(At)s  poasce (AM))s gpg eTdese (A gre at most countable, but according
to corollary 2.10, 1.8 in preprints [6], [7] the spectra ogsc(R(t —5,5)), 0ges(R(t —8,8)), Tase. (R(t—s,5)),
and o ges, (R(t — s,5)) are not countable.
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