Bol. Soc. Paran. Mat. (3s.) v. 2023 (41) : 1-9.
©SPM ~ISSN-2175-1188 ON LINE ISSN-0037-8712 IN PRESS
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.51006

h-open sets in Topological Spaces
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ABSTRACT: In this paper, we introduce a new class of open sets in a topological space (X, 7) called h-open
sets. Also, introduce and study topological properties of h-interior, h-closure, h-limit points, h-derived, h-
interior points, h-border, h-frontier and h-exterior by using the concept of h-open sets. Moreover, introduce
the notion of h-continuous functions, h-open functions, h-irresolute functions, h-totally continuous functions,
h-contra-continuous functions, h-homeomorphism and investigate some properties of these functions and study
some properties, remarks related to them.
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1. Introduction and Preliminaries

The concept of open sets is now well-known important notions in topology and its applications. For
a subset A of a topological space (X, 7), the closure of A, the interior of A with respect to 7 are denoted
by CI(A) and Int(A) respectively. The complement of A is denoted by A¢. A subset A of a topological
space (X, 7) is said to be clopen set, if A is open and closed. This work consists of two sections. In
section one, we will introduce and study a new class of open sets which is called h-open set and introduce
the notions of h-interior, h-closure, h-limit points, h-derived, h-interior points, h-border, h-frontier and
h-exterior by using the concept of h-open sets, and study their topological properties. In section two,
we will present the notion of h-continuous functions, h-open functions, h-irresolute functions, h-totally
continuous functions, h-contra-continuous functions, h-homeomorphism and investigate some properties
of these functions and study some properties, remarks related to them.

2. h-open sets
In this section, we introduce a new class of open sets which is called h-open set and introduce the
notions of h-interior, h-closure, h-limit points, h-derived, h-interior points, h-border, h-frontier and h-
exterior by using the concept of h-open sets, and study their topological properties.

Definition 2.1. A subset A of the topological space (X, T) is called h-open set if for every non-empty set
Uin X, U# X and U € 7, A C Int(AUU). The complement of the h-open set is called h-closed. We
denote the family of all h-open sets of a topological space (X, T) by T".

Example 2.2. Let X ={a,b,c,d}, 7= {0, X,{a},{a,b},{a,c},{a,b,c}}.
Then ™" = {0, X, {a}, {b},{c}, {a,b},{a, c},{b,c},{a,b,c}, {b,c,d}}.
Example 2.3. Let X = {a,b,c}, 7 = {0, X, {a}, {b},{c},{a, b}, {a,c}, {b,c}}.
Then 7" = {0, X, {a}, {b},{c}, {a,b},{a,c}, {b,c}}.

Remark 2.4. From Ezample.2.1, and Example.2.2. Note that T C 7".
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Theorem 2.5. Every open set in any topological space (X, T) is h-open set.
Proof. Let (X, 7) be any topological space and let A C X be any open set. Therefore, A = Int(A) C
Int(AUU), for every non-empty set U # X and U € 7. Thus, A is h-open set. m|
Remark 2.6. The converse of the Theorem.2.1, need, not be true as shown in the following example.
Example 2.7. In Ezample.2.1, {b},{c},{b,c},{b,c,d} are h-open sets but not open sets.
Theorem 2.8. Let (X, 7) be a topological space and let A, B be two h-open sets. Then

1. AN B is h-open set.

2. AU B is h-open set.

Proof. 1) Let A and B be two h-open sets. Then from Definition.2.1, A C Int(AUU) and B C Int(BUU),
for every non-empty set U # X, U € 7. Then AUB C Int(AUU)UInt(BUU) C Int((AUU)U(BUU)) =
Int((AU B)UU). Therefore, AU B is h-open set.

2) Let A and B be two h-open sets. Then from Definition.2.1, A C Int(AUU) and B C Int(BUU), for
every non-empty set U # X, U € 7. Then ANB C Int(AUU)NInt(BUU) = Int((AUU)N(BUU)) =
Int((AUU)NB)U((AuU)NU)) C Int((ANB)UU). Therefore, AN B is h-open set. O

Definition 2.9. Let (X, 1) be a topological space and let A C X. The h-interior of A is defined as the
union of all h-open sets in X and is denoted by Inty(A). It is clear that Int,(A) is h-open set, for any
subset A of X.

Proposition 2.10. Let (X, 7) be a topological space and let A C B C X. Then
1. Intp(A) C Intp(B).
2. Intp(A) C A.
3. A is h-open if and only if A = Int;(A).

Definition 2.11. Let (X, 7) be a topological space and let A C X. The h-closure of A is defined as the
intersection of all h-closed sets in X containing A, and is denoted by Clp(A). It is clear that Cl(A) is
h-closed set for any subset A of X.

Proposition 2.12. Let (X, 7) be a topological space and let A C B C X. Then
1. Clp(A) C Cly(B).
2. ACClp(4).
3. A is h-closed if and only if A = Cl,(A).

Definition 2.13. Let (X, 1) be a topological space and let A C X. A point x € X is said to be h-limit
point of A if it satisfies the following assertion:

(VG € ") (z € G = G (A\{z}) #0).

The set of all h-limit points of A is called the h-derived set of A and is denoted by Dy (A).

Note that for a subset A of X, a point x € X is not a h-limit point of A if and only if there exists a h-open
set G in X such that x € G and GN (A\{z}) =0 or, equivalently, v € G and GNA=0 or GNA = {z}
or, equivalently, x € G and GN A C {x}.

Theorem 2.14. Let (X, 7) be a topological space and let A be a subset of X. Then the following are
equivalent

1. VGe™(zeG=ANG#0).
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2. z € Clp(A).

Proof. (1) =(2) If x ¢ Cl,(A), then there exists a h-closed set F such that A C Fand « ¢ F. Hence
G = X — F is a h-open set such that x € G and G N A = (). This is a contradiction, and hence (2) is
valid.

(2) =(1) Straightforward. mi

Theorem 2.15. Let (X, 7) be a topological space and let A C B C X. Then
1. Clp(A) = AU Dy(A).
2. A is h-closed if and only if D) (A) C A.
5. Di(4) C Di(B),
4. Du(4) C D(A).
5. Cl(A) CCIlA).

Proof. 1) Let « ¢ Clj(A). Then there exists a h-closed set F in X such that A C F' and = ¢ F. Hence
G = X — F is a h-open set such that € G and GN A = (). Therefore x ¢ A and = ¢ Dj(A), then
x ¢ AUDp(A). Thus AU Dp(A) C Clp(A). On the other hand, © ¢ AU Dy (A) implies that there exists
a h-open set G in X such that z € G and GN A = (. Hence F = X — G is a h-closed set in X such that
ACF and x ¢ F. Hence = ¢ Clj,(A). Thus Clp(A) € AU Dy (A). Therefore Clp(A) = AU Dy(A). For
(2), (3), (4) and (5) the proof is easy. mi

Example 2.16. Let X = {a,b, ¢} with topology, T = {0, X, {a}, {a,b}}. Then we have the followings
1. 7 C7h = {0, X, {a}, {b}, {a, b}, {b,c}}.
2. IfA = {a,c}, then D(A) = {c} and Dy(A) = 0.
3. IfB = {a,b}, then D(B) = {b,c} and Dy(B) = {c}.

Theorem 2.17. Let 71 and T4 be topologies on X such that 7% C 78 . For any subset A of X, every
h-limit point of A with respect to To is a h-limit point of A with respect to T1.

Proof. Let x be a h-limit point of A with respect to 7o. Then G' N (A\{z}) # 0 for every G € 7} such
that x € G. But 7% C 7% so, in particular, G N (A\{z}) # 0 for every G € 7} such that = € G. Hence x
is a h-limit point of A with respect to 71. O

Remark 2.18. The converse of the Theorem.2.5, need not be true as shown in the following example.

Example 2.19. X = {a,b,c}, 71 = {0, X, {a}} and 72 = {0, X, {a}, {a,b}. Then 7% = {0, X, {a}, {b,c}
and 78 = {0, X, {a}, {b}, {a, b}, {b,c}. Not that 7% C 78 and b is a h-limit point of A = {a,b} with respect
to T1, but it is not a h-limit point of A with respect to T5.

Theorem 2.20. If T is the indiscrete (resp. discrete) topology on a set X, then " is indiscrete (resp.
discrete) topology on X.

Proof. Straightforward. O

Lemma 2.21. If A is a subset of a discrete topological space (X, 1), then Dy (A) = 0.

Proof. Let © € X. Recall that every subset of X is open, and so h-open. In particular, the singleton set
G = {z} is h-open. But z € G and GNA = {z} N A C {z}. Hence x is not a h-limit point of A, and so
Dh(A) = (. O
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Theorem 2.22. Let (X,7) be a topological space and let A, B subsets of X. If A is h-closed, then
Clh(A n B) C AN Clh(B).

Proof. If A is h-closed, then Clj,(A) = A and so Cl,(AN B) C Clp(A) N Clp(B) € ANCly(B). o
Lemma 2.23. Let (X, 1) be a topological space and let A subset of X. Then A is h-open if and only if
there exists an open set U in X such that A C U C Cl(A).

Proof. Straightforward. O

Lemma 2.24. The intersection of an open set and h-open set is h-open set.

Proof. Let A be an open set in X and B a h-open set in X. Then there exists an open set U in X such
that B C U C CI(B). It follows that ANB C ANU C ANCI(B) C CI(AN B). Now since ANU is open,
it follows from Lemma.2.1 that A N B is h-open. O

Definition 2.25. Let (X, 1) be a topological space and let A C X. Then bp(A) = A\Inty(A) is called
the h-border of A, and the set Frp(A) = Clp(A)\Inty(A) is called the h-frontier of A.
Note that if A is a h-closed subset of X, then by (A) = Fry,(A).

Example 2.26. Let X = {a,b, c} with topology 7 = {0, X, {b}, {b,c}}, 7" = {0, X, {b},{c}, {a,c}, {b,c}}.
If A = {a,b}, then Intp(A) = {b}, bp(A) = {a} and so Clp(A) = {a,b}, Frin(A) = {a}. If we take
A ={b,c}, then Intp,(A) = {b,c}, bp(A) =0 and so Clp(A) = X, Fri(A) = {a}.

Theorem 2.27. Let (X, 1) be a topological space and let A C X. Then
1. A= Intp(A) Uby(A).

Intp(A) Nbp(A) = 0.

A is a h-open set if and only if by (A) = 0.

by (Inty(A)) = 0.

Intp,(bn(A)) = 0.

b (br(A)) = ba(A).

brn(A) = ANCIlL(X\A).

bn(A) = AN Dp(X\A).

Proof. (1) and (2). Straightforward.

NS S e

8.

(3) Since Intp(A) C A, it follows from Proposition.2.1(3) that A is h-open < A = Inty(A) < bp(A) =
A\Inth(A) = (.

(4) Since Inty(A) is h-open, it follows from (3) that by (Int,(A)) = 0.

(5) If € Intp(br(A)), then x € by(A) C A and x € Intp(A). Since Inty(bn(A)) C Intp(A). Thus
x € by (A) N Inty(A) = (), which is a contradiction. Hence Inty,(by(A)) = 0.

(6) Using (5), we get bp(bn(A)) = bp(A)\Inty(bn(A)) = br(A).
(7) bu(A) = A\Intp(A) = A\(X\CIn(X\A)) = AN ClLL(X\A).

(8) Applying (7) and Theorem.2.4 (1), we have bp(A) = ANClH(X\A) = AN ((X\A)UDy(X\A))
AN Dp(X\A).

ol
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Lemma 2.28. Let (X,7) be a topological space and let A C X. Then A a h-closed
if and only if Fr,(A) C A.

Proof. Assume that A is h-closed. Then Fr,(A) = Clp(A)\Intp(A) = A\Int,(A) C A. Conversely

suppose that Fr,(A) C A Then Cl,(A)\Inty(A) C A and so Cl,(A) C A Since Int,(A) C A. Noticing
that A C Clj,(A), we have A = Cl(A). i

Definition 2.29. Let (X, 7) be a topological space and let A C X. Then Extp(A) = Intp(X\A) is called
the h-exterior of A.

Example 2.30. Let X = {a,b, ¢} with topology T = {0, X, {a},{a,b}}, 7" = {0, X, {a}, {b}, {a,b}, {b,c}}.
If A = {a,c}, then we have Ext,(A) = {b}.

Theorem 2.31. Let (X, 7) be a topological space and let A C B C X. Then
1. Exty(A) is h-open.
2. Extp(A) = X\Clp(A).
3. If A C B, then Ext,(B) C Ext,(A).
4. Extp(AUB) C Extp(A) N Exty(B).
5. Extp (AN B) D Exty(A) U Exty(B).
6. Extp(X) =0, Ext,(0) = X.
7. Extp(A) = Extp(X\Extn(A)).
8. X = Inty(A) U Extp(A) U Fr, (A).
Proof. (1) and (2) straightforward.
(3) Assume that A C B. Then Exty(B) = Inty(X\B) C Inty(X\A) = Exty(A).

(4) Bxty(A U B)
Eaty(A) N Exty(B).

Inty(X\(A U B))

Inty((X\A) N (X\B)) C Int,(X\A) N Int,(X\B)

(5) Extn(AN B) = Into(X\(AN B))
E:Eth(A) @] Exth(B).

Inty((X\A) U (X\B))

U

Intn(X\A) U Inty(X\B) =

(6) Straightforward.
(7) Extp(X\Exty(A)) = Extp(X\Intp(X\A)) = Int,(X\A) = Ext,(A).

(8)Straightforward. o

Definition 2.32. A function f: (X, 7) — (Y, 0) is said to be
1. totally-continuous if f~*(U) is clopen set in X, for every open set U in Y.

2. contra-continuous if f~1(U) is closed set in X, for every open set Uin Y.
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3. h-continuous functions and h-homeomorphism

In this section, we introduce new classes of functions called h-continuous functions, h-open functions,
h-irresolute functions, h-totally continuous functions, h-contra-continuous functions, h-homeomorphism
and study some properties of these functions.

Definition 3.1. A function f: (X,7) — (Y, 0) is said to be h-continuous, if f~1(U) is h-open set in X
for every open set U in Y.

Example 3.2. Let X = ¥ = {a,bc}, 7 = {0, X, {a}, {c},{a,c}}, 7 = {0, X, {a},{c},{a,c}} and
o={0,Y,{a,c}}. Clearly, the identity function f : (X,7) = (Y,0) is h-continuous.
Theorem 3.3. FEvery continuous function is h-continuous.

Proof. Let f : (X,7) — (Y,0) be continuous function and U be any open subset in Y. Since, f is
continuous, then f~!(U) is open set in X. Since, every open set is h-open set by Theorem.2.1, then
f~1(U) is h-open set in X. Therefore, f is h-continuous. O

Remark 3.4. The converse of the Theorem 3.1, need, not be true as shown in the following example.

Example 3.5. Let X = {a,b,c} and Y = {1,2,3}, 7 = {0, X, {b}}, 7" = {0, X,{b},{a,c}}, o0 =
{0,Y,{1},{2,3}}. A function f: (X,7) — (Y, 0) is defined by f({a}) = {2}, f({b}) = {1}, f({c}) = {3}.
Clearly, fis a h-continuous, but f is not continuous.

Theorem 3.6. If f : (X,7) — (Y,0) is h-continuous and g : (Y,0) — (Z,n) is continuous, then
go f:(X,7) = (Z,n) is h-conlinuous.

Proof. Let f : (X,7) — (Y,0) be h-continuous and g : (Y,0) — (Z,n) be continuous . Let U be an

open set in Z. Since, g is continuous, then ¢~!(U) is an open set in Y. Since, f is h-continuous, then
Y (g7 (U)) = (go f)~1(U) is h-open set in X. Therefore, go f: (X,7) — (Z,n) is h-continuous. O

Definition 3.7. A function [ : (X,7) — (Y, 0) is said to be h-open, if f(U) is h-open set in Y for every
open set U in X.

Example 3.8. Let X =Y = {a,b,c}, 7 = {0, X,{b,c}}, o = {0,Y,{a}} and o" = {0,Y,{a},{b,c}}.
Clearly, the identity function f:(X,7) — (Y,0) is h-open.

Theorem 3.9. Every open function is h-open.

Proof. Let f : (X,7) — (Y,0) be open function and U be any open set in X. Since, f is open, then
f(U) is open set in Y. Since, every open set is h-open set by Theorem 2.1, then f(U) is h-open set in Y.
Therefore, f is h-open. O

Remark 3.10. The converse of the Theorem 3.3, need not be true as shown in the following example.

Example 3.11. In Ezample 3.3, the identity function f: (X,7) — (Y, 0) is h-open but not open.

Theorem 3.12. If f : (X,7) — (Y,0) is open and g : (Y,0) — (Z,n) is h-open, then go f : (X,7) —
(Z,m) is h-open.

Proof. Let f: (X,7) = (Y,0) be open and ¢ : (Y,0) — (Z,n) is a h-open. Let U be an open set in X.
Since, f is an open, then f(U) is an open set in Y. Since, g is a h-open, then (go f)(U) = g(f(U)) is a
h-open set in Z. Therefore, go f : (X,7) — (Z,n) is h-open. i

Definition 3.13. A function f : (X,7) — (Y,0) is said to be h-irresolute, if f~1(U) is h-open set in X
for every h-open set U in Y.

Example 3.14. Let X = Y = {a,b,c},7 = {0, X, {b}, {b.}}, 7 = {0, X, (b}, {c}, {arc}, (b}, o =
{0,Y,{b}} and " = {0,Y,{b},{a,c}}. Clearly, the identity function f: (X,7) — (Y,0) is h-irresolute.
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Theorem 3.15. FEvery continuous function is h-irresolute.

Proof. Let f : (X,7) — (Y,0) be a continuous function and U be any h-open set in Y. Since, f is a
continuous, then Then f~!(U) is open set in X. Hence, h-open set in X by Theorem 2.1. Therefore, f is
h-irresolute. O

Remark 3.16. The converse of the Theorem 3.5, need not be true as shown in the following example.

Example 3.17. Let X =Y = {a,b,c},7 = {0, X, {a},{a,c}}, 7" = {0, X, {a},
{c},{a,c}, {b,c}}, o = {0,Y, {a},{c},{a,c}} and o™ = {0, Y, {a},{c},{a,c}}. Clearly, the identity func-
tion [ :(X,7) — (Y,0) is h-irresolute, but f is not continuous function.

Theorem 3.18. Every h-irresolute function is h-continuous.

Proof. Let f: (X,7) — (Y,0) be h-irresolute function and U be any open set in Y. Since, every open
set is h-open set by Theorem 2.1. Since, f is h-irresolute, then f~!(U) is h-open set in X. Therefore f is
h-continuous. O

Remark 3.19. The converse of the Theorem 3.6, need not be true as shown in the following example.

Example 3.20. Let X =Y = {a,b,c}, 7 = {0, X,{a}}, 7" = {0, X, {a},{b,c}}, o = {0,Y,{b,c}}
and o = {0,Y,{a},{b},{c},{a,b},{a,c},{b,c}}. Clearly, the identity function f : (X,7) — (Y,0) is
h-continuous, but f is not h-irresolute.

Theorem 3.21. The composition of two h-irresolute function is also h-irresolute.

Proof. Let f: (X,7) = (Y,0) and g : (Y,0) — (Z,7n) be any two h-irresolute. Let U be any h-open in
Z. Since, g is h-irresolute, then g=1(U) is h-open set in Y. Since, f is h-irresolute, then f~1(¢g~1(U)) =
(go f)~Y(U) is h-open in X. Therefore, go f : (X,7) — (Z,n) is h-irresolute. O

Theorem 3.22. If f : (X,7) — (Y,0) is h-irresolute and g : (Y,0) — (Z,n) is h-continuous, then
gof : (X,7) = (Z,n) is h-irresolute.

Proof. Let f:(X,7) — (Y,0) is h-irresolute and ¢ : (Y,0) — (Z,n) is h-continuous. Let U C Z. Since,
g is h-continuous and f is h-irresolute, then f=*(¢~1(U)) = (g o f)~*(U) is h-open in X. Therefore,
go f:(X,7)— (Z,n) is h-irresolute. mi

Definition 3.23. A bijective function f : (X,7) — (Y,0) is said to be h-homeomorphism if f is h-
continuous and h-open function.

Theorem 3.24. If [ : (X, 7) — (Y, 0) is homomorphism, then f is h-homomorphism.

Proof. Since, every continuous function is h-continuous by Theorem 3.1. Also, since every open function
is h-open by Theorem 3.3. Further, since f is bijective. Therefore, f is h-homomorphism. O

Remark 3.25. The converse of the Theorem 3.9, need not be true as shown in the following example.

Example 3.26. Let X =Y = {a,b,c},7 = {0, X, {a,c}},7" = {0, X, {a}, {b},
{C}, {CL, b}v {a’ C}, {b’ C}}, 0= {0’ Y, {bv C}} and oh = {0’ {a}v {b}’ {C}, {a’ b}v

{a,c},{b,c}}. Clearly, the identity function f: (X,7) — (Y,0) is h-homomorphism, but it is not homo-
morphism.

Definition 3.27. A function f : (X,7) — (Y,0) is said to be h-totally continuous, if f~*(U) is clopen
set in X for every h-open set U in Y.

Example 3.28. Let X =Y = {a,b,c},7 = {0, X, {a},{b,c}},0 = {0,Y,{a}} and o = {0,Y,{a}, {b,c}}.
Clearly, the identity function f:(X,7) — (Y, 0) is h-totally continuous function.
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Theorem 3.29. FEvery h-totally continuous function is totally continuous.

Proof. Let f:(X,7) — (Y,0) be h-totally continuous and U be any open set in Y. Since, every open set
is h-open set by Theorem 2.1, then U is h-open set in Y. Since, f is h-totally continuous function, then
f~YU) is clopen set in X. Therefore, f is totally continuous. m]

Remark 3.30. The converse of the Theorem 3.10, need not be true as shown in the following example.

Example 3.31. Let X = Y = {abc}, 7 = {0,X,{a},{b,c}}, 0 = {0,Y.{b,c}} and
o = {0,Y,{a}, {b},{c}, {a,b},{a,c},{b,c}}. Clearly, the identity function f : (X,7) — (Y,0) is to-
tally continuous function but it is not h-totally continuous.

Theorem 3.32. FEvery h-totally continuous function is h-irresolute.

Proof. Let f: (X,7) — (Y,0) be h-totally continuous and U be h-open set in Y. Since, f is h-totally
continuous function, then f~1(U) is clopen set in X, which implies f~1(U) open, it follow f~1(U) is
h-open set in X. Therefore, f is h-irresolute. O

Remark 3.33. The converse of the Theorem 3.11, need not be true as shown in the following example.

Example 3.34. In Example 3.5, the identity function f : (X,7) — (Y, 0) is h-irresolute but not h-totally
continuous.

Theorem 3.35. The composition of two h-totally continuous function is also h-totally continuous.

Proof. Let f: (X,7) = (Y,0) and g : (Y,0) — (Z,7n) be any two h-totally continuous. Let U be any
h-open in Z. Since, g is h-totally continuous, then g~!(U) is clopen set in Y, which implies f~1(U) open
set, it follow f~1(U) is h-open set. Since, f is h-totally continuous, then f~*(¢g~1(U)) = (go f)~1(U) is
clopen in X. Therefore, go f : (X,7) — (Z,n) is h-totally continuous. O

Theorem 3.36. If [ : (X,7) — (Y,0) be h-totally continuous and g : (Y,0) — (Z,n) be h-irresolute,
then go f : (X, 7) = (Z,n) is h-totally continuous.

Proof. Let f: (X,7) = (Y,0) be h-totally continuous and g : (Y,0) — (Z,n) be h-irresolute. Let U be
h-open set in Z. Since, g is h-irresolute, then g~!(U) is h-open set in Y. Since, f is h-totally continuous,
then f=1((g7*(U)) = (g o f)'(U) is clopen set in X. Therefore, go f : (X,7) — (Z,n) is h-totally
continuous. O

Theorem 3.37. If f : (X,7) — (Y, 0) is h-totally continuous and g : (Y,0) — (Z,n) is h-continuous,
then go f : (X, 1) — (Z,n) is totally continuous.

Proof. Let f:(X,7) — (Y,0) be h-totally continuous and g : (Y,0) — (Z,n) is h-continuous. Let U be
open set in Z. Since, g is h-continuous, then g~ (U) is h-open set in Y. Since, f is h-totally continuous,
then f=1((¢7Y(U)) = (g o )1 (U) is clopen set in X. Therefore, go f : (X,7) — (Z,n) is totally
continuous. O

Definition 3.38. A function f : (X,7) — (Y, o) is said to be h-contra-continuous if f~*(U) is h-closed
set in X for every open set U in Y.

Example 3.39. Let X = Y = {a,bc}, 7 = {0,X,{a},{a,b}}, ¢ = {0,Y,{a}} and
™ = {0, X, {a},{b},{a,b},{b,c}}. Clearly, the identity function f : (X,7) — (Y,0) is a h-contra-
continuous.

Theorem 3.40. Every contra-continuous function is h-contra-continuous.

Proof. Let f: (X,7) — (Y,0) be contra-continuous function and U any open set in Y. Since, f is contra-
continuous, then f~1(U) is closed sets in X. Since, every closed set is h-closed set, then f~1(U) is h-closed
set in X. Therefore, f is h-contra-continuous. O
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Remark 3.41. The converse of the Theorem 3.15, need not be true as shown in the following example.

Example 3.42. In Example 3.12, the identity function f : (X,7) = (Y,0) is h-contra-continuous but
not contra-continuous.

Theorem 3.43. Every totally continuous function is h-contra-continuous.

Proof. Let f : (X,7) — (Y,0) be totally continuous and U be any open set in Y. Since, f is totally
continuous function, then f~1(U) is clopen set in X, and hence closed, it follows h-closed set. Therefore,
f is h-contra-continuous. |

Remark 3.44. The converse of the Theorem 3.16, need not be true as shown in the following example.

Example 3.45. In Example 3.12, the identity function f : (X,7) — (Y,0) is h-contra-continuous but
not totally continuous.
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