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About Weak π-rings

Najib Mahdou and Sanae Moussaoui

abstract: As in [11], a ring is called a weak π-ring if every regular principal ideal is a finite product
of prime ideals. In this paper, we establish some characterizations for weak π-rings. Also, we translate the
properties weak π-ring and (∗)-ring of A ∝ E in terms of a commutative ring A and an A-module E.
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1. Introduction

All rings in this paper are commutative with identity and all modules are unital. We denote respec-
tively by Z(R), Reg(R) and Max(R) the set of zero-divisors of R, the set of all regular elements of R and
the set of all maximal ideals of R. Dedekind domains are integral domains in which every ideal is a finite
product of prime ideals. Dedekind rings are defined by the fact that every regular ideal is a finite product
of prime ideals. More generally, a ring R with zero divisors is said to be general ZP I-ring if every ideal
is a finite product of prime ideals. These rings has the property that every prime ideal (or equivalently,
every ideal) is finitely generated and locally principal. General ZP I-rings are also characterized by the
property that R is a finite direct product of Dedekind domains and special principal ideal rings (SPIRs),
that are, local principal ideal rings, not a field, whose maximal ideal is nilpotent. A ring R has the
property that every principal ideal is a finite product of prime ideals if and only if R is a finite direct
product of (1) π-domains, (2) SPIRs, and (3) fields. In this case, R called a π-ring.

In [11], Jayaram defined two generalizations of the above-mentioned class of rings, namely, weak
π-rings in which every regular principal ideal is a finite product of prime ideals, and rings satisfying the
condition (∗) (in the sequel, they will be noted by (∗)-rings) in which every regular principal ideal is a
finite intersection of primary ideals and he proved that weak π-rings are (∗)-rings. He also defined a ring
R to be an almost weak π-ring if for each regular principal ideal I, IM is a finite product of prime ideals
in RM for all maximal ideals M containing I. The author mention that weak π-rings are almost weak
π-rings but the converse need not be true. By Theorem 2.1, we state a necessary and sufficient condition
for an almost weak π-ring to be a weak π-ring. In the same paper, Jayaram characterizes weak π-rings
inside the class of quasi-regular rings and gives necessary and sufficient conditions for a ring R to be a
Dedekind ring. For more informations, the reader may consult [3,5,11].

The following diagram summarizes the relations between all these class of rings where the implications
cannot be reversed in general.
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In this paper, we provide an example of a weak π-ring which is neither a Dedekind ring nor a π-ring
(see Example 3.5), and by Example 3.6, we show that (∗)-rings are not necessary weak π-rings.

Let E be an R-module and R ∝ E be the set of pairs (r, e) with pairwise addition and multiplication
given by (r, e)(q, f) = (rq, rf + qe). R ∝ E is called the trivial ring extension of R by E (also called the
idealization of E over R). For instance, the reader is referred to [3,4,7,12]

We will be using the following definitions. A regular element r of R is any element of R\Z(R); An
ideal I of R is an invertible ideal if II−1 = R, where I−1 = (R : I) = {x ∈ qf(R)|xI ⊆ R}; I is called a
multiplication ideal if for every ideal J ⊆ I, there exists an ideal K with J = KI (invertible ideals are
multiplication ideals); An R-module E is said to be divisible if, for each e ∈ E and each regular element
r of R, there exists f ∈ E such that e = rf .

Our aims in this paper is to extend the result of Jayaram about characterization of weak π-rings [11,
Theorem 1] to the general case and to study the transfer of the weak π-ring property and the (∗)-ring
property to the trivial ring extension.

2. General results

We start this section by the following characterizations of a weak π-ring.

Theorem 2.1. Let R be a commutative ring. The following statements are equivalent:

1. R is a weak π-ring

2. Every regular prime ideal contains an invertible prime ideal.

3. Every invertible ideal is a finite product of invertible prime ideals.

4. Every prime ideal minimal over an invertible ideal is invertible.

5. R is an almost weak π-ring in which every prime ideal minimal over an invertible ideal is finitely
generated.

The proof of this theorem based on the following result. We are inspired by the proof of [11, Lemma
13].

Lemma 2.2. Every regular prime ideal contains an invertible prime ideal if and only if every invertible
ideal is a finite product of invertible prime ideals.
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Proof: Suppose that every invertible ideal is a finite product of invertible prime ideals. Let P be
a regular prime ideal, so there exists r ∈ P a regular element such that < r >= P1P2...Pn where
Pk’s are invertible prime ideals. Since P is a prime ideal we have Pk ⊆ P for some k. Conversely,
assume that every regular prime ideal of R contains an invertible prime ideal and let I be an in-
vertible ideal. We prove that I contains a finite product of invertible prime ideals. Let S0 = {J ∈
L(R)|J is a finite product of invertible prime ideals of R} and S = {J ∈ L(R)|I ⊆ J and S0∩(J ] = ∅}
where (J ] = {K ∈ L(R)|K ⊆ J}.. Suppose S0 ∩ (I] = ∅ then S 6= ∅. Since every element of S0 is finitely
generated, by Zorn’s lemma there exists a prime ideal P such that I ⊆ P and S0 ∩ (P ] = ∅. Since I ⊆ P ,
it follows that P is regular, so S0 ∩ (P ] 6= ∅, a contradiction. Then S0 ∩ (I] 6= ∅. Thus I contains a finite
product of invertible prime ideal. Let P1P2...Pn ⊆ I where Pk’s are invertible prime ideals. Since I is
finitely generated and locally principal, it follows that I is a multiplication ideal and so IJ = P1P2...Pn

for some J ∈ L(R). By [11, Lemma 12], I is a finite product of invertible prime ideals. �

Proof of Theorem 2.1.

(1) ⇒ (2) Suppose that R is a weak π-ring and let P be a regular prime ideal of R. Let r ∈ P be a
regular element, we have < r >= P1P2...Pn where every Pk is a regular, finitely generated and a locally
principal ideal, so an invertible prime ideal. Hence P contains an invertible prime ideal.

(2) ⇒ (3) follows from Lemma 2.2.

(3) ⇒ (4) Suppose (3) holds. Let P be a prime ideal minimal over an invertible ideal I. By hypothesis
I = P1P2...Pn where Pk’s are invertible prime ideals. As P is a prime ideal, it follows that Pk ⊆ P , then
P = Pk and hence P is invertible.

(4) ⇒ (1). Suppose (4) holds. Let I be a regular principal ideal of R, so I is invertible. By hy-
pothesis and [9, Lemma 5], I contains a finite product of invertible prime ideals minimal over I. Let
P1P2...Pn ⊆ I, IJ = P1P2...Pn for some J ∈ L(R) as I is a multiplication ideal . By [11, Lemma 12], I
is a finite product of invertible prime ideals.

(4) ⇒ (5) is obvious since (4) ⇔ (1).

(5) ⇒ (2) Assume that (5) holds. Let P be a regular prime ideal and r a regular element of P . We
may assume that P is not minimal over < r >, and let Q be a minimal prime over < r > such that
Q ⊆ P , so by hypothesis Q is finitely generated. Now remains to show that Q is locally principal. Let
Q ⊆ M for some maximal ideal M of R. Since R is an almost weak π-ring, < r >M = Q1MQ2M ...QnM

for some prime ideals Q1, Q2, ..., Qn of R. As Q is a prime minimal over < r >, it follows that QM = QiM

for some i. By [1, Lemma 2.3] and [13, Theorem 2], QM is principal in RM , so a locally principal ideal.
Therefore Q is invertible, as desired.

Proposition 2.3. Let R be a weak π-ring, then:

1. Each invertible ideal is principal.

2. R is an almost weak π-ring in which every regular rank one prime ideal is invertible.

Proof:

1. Let I be an invertible ideal of R. By [8][Lemma 18.1, p. 110], I contains a regular element
r. Then < r >= P α1

1 P α2

2 ...P αn

n where Pk’s are distinct invertible prime ideals by [1, Lemma
2.3], as R is a weak π-ring. By [11, Lemma 12], and since I is a multiplication ideal we obtain
I = P α1

1 P α2

2 ...P αn

n =< r >, as desired.

2. It’s clear that R is an almost weak π-ring. So the result holds by hypothesis and [11, Lemma 5].

�
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Next, we establish the transfer of weak π-ring, almost weak π-ring and (∗)-ring properties to the direct
product of rings.

Proposition 2.4. Let R =
∏n

i=1 Ri be a direct product of rings. Then the following results hold:

1. R is a weak π-ring if and only if so are Ri’s.

2. R is an almost weak π-ring if and only if so are Ri’s.

3. R is a (∗)-ring if and only if so are Ri’s.

Proof: It suffices to study the case of a pairs of rings R and S.

1. Assume that R × S is a weak π-ring. Let I =< i > and J =< j > be two regular principal ideals
respectively of R and S. By our assumption, I × J =< (i, j) >= (P1 × S)...(Pn × S)(R × Q1)...(R ×
Qm) where Pl and Ql are respectively prime ideals of R and S with P1 6= R and Q1 6= S. Hence
I = P1...Pn and J = Q1...Qm.
Conversely, let H =< (i, j) > be a regular principal ideal of R × S. Set I =< i > and J =< j >,
clearly I(resp. J) is a regular principal ideal of R(resp. S). By hypothesis, I = P1...Pn and
J = Q1...Qm, thus H = (P1 × S)...(Pn × S)(R × Q1)...(R × Qm).

2. The result holds since for all I =< i > and J =< j > be two regular principal ideals respectively
of R and S we have (I × J)M×S

∼= IM for all M ∈ Max(R, I) and (I × J)R×N
∼= JN for all

N ∈ Max(S, J).

3. Clearly, for a pairs of rings R and S, the primary ideals of R × S have the form P × S or the
form R × Q where P and Q are primary ideals of R and S respectively. So assume that R × S
is a (∗)-ring. Let I =< i > and J =< j > be two regular principal ideals respectively of R and
S. By our assumption, I × J =< (i, j) >= (P1 × S) ∩ ... ∩ (Pn × S) ∩ (R × Q1) ∩ ... ∩ (R × Qm)
where Pl’s and Ql’s are respectively primary ideals of R and S with P1 6= R and Q1 6= S. Hence
I = P1 ∩ ... ∩ Pn and J = Q1 ∩ ... ∩ Qm.
Conversely, let K =< (i, j) > be a regular principal ideal of R × S. Set I =< i > and J =< j >,
clearly I(resp. J) is a regular principal ideal of R(resp. S). By hypothesis, I = P1 ∩ ... ∩ Pn

and J = Q1 ∩ ... ∩ Qm where Pl’s and Ql’s are respectively primary ideals of R and S, thus
K = (P1 × S) ∩ ... ∩ (Pn × S) ∩ (R × Q1) ∩ ... ∩ (R × Qm).

�

By the following results, we identified a context in which one can see when a localization of a ring R
is a weak π-ring, an almost weak π-ring and a (∗)-ring.

Proposition 2.5. Let R be a ring and S a multiplicative set of R such that S ⊆ Reg(R).

1. If R is a weak π-ring, then so is S−1R.

2. If R is an almost weak π-ring, then so is S−1R.

3. If R is a (∗)-ring, then so is S−1R.

Proof:

1. Let J be a regular principal ideal of S−1R, so Jc = ϕ−1(J) is a regular ideal, where ϕ : R → S−1R
is a ring homomorphism defined by ϕ(r) = r/1, indeed:
Let r

s
be a regular element of J , clearly r

1 is a regular element of J , then r ∈ Jc. Assume that r is
not regular, so there exists a ∈ R such that ra = 0, and so ( r

s
)(a

1 ) = 0
1 , contradiction.

As R is a weak π-ring, we deduced that < r >= P1...Pn. Therefore, S−1(P1...Pn) = S−1P1...S−1Pn

⊆ S−1(Jc) = J . Since r ∈< r >= P1...Pn, it follows that r

s
∈ S−1P1...S−1Pn. Hence J =

S−1P1...S−1Pn, as desired.
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2. Straightforward.

3. Let J be a regular principal ideal of S−1R. Similarly to the proof of Proposition 2.5, Jc = ϕ−1(J)
is a regular ideal of R. Since R is a (∗)-ring, we deduced that < r >= P1 ∩ ... ∩ Pn where Pl’s are
primary ideals of R. Therefore, S−1(P1 ∩ ... ∩ Pn) = S−1P1 ∩ ... ∩ S−1Pn ⊆ S−1(Jc) = J . Since
r ∈< r >= P1 ∩ ... ∩ Pn, it follows that r

s
∈ S−1P1 ∩ ... ∩ S−1Pn. Hence J = S−1P1 ∩ ... ∩ S−1Pn.

As Pl are primary ideals, then so are S−1Pl. This completes the proof of the proposition.

�

By this proposition, we study the transfer of the above-mentioned classes to homomorphic image. We
consider I an ideal of R and f : R → R/I the canonical surjection, we have then the next results:

Proposition 2.6. Suppose that the following two conditions hold:

1. Each regular principal ideal of R contains I.

2. f−1{r̄} contains a regular element where r̄ ∈ Reg(R/I).

Then:

(a) If R is a weak π-ring, then so is R/I.

(b) If R is an almost weak π-ring, then so is R/I.

(c) If R is a (∗)-ring, then so is R/I.

Proof:

(a) Let J =< r̄ > be a regular principal ideal of R/I. Along with the hypothesis that f−1{r̄} contains
a regular element, we may assume, without loss of generality, r is regular. We get then K =< r >
a regular principal ideal of R. As R is a weak π-ring, it follows that K = P1...Pn and hence
J = K/I = (P1...Pn)/I = P1/I...Pn/I. Therefore J is a finite product of prime ideals.

(b) Let J =< r̄ > be a regular principal ideal such that f−1{r̄} contains a regular element. Thus,
we may assume, without loss of generality, K =< r > a regular principal ideal. Since R is an
almost weak π-ring, we obtain KM = P1M ...PnM for all M ∈ Max(R, K), in particular for all N ∈
Max(R/I, J) with N = M/I for some M ∈ Max(R, K), and hence JN = (K/I)N

∼= KM/IM =
P1M ...PnM /IM = P1M /IM ...PnM /IM , which completes the proof.

(c) Let J =< r̄ > be a regular principal ideal of R/I. Along with the hypothesis that f−1{r̄} contains
a regular element, without loss of generality, we may assume K =< r > a regular principal ideal.
As R is a (∗)-ring, then K = P1 ∩ ...∩Pn and hence J = K/I = (P1 ∩ ...∩Pn)/I = P1/I ∩ ...∩Pn/I,
as desired.

�

3. The transfer to the trivial ring extension

In the sequel, we study the possible transfer of the properties of being a weak π-ring, an almost weak
π-ring and a (∗)-ring between a commutative ring A and A ∝ E.

A homogeneous ideal of A ∝ E is an ideal with the form I ∝ F where I is an ideal of A, F
is a submodule of E, and IE ⊆ F , also we have I = {a ∈ A | (a, e) ∈ J for some e ∈ E} and
F = {e ∈ E | (a, e) ∈ J for some a ∈ A}.

Theorem 3.1. Let A be a ring, E an A-module and R = A ∝ E be the trivial ring extension of A by E.
Then:
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1. R is a weak π-ring if and only if every principal ideal not disjoint of S is a finite product of prime
ideals and sE = E for all s ∈ S where S = A − (Z(A) ∪ Z(E)).

2. If R is an almost weak π-ring, then every principal ideal not disjoint of S, IM is a finite product of
prime ideals for all M ∈ Max(A, I).

3. Suppose that sEM = EM for all M ∈ Max(A) and all s ∈ S. If A is an almost weak π-ring, then
so is R.

4. Suppose that E = aE for all a ∈ S. R is a (∗)-ring if and only if every regular principal ideal not
disjoint of S has a primary decomposition.

Proof:

1. As R is a weak π-ring and by [3, Theorem 3.3] a product of homogeneous ideals is homogeneous,
it follows that every regular principal ideal of R is homogeneous, so by [3, Theorem 3.9] sE = E
for all s ∈ S. Let I =< a > be a principal ideal of A with I ∩ S 6= ∅. Thus, J =< (a, 0) >= I ∝ E
is a regular ideal of R, hence I ∝ E = (P1 ∝ E)...(Pn ∝ E) where Pi’s are prime ideals of A. We
conclude that I = P1...Pn.
Conversely, let J be a regular principal ideal of R. By hypothesis and [3, Theorem 3.9], J = I ∝ E
for some ideal I of A with I ∩ S 6= ∅. Again by hypothesis, I is a finite product of prime ideals of
A, set I = P1...Pn. Since sE = E for all s ∈ S, we get J = I ∝ E = (P1 ∝ E)...(Pn ∝ E), therefore
R is a weak π-ring.

(2) and (3) are similar to the first statement.

(4) Suppose that R is a (∗)-ring. Along with the hypothesis E = aE for all a ∈ S, for every regular
principal ideal I of A such that I ∩ S 6= ∅, I ∝ E is a regular principal ideal of R. Then I ∝ E =
(P1 ∝ E) ∩ ... ∩ (Pn ∝ E) = (P1 ∩ ... ∩ Pn) ∝ E where Pk’s are primary ideals of A, and hence
I = P1 ∩ ... ∩ Pn, as desired.
Conversely, let J be a regular principal ideal of R. By hypothesis, J = I ∝ E where I is a regular
principal ideal of R such that I ∩ S 6= ∅ and I = P1 ∩ ... ∩ Pn where Pk’s are primary ideals of A.
So, J = (P1 ∩ ... ∩ Pn) ∝ E = (P1 ∝ E) ∩ ... ∩ (Pn ∝ E). Therefore, R is a (∗)-ring.

�

As a particular case of the previous theorem, we get:

Corollary 3.2. Let A be a ring, E an A-module and R = A ∝ E be the trivial ring extension such that
Z(E) ⊆ Z(A). Then:

1. R is a weak π-ring if and only if A is a weak π-ring and sE = E for all s ∈ S.

2. If R is an almost weak π-ring, then so is A.

3. Suppose that sEM = EM for all M ∈ Max(A) and all s ∈ S. If A is an almost weak π-ring, then
so is R.

4. Suppose that E = aE for all a ∈ S. Then R is a (∗)-ring if and only if so is A.

Emmy Noether proved that a Noetherian ring R is a Laskerian ring [6], hence a (∗)-ring. The next
corollary provide a non-Noetherian example of a (∗)-ring.

Corollary 3.3. Let D be a domain and E a divisible R-module. Then:

1. D is a weak π-ring if and only if so is D ∝ E.

2. D is an almost weak π-ring if and only if so is D ∝ E.
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3. D is a (∗)-ring if and only if so is D ∝ E.

4. If E is a non-finitely generated D-module, then D ∝ E is a non-Noetherian ring and we have D is
a (∗)-ring if and only if so is D ∝ E.

Corollary 3.4. Let (A, M) be a local ring and E an A/M -vector space. Then:

1. A ∝ E is a weak π-ring.

2. A ∝ E is a (∗)-ring.

As an application of our result, we construct the following example of a weak π-ring ((∗)-ring) which
is neither a Dedekind ring nor a π-ring.

Example 3.5. Let R = Z ∝ Z/4Z, it’s clear that Z/4Z = aZ/4Z for all a ∈ S = Z − Z(Z/4Z), then:

• R is a weak π-ring.

• R is a (∗)-ring.

• R not a Dedekind ring (by [10, Theorem 1]).

• R not a π-ring (by [3, Theorem 4.10]).

By the next example, we show that (∗)-rings are not necessary weak π-rings.

Example 3.6. Let R = Z and E = 4Z, we prove that:

1. R ∝ E is not a weak π-ring (by theorem 3.1 (1)).

2. R ∝ E is a (∗)-ring.

The condition “f−1(r) contains a regular element for every regular element r ∈ R/I” is necessary in
Proposition 2.6 (1). To see this, consider the following example:

Example 3.7. Let A = Z2 ∝ Z2, M = 2Z2 ∝ Z2, E = A/M and R = A ∝ E. Easily, we can see that
E = rE for all r ∈ S = A− (Z(A)∪Z(E)). Thus every regular principal ideal J of R has the form I ∝ E
where I is a regular principal ideal not disjoint with S. Hence the first condition in Proposition 2.6 is
satisfied. Now, let (a, 0) be a regular element of A. For all e ∈ E we have ((a, 0), e)((0, 0), e) = ((0, 0), 0).
Clearly R is a weak π-ring, however A is not by corollary 3.4.
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