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abstract: In the present investigation we first introduce modified Dini function R
a,k
ν (z) and then find

sufficient conditions so that the modified Dini function R
a,k
ν (z) have certain geometric properties like close-

to-convexity, starlikeness and strongly starlikeness in the open unit disk. Some subordination sequences are
also established.
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1. Introduction

Let H denote the class of analytic functions f defined in the open unit disk D = {z ∈ C : |z| < 1}
and A denote the subclass of H, which are normalized by the condition f(0) = 0 = f ′(0) − 1 and have
representation of the form

f(z) = z +
∑

n≥2

anz
n, z ∈ D. (1.1)

A function f is said to be univalent in a domain D if it is one-to-one in D. Recall that a set E ⊂ C is
said to starlike with respect to a origin 0 ∈ E if and only if the line segment joining 0 to every other
point w ∈ E lies entirely in E. A function f ∈ A is called starlike, denoted by f ∈ S

∗ if f is univalent in
D and f(D) is a starlike domain with respect to the origin. The analytic characterization of the class of
starlike function is given by:

f ∈ S
∗ ⇔ ℜ

(
zf ′(z)

f(z)

)
> 0 (z ∈ D).

A set E is said to be convex if and only if it is starlike with respect to each of its points, that is if and
only if the line segement joining any two ponts of E lies entirely in E. A function f ∈ A is called convex,
denoted by f ∈ K if f is univalent in D and f(D) is a convex domain. The analytic characterization of
the class of convex function is given by:

f ∈ K ⇔ ℜ
(

1 +
zf ′′(z)

f ′(z)

)
> 0 (z ∈ D).

Further, let S̃
∗(α), 0 < α ≤ 1, be the class of strongly starlike functions of order α defined by

S̃
∗(α) =

{
f ∈ A :

∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ <
απ

2
, z ∈ D

}
. (1.2)

Note that S̃
∗(1) ≡ S

∗. Given a convex function g ∈ K with g(z) 6= 0, a function f ∈ A, is called
close-to-convex with respect to convex function g, denoted by Cg, if

R

(
f ′(z)

g′(z)

)
> 0 (z ∈ D). (1.3)
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Geometrically a function f ∈ A belongs to Cg if the complementE of the image-regionF = {f(z) : |z| < 1}
is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the
rays). The Noshiro-Warschawski theorem implies that close-to-convex functions are univalent in D, but
not necessarily the converse. More details about these classes can be found in Duren [7].

If f, g ∈ H, then the function f is said to be subordinate to g, written as f(z) ≺ g(z) (z ∈ D), if there
exists a Schwarz function w ∈ H with w(0) = 0 and |w(z)| < 1 (z ∈ D) such that f(z) = g(w(z)). In
particular, if g is univalent in D, then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(D) ⊂ g(D).

The Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma functions is given as (x)n =
Γ(x+ n)/Γ(x) = x(x + 1)...(x+ n− 1).
It is always interesting to find sufficient conditions such that certain class of analytic functions becomes
close-to-convex, starlike or convex function. Recently many special functions are studied for the above
mentioned geometric properties. One can see the following papers in this direction, for Hypergeometric
function [10,11,12,16,17,18], Bessel functions [2,3], Wright function [15], Mittag-Leffler function [1], Dini
function [4,5,6]. In the present investigation, we are interested in some geometric properties of modified
Dini function. For this we first define generalized Bessel function.

Bessel functions of the first kind play an important role in various branches of applied mathematics
and engineering sciences. Their properties have been investigated by many scientists and there is a very
extensive literature dealing with Bessel functions.

Jν(z) =

∞∑

n=0

(−1)n(z/2)2n+ν

n!Γ(ν + n+ 1)
. (1.4)

The generalized Bessel function of first kind of order ν is defined by

Jc
ν(z) =

∞∑

n=0

(−c)n(z/2)2n+ν

n!Γ(ν + n+ 1)
(c ∈ C, ν > −1). (1.5)

The generalized Dini function is the combination of the generalized Bessel function of first kind, defined
by

da,c
ν (z) = (a− ν)Jc

ν(z) + z(Jc
ν)′(z).

For more details on the Dini functions see [4,5,6]. In the present paper we use the following normalized
form of generalized Dini function:

ra,c
ν (z) =

2ν

a
Γ(ν + 1)z1− ν

2

[
(a− ν)Jc

ν (
√
z) +

√
z(Jc

ν )′(
√
z)

]

= z +

∞∑

n=1

(−c)n(2n+ a)Γ(ν + 1)

a. 4nn!Γ(ν + n+ 1)
zn+1, (1.6)

(c ∈ C, ν > −1, a > 0 and z ∈ D )

If we take c = −k where k > 0, we get modified Dini function, let us represent this series by:

Ra,k
ν (z) = z +

∞∑

n=1

kn(2n+ a)Γ(ν + 1)

a. 4nn!Γ(ν + n+ 1)
zn+1. (1.7)

To prove our main results, we shall need following Lemmas and Definition:

Lemma 1.1. (Ozaki [14]). Let f(z) = z +
∞∑

n=2
Anz

n. Suppose

1 ≥ 2A2 ≥ · · · ≥ nAn ≥ (n+ 1)An+1 ≥ · · · ≥ 0 (1.8)
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or

1 ≤ 2A2 ≤ · · · ≤ nAn ≤ (n+ 1)An+1 ≤ · · · ≤ 2. (1.9)

then f is close-to-convex with respect to convex function −log(1 − z) in D.

Lemma 1.2. (Fejer [8]). Let {an}n≥1 be a sequence of non negative real numbers such that a1 = 1. If

the quantities

∆an = nan − (n+ 1)an+1 and ∆a2
n = nan − 2(n+ 1)an+1 + (n+ 2)an+2

are non negative, then the function f(z) =
∑∞

n=1 anz
n is starlike in D.

Lemma 1.3. (Fejer [8]). Let {an}n≥1 be a sequence of non negative real numbers such that a1 = 1. If

{an}n≥2 is convex decreasing, i.e. 0 ≥ an+2 − an+1 ≥ an+1 − an, then

ℜ
{

∞∑

n=1

anz
n−1

}
>

1

2
, (z ∈ D).

Definition 1.4. An infinite sequence {bn}∞
1 of complex numbers will be called a subordinating factor

sequence if whenever

f(z) =
∞∑

n=1

anz
n (1.10)

is analytic, univalent and convex in U, then

∞∑

n=1

anbnz
n ⊆ f(z) (z ∈ D, a1 = 1). (1.11)

Lemma 1.5. (Wilf [19]). The sequence {bn}∞
1 is a subordinating factor sequence if and only if

ℜ
{

1 + 2
∞∑

k=1

bkz
k

}
> 0 (z ∈ D). (1.12)

Lemma 1.6. (P.T. Mocanu [13]). If f ∈ A satisfy |f ′(z) − 1| < 1 for each z ∈ D, then f is convex in

D1/2 = {z : |z| < 1
2 }.

Lemma 1.7. (Halenbeck and Ruscheweyh [9]). Let G(z) be convex and univalent in D with G(0) = 1.

Let F (z) be analytic in D, F (0) = 1 and F (z) ≺ G(z) in D. Then for all n ∈ N ∪ {0}, we have

(n+ 1)z−n−1

∫ z

0

tn F (t) dt ≺ (n+ 1)z−n−1

∫ z

0

tn G(t) dt.

2. Close-to-convexity, Starlikeness and Strongly starlikeness

Theorem 2.1. If ν ≥ ( 1
a + 1

2 )k − 1, a > 0 and k > 0, then Ra,k
ν (z) is close-to-convex with respect to

convex function −log(1 − z) in D.

Proof. From (1.7), we have

∆an = nan − (n+ 1)an+1 =
kn−1Γ(ν + 1)

4n−1(n− 1)!Γ(ν + n)

[
n(2n+ a− 2) − k(n+ 1)(2n+ a)

4n(ν + n)

]
(2.1)

=
kn−1Γ(ν + 1)

a. 4nn!Γ(ν + n+ 1)
φ(n),

where
φ(n) = 4n2(2n+ a− 2)(ν + n) − k(2n+ a)(n+ 1).
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In view of Lemma 1.1, it is sufficient to show that under the stated conditions, φ(n) ≥ 0 for all n ≥ 1.
For this we use the inequality

4n2(2n+ a− 2) ≥
(

2a

a+ 2

)
(2n+ a)(n+ 1) (n ∈ N, a > 0). (2.2)

Now

φ(n) ≥ 4n2(2n+ a− 2)(ν + 1) − k(2n+ a)(n+ 1)

≥
(

2a

a+ 2

)
(2n+ a)(n+ 1)(ν + 1) − k(2n+ a)(n+ 1)

≥ 0 as (ν + 1) ≥
(

1

a
+

1

2

)
k.

�

Theorem 2.2. If ν ≥
(

2
a + 1

)
k − 1, a > 0 and k > 0, then Ra,k

ν (z) is starlike in D.

Proof. From (1.7), we have

∆a2
n = nan − 2(n+ 1)an+1 + (n+ 2)an+2

=
n(2n+ a− 2)kn−1Γ(ν + 1)

a. 4n−1(n− 1)!Γ(ν + n)
− 2

(n+ 1)(2n+ a)knΓ(ν + 1)

a. 4nn!Γ(ν + n+ 1)
+ (n+ 2)

(2n+ a+ 2)kn+1Γ(ν + 1)

a. 4n+1(n+ 1)!Γ(ν + n+ 2)
.

To show ∆a2
n is positive, we show that, the difference of first two term, which is equal to

kn−1Γ(ν + 1)

a. 4n−1(n− 1)!Γ(ν + n)

[
n(2n+ a− 2) − k(n+ 1)(2n+ a)

2n(ν + n)

]
=

kn−1Γ(ν + 1)

2a. 4n−1 n!Γ(ν + n+ 1)
ψ(n),

where

ψ(n) = 2n2(2n+ a− 2)(ν + n) − (n+ 1)(2n+ a)k,

is positive under the stated condition. In view of Lemma 1.2, it is sufficient to show that under the stated
conditions, ψ(n) ≥ 0 for all n ≥ 1. For this we use the inequality

2n2(2n+ a− 2) ≥
(

a

2 + a

)
(n+ 1)(2n+ a) (n ∈ N, a > 0).

Now

ψ(n) = 2n2(2n+ a− 2)(ν + n) − (n+ 1)(2n+ a)k

≥ 2n2(2n+ a− 2)(ν + 1) − (n+ 1)(2n+ a)k

≥ (n+ 1)(2n+ a)

[(
a

2 + a

)
(ν + 1) − k

]

≥ 0 as (ν + 1) ≥
(
a+ 2

a

)
k.

�

Theorem 2.3. If ν ≥ (4+a)k
4(2+a) − 2, a > 0 and k > 0 , then

ℜ
{
Ra,k

ν (z)

z

}
>

1

2
(z ∈ D).
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Proof. We first prove that

{an}∞
n=1 =

{
kn−1(2n+ a− 2)Γ(ν + 1)

a. 4n−1(n− 1)!Γ(ν + n)

}

n≥2

is a decreasing sequence. For this we calculate

an − an+1 =
kn−1Γ(ν + 1)

a. 4nn!Γ(ν + n+ 1)
X(n),

where
X(n) = 4n(2n+ a− 2)(ν + n) − (2n+ a)k.

To show that X(n) ≥ 0 for all n ≥ 2, we use the inequality

4n(2n+ a− 2) ≥ 8(2 + a)

4 + a
(2n+ a) (n ≥ 2, a > 0). (2.3)

Now,

X(n) = 4n(2n+ a− 2)(ν + n) − k(2n+ a)

≥ 4n(2n+ a− 2)(ν + 2) − k(2n+ a)

≥ (2n+ a)

[
8(2 + a)

4 + a
(ν + 2) − k

]

≥ 0 as (ν + 2) ≥ (4 + a)k

4(2 + a)
.

Next, we prove that {an}n≥2 is a convex decreasing sequence. For this, we show

an+2 − an+1 ≥ an+1 − an (∀ n ≥ 2).

To show an − 2an+1 + an+2 is positive, we show that, the difference of first two term, which is equal to

an − 2an+1 =
kn−1Γ(ν + 1)

2a. 4n−1n!Γ(ν + n+ 1)
Y (n), (2.4)

where
Y (n) = 2n(2n+ a− 2)(ν + n) − k(2n+ a).

To show Y (n) ≥ 0 for all n ≥ 2, we use the inequality

2n(2n+ a− 2) ≥ 4(2 + a)

4 + a
(2n+ a) (n ≥ 2, a > 0). (2.5)

Now,

Y (n) = 2n(2n+ a− 2)(ν + n) − k(2n+ a)

≥ 4(2 + a)

4 + a
(2n+ a)(ν + 2) − k(2n+ a)

= (2n+ a)

[
4(2 + a)

4 + a
(ν + 2) − k

]
≥ 0 as (ν + 2) ≥ 4 + a

4(2 + a)
.

In view of Lemma 1.3, we have

ℜ
{

∞∑

n=1

anz
n−1

}
>

1

2
(z ∈ D),

which is equivalent to

ℜ
{
Ra,k

ν (z)

z

}
>

1

2
, (z ∈ D).

This proves the Theorem 2.3. �
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Corollary 2.4. If ν ≥ 4+a
4(2+a) − 2, a > 0 and k > 0, then the sequence

{
kn(2n+ a)Γ(ν + 1)

a. 4n n! Γ(ν + n+ 1)

}∞

n=1

(2.6)

is a subordinating factor sequence for the class K.

Proof. Result directly follows in view of Theorem 2.3 and Lemma 1.5. �

Theorem 2.5. If ν ≥ 3k
8

(
4+a
2+a

)
− 2, a > 0 and k > 0 then

ℜ
{

(Ra,k
ν (z))′

}
>

1

2
(z ∈ D).

Proof. From (1.7),

(Ra,k
ν (z))′ = 1 +

∞∑

n=2

kn−1n(2n+ a− 2)Γ(ν + 1)

a. 4n−1 (n− 1)!Γ(ν + n)
zn−1. (2.7)

So taking

an =
kn−1n(2n+ a− 2)Γ(ν + 1)

a. 4n−1 (n− 1)!Γ(ν + n)

and proceeding similarly as in Theorem 2.3, we get the proof. �

Corollary 2.6. If ν ≥ 3
8

(
4+a
2+a

)
k − 2 and k, a > 0, then

{
kn(n+ 1)(2n+ a)Γ(ν + 1)

a. 4n n!Γ(ν + n+ 1)

}∞

n=1

(2.8)

a subordinating factor sequence for the class K.

Proof. Result directly follows in view of Theorem 2.5 and Lemma 1.5. �

Theorem 2.7. If ν ≥ 2|c| − 1 and a ≥ 1, then ra,c
ν (z) is convex in D1/2.

Proof. To prove this theorem, we use the well-known triangle inequality and the inequalities

a. 4m ≥ 2

3

[
2m2 +m(2 + a) + a

]
, (ν + 1)m ≥ (ν + 1)m, m! ≥ 2m−1 (m ∈ N),

we have,

|(ra,c
ν )′(z) − 1| =

∞∑

m=1

[
2m2 +m(2 + a) + a

]
|c|m

a. 4mm!(v + 1)m
|z|m

≤ 3

2

∞∑

m=1

|c|m
2m−1(ν + 1)m

=
3|c|

2ν + 2 − |c| = β. (2.9)

Under the hypothesis, 0 < β ≤ 1, and in view of Lemma 1.6, ra,c
ν (z) is convex in D1/2. �

Theorem 2.8. If ν ≥ 2|c| − 1 and a ≥ 1 then ra,c
ν (z) ∈ S̃

∗(α), where

α =
2

π
arcsin



β

√

1 − β2

4
+
β

2

√
1 − β2



 , (2.10)

for β = 3|c|
2ν+2−|c| .
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Proof. In view of Theorem 2.7, we conclude that

(ra,c
ν )′(z) ≺ 1 + βz z ∈ D.

which gives

|arg(ra,c
ν )′(z)| < arcsinβ, z ∈ D. (2.11)

Using Lemma 1.7, for F (z) = (ra,c
ν )′(z) and G(z) = 1 + βz with n = 0, we get

ra,c
ν (z)

z
≺ 1 +

β

2
z, z ∈ D,

consequently

∣∣∣∣arg

(
ra,c

ν (z)

z

)∣∣∣∣ < arcsin
β

2
, z ∈ D. (2.12)

Now from (2.11) and (2.12), we conclude that

∣∣∣∣arg

(
z(ra,c

ν )′(z)

ra,c
ν (z)

)∣∣∣∣ =

∣∣∣∣arg

(
z

ra,c
ν (z)

)
+ arg ((ra,c

ν )′(z))

∣∣∣∣

≤
∣∣∣∣arg

(
z

ra,c
ν (z)

)∣∣∣∣ + |arg ((ra,c
ν )′(z))|

< arcsin
β

2
+ arcsinβ

= arcsin



β

√

1 − β2

4
+
β

2

√
1 − β2





i.e. ra,c
ν (z) ∈ S̃

∗(α), for α given in (2.10). �

Corollary 2.9. Let ν ≥ 2|c| − 1, 0 < α ≤ 1, a ≥ 1 and

β =
3|c|

2ν + 2 − |c| = 2l

√
5 − 4

√
1 − l2

16l2 + 9
, (2.13)

where l = sin
(

απ
2

)
. Then ra,c

ν (z) ∈ S̃
∗(α).

Proof. If we put β from (2.13) to (2.10), we obtain α. �

Putting α = 1 in Corollary 2.9, we get

l = 1 ⇒ β =
3|c|

2ν + 2 − |c| =
2√
5
.

Corollary 2.10. If

ν ≥ |c|(3
√

5 + 2) − 4

4
,

then ra,c
ν (z) ∈ S

∗.
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4. Á. Baricz, S. Ponnusamy and S. Singh, Modified Dini functions: Monotonicity patterns and Functinal inequalities,
Acta Mathematica Hungarica, 149(2016), 120-142.

5. Á. Baricz, E. Deniz and N. Yagmur, Close-to-convexity of normalized Dini functions, Mathematische Nachrichten.
(2016).
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