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On the Weakly Nilpotent Graph of a Commutative Semiring ∗

Jituparna Goswami∗ and Laithun Boro

abstract: Let S be a commutative semiring with unity. The weakly nilpotent graph of S, denoted by
Γw(S) is defined as an undirected simple graph whose vertices are S∗ and two distinct vertices x and y are
adjacent if and only if xy ∈ N(S)∗, where S∗ = S\ {0} and N(S)∗ is the set of all non-zero nilpotent elements
of S. In this paper, we determine the diameter of weakly nilpotent graph of an Artinian semiring. We prove
that if Γw(S) is a forest, then Γw(S) is a union of a star and some isolated vertices. We determine the clique
number, chromatic number and independence number of Γw(S). Among other results, we show that for an
Artinian semiring S, Γw(S) is not a disjoint union of cycles or a unicyclic graph. For Artinian semirings,

we determine diam(Γw(S)), where Γw(S) is the complement of the weakly nilpotent graph of S. Finally, we

characterize all commutative semirings S for which Γw(S) is a cycle.
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1. Introduction

The study of graphs associated to algebraic structures has become an exciting research topic in the
last two decades, leading to many fascinating results and questions. Many fundamental papers devoted
to graphs assigned to rings and modules have appeared recently, for instance see [1-5, 10-11, 13] etc. The
study of graph-theoretic aspects of commutative semirings is also one of the fascinating research areas
now a days. There are many research papers on assigning a graph to a commutative semiring, for in-
stance, see [7, 8], etc. Recently, Khojasteh and Nikmehr [13] have introduced the weakly nilpotent graph
of a commutative ring and studied its various properties as well as its complement. Being motivated by
this work, in this paper we analogously introduce the weakly nilpotent graph of a commutative semiring
and attempt to study some of its properties under semiring theoretic settings. Our main goal is to study
the connection between the algebraic properties of a semiring and the graph-theoretic properties of the
graph associated with it.

A semiring is a non-empty set S together with two binary operations addition and multiplication
denoted by “+” and “.” respectively, satisfying the following properties:

1. (S, +) is a commutative monoid with identity element 0.

2. (S, .) is a monoid with identity element 1 6= 0.

3. a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c ∈ S.

We simply denote a semiring by S. The semiring S is said to be a commutative semiring if the semigroup
(S, .) is a commutative semigroup and monoid if 1 ∈ S such that a.1 = 1.a = a for all a ∈ S, then we say
the semiring is a semiring with unity. An element a of a semiring S is called nilpotent if xn = 0 for some
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n > 0 and n is called index of nilpotency of x. S is called an Artinian semiring if and only if S satisfies
the descending chain condition for ideals of S. We denote the set of unit elements of S, the set of zero
divisors of S, the set of nilpotent elements of S by U(S), Z(S), and N(S). If S has a unique maximal
ideal M , then S is said to be local semiring and it is denoted by (S, M). A semiring S is said to be a
reduced semiring if N(S) = 0. Any other undefined terminology can be found in [9].

Let G be a graph with vertex set V (G). A path from x to y is a series of adjacent vertices
x—x1—x2—......—xn—y. For x, y ∈ V (G) with x 6= y, d(x, y) denotes the length of the shortage path
from x to y; otherwise d(x, y) = ∞. The diameter of G is defined as diam(G) = sup{d(x, y) | x and y are
vertices of G}. For any x ∈ V (G), d(x) denotes the number of edges incident with x, called the degree of
x. A cycle is a path that begins and ends at the same vertex in which no edge is repeated and all vertices
other than the starting and ending vertex are distinct. We use Cn to denote the cycle with n vertices,
where n ≥ 3. We denote the complete graph with n vertices by Kn. If a graph G has a cycle, then the
length of the shortage cycle is called girth of G and it is denoted by gr(G); otherwise gr(G) = ∞. A
bipartite graph is a graph whose vertices can be partitioned into two disjoint sets U and V such that
every edge connects a vertex in U to one in V . A complete bipartite graph is a bipartite graph in which
every vertex of one part is joined to every vertex of the other part. We denote by Km,n the complete
bipartite graph, with part size m and n. The star graph is denoted by K1,n, for a positive integer n.
We say that a graph G is totally disconnected if no two vertices of G are adjacent. The disjoint union
of graphs G1 and G2, which is denoted by G1 ∪ G2, where G1 and G2 are two vertex-disjoint graphs,
is a graph with V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). A unicyclic graph
is a connected graph with a unique cycle, or we can regard a unicyclic graph as a cycle attached with
each vertex a (rooted) tree. A clique of a graph is a complete subgraph and the number of vertices in
the largest clique of graph G, denoted by ω(G), is called the clique number of G. The minimum number
of colors that can be assigned to the vertices of G in such a way that every two adjacent vertices have
different colors is called the chromatic number and it is denoted by χ(G). Any undefined terminology
can be obtained in [6] and [12].

Throughout this paper, S is a commutative semiring with unity. The weakly nilpotent graph of
S denoted by Γw(S) is defined to be the undirected simple graph with the vertex set S∗ = S \ {0}
and two distinct vertices x and y are adjacent if and only if xy ∈ N(S)∗, where N(S)∗ is the set of
non-zero nilpotent elements of S. We think that the weakly nilpotent graph of a semiring helps us to
study the algebraic properties of semiring using graph-theoretical tools. Now, we consider the comple-
ment of the weakly nilpotent graph of S, denoted by Γw(S). For any two distinct vertices x, y ∈ S∗, x
is adjacent to y if and only if xy /∈ N(S)∗. Obviously, the usual zero divisor graph is a subgraph of Γw(S).

In section 2, we determine the diameter of weakly nilpotent graph of an Artinian semiring. We prove
that if Γw(S) is forest, then Γw(S) is a union of a star and isolated vertices. We study the clique number,
the chromatic number of Γw(S). Among other results, we show that for an Artinian semiring S, Γw(S)
is not a disjoint union of cycles or a unicyclic graph. In section 3, we determine diam(Γw(S)), where S
is an Artinian semiring. We characterize all commutative semirings S for which Γw(S) is a cycle.

2. On the structure and properties of the weakly nilpotent graph of a commutative

semiring

In this section, we will focus on the weakly nilpotent graph of an Artinian semiring. Here we prove
the total disconnectedness and connectedness property of S. We also prove that if Γw(S) has no isolated
vertex, then diam(Γw(S)) ≤ 4, where S is an Artinian semiring. It is shown that if Γw(S) is a forest, then
Γw(S) is a union of a star and some isolated vertices.
As we mention in the introduction, the weakly nilpotent graph of a commutative semiring S denoted by
Γw(S) is defined to be the undirected simple graph with the vertex set S∗ and two distinct vertices x
and y are adjacent if and only if xy ∈ N(S)∗.

Example 2.1. The commutative semirings Z0 = Z+ ∪ {0} and Q0 = Q+ ∪ {0} with unity, ordinary
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addition and multiplication have no nontrivial nilpotent and so Γw(Z0) and Γw(Q0) are empty graph.
Also, for the commutative semirings Zn (n being prime or square free integer) the graphs Γw(Zn) are
empty.

Example 2.2. In the commutative semiring Z4, the nontrivial nilpotent is {2}. So Γw(Z4) is the following
graph.

Figure 1: Γw(Z4)

Example 2.3. In the commutative semiring Z8, the nontrivial nilpotents are {2, 4, 6}. So Γw(Z8) is the
following graph.

Figure 2: Γw(Z8)

Example 2.4. In the commutative semiring Z12, the nontrivial nilpotent is {6}. So Γw(Z12) is the
following graph.

Figure 3: Γw(Z8)

Example 2.5. In the commutative semiring Z16, the nontrivial nilpotent are {2, 4, 6, 8, 10, 12, 14}. So
Γw(Z16) is the following graph.
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Figure 4: Γw(Z16)

Proposition 2.1. Let S be a commutative semiring with unity. Then the graph Γw(S) is totally discon-
nected if and only if S is a reduced semiring.

Proof. Let S be a commutative semiring with unity. If S is reduced semiring, then N(S)∗ = φ, which
yields Γw(S) is totally disconnected.
Conversely, assume that Γw(S) is totally disconnected and N(S)∗ 6= φ, then every elements of N(S)∗ are
adjacent to 1, a contradiction. �

Proposition 2.2. Let S be a commutative Artinian semiring. Then Γw(S) is a complete graph if and
only if S ∼= Z2.

Proof. One side is clear. For other side, assume that Γw(S) is a complete graph. Hence, |U(S)| = 1.
Since, S is an Artinian semiring, so S ∼= Zr

2, for some positive integer r. Let ei be the 1 × n vector whose
i-th component is 1 and other components are 0. If r ≥ 2 then e1 is not adjacent to e2 a contradiction.
Therefore, S ∼= Z2. �

Proposition 2.3. Let (S, M) be a local semiring and M 6= 0. If M = N(S), then diam(Γw(S)) = 2.

Proof. Obviously, every element of N(S)∗ is adjacent to each element of U(S). This shows that Γw(S)
is connected graph and diam(Γw(S)) ≤ 2. If U(S) = {1}, then M = 0. Since, 1 + M ⊆ U(S), a
contradiction. Therefore, |U(S)| ≥ 2. Let u, v ∈ U(S). So, u and v are adjacent to every element of
N(S)∗. Since, u and v are not adjacent and diam(Γw(S)) ≤ 2. Thus, diam(Γw(S)) = 2. �

Proposition 2.4. Let S be a commutative Artinian semiring. If Γw(S) has not any isolated vertex, then
diam(Γw(S)) ≤ 4.

Proof. Let S be a commutative Artinian semiring. We know that S ∼= Πn
i=1Si, where n ≥ 1 and (Si, Mi)

is a local semiring for every i, 1 ≤ i ≤ n. Let ei be the 1 × n vector whose i-th component is 1 and
other components are zero. If M1 = 0, then e1 is an isolated vertex, a contradiction. Therefore M1 6= 0.
Similarly, Mi 6= 0 for every i, 1 ≤ i ≤ n. If n = 1 then by Proposition 2.3 diam(Γw(S)) = 2. Therefore
we can assume that n ≥ 2. Let a = Σn

i=1aiei, b = Σn
i=1biei ∈ S∗ then we have the following three cases.

Case-1: Let a, b ∈ U(S). Then we have a — x — b where x ∈ N(S)∗. Hence, d(a, b) = 2.

Case-2: Let a ∈ U(S) and b /∈ U(S). If bi ∈ Mi for every i, 1 6 i 6 n, then a is adjacent to b
and d(a, b) = 1, otherwise suppose that J = {i | 1 6 i 6 n, bi ∈ U(Si)}. Let x =

∑n
i=1 riei and

y =
∑

i/∈J ei +
∑

i∈J riei for ri ∈ M∗
i . Then a — x— y — b is a path between a and b. Therefore,

d(a, b) = 3.

Case-3: Let a, b /∈ U(S). If ai, bi ∈ Mi for every i, 1 6 i 6 n. Then
∑n

i=1 ei is adjacent to a and b.
Therefore d(a, b) ≤ 2. Otherwise, let I = {i | 1 ≤ i ≤ n, ai ∈ U(Si)} and J = {i | 1 ≤ i ≤ n, bi ∈ U(Si)}.
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If x =
∑

i/∈I ei +
∑

i∈I riei, y =
∑n

i=1 riei and w =
∑

i/∈J ei +
∑

i∈J riei, for ri ∈ m∗
i , then a — x — y —

w — b is path between a and b. Therefore, d(a, b) ≤ 4. Thus, diam(Γw(S) ≤ 4. �

Proposition 2.5. Let n = pk1

1 × ....... × pks
s , where pi is a prime number and ki is a positive integer.

Then Γw(Zn) is a connected graph if and only if ki ≥ 2 for every i, 1 ≤ i ≤ s. Moreover if Γw(Zn) is a
connected graph then diam(Γw(Zn)) = 2.

Proof. Assume that Γw(Zn) is a connected graph. If k1 = 1, then by Proposition 2.1 s ≥ 2. We show
that a = pk2

2 × ....... × pk
s is an isolated vertex. To see this we note that if a is adjacent to b for some

b ∈ Z∗
n, then since ab 6= 0 and a /∈ p1Z, we conclude that b /∈ p1Z. On the other hand, since ab ∈ N(S)∗,

b ∈ p1Z, a contradiction. Therefore k1 > 2. Similarly, ki > 2, for every i, 1 6 i 6 s. We show that
diam(Γw(Zn)) = 2. Let a, b ∈ Z∗

n. Then we have the following three cases.

Case-1: If a, b ∈ U(Zn). Then a is not adjacent to b and we have a — p1 × ..... × ps — b. There-
fore, d(a, b) = 2.

Case-2: If a ∈ U(Zn) and b /∈ U(Zn). We can assume that b = upt1

1 × ......... × ptr
r , where 1 ≤ r ≤ s and

u /∈ piZ, for every i, 1 ≤ i ≤ s and ti is a positive integer for every i, 1 ≤ i ≤ r. If r = s then a is adjacent
to b. If r 6= s, then since ks > 2, bp1 × ......... × ps 6= 0. Now, a and b are adjacent to p1 × ..... × ps. Thus,
d(a, b) ≤ 2.

Case-3: If a, b /∈ U(Zn). Then let a = upt1

1 × ......... × ptr
r and b = vpt1

1 × ......... × p
tj

r , where u, v /∈ piZ,
for every i, 1 ≤ i ≤ s, 1 ≤ i ≤ j ≤ s, ti is a positive integer for every i, 1 ≤ i ≤ r and li is a positive
integer for every i, 1 ≤ i ≤ j. If r = j < s, then a and b are adjacent to p1 × ..... × ps. If r = j = s, then a
and b are adjacent to 1. Now suppose that r < j. If r < j < s, then a and b are adjacent to p1 × ..... × ps.
Therefore in this case d(a, b) ≤ 2. This complete the proof. �

Proposition 2.6. The graph Γw(Zn) is a bipartite graph if n = p2 (p being prime).

Proof. Let us consider two partitions of the vertex set V (Γw(Zp2 )) = Z∗
p2 namely, V1 : Z∗

p2 \N(Zp2 )∗ and
V2 : N(Zp2 )∗. Then the following three cases arise,

Case-1: No two vertices of V1 are adjacent.
For if a, b ∈ V1 then ab /∈ N(Zp2 )∗

⇒ a /∈ pZ and b /∈ pZ
⇒ p ∤ a and p ∤ b
⇒ p ∤ ab
⇒ ab /∈ pZ ⇒ ab /∈ N(Zp2 )∗

And so, a and b are not adjacent in Γw(Zp2 ).

Case-2: No two vertices of V2 are adjacent.
For if a, b ∈ V2 then a and b are zero divisors of Z∗

p2 which implies ab = 0 and so ab /∈ N(Zp2 )∗. Showing
that a and b are not adjacent in Γw(Zp2 ).

Case-3: Elements of V1 are adjacent with elements of V2.
Let a ∈ V1 and b ∈ V2 then a /∈ N(Zp2 )∗ and b ∈ N(Zp2 )∗.
⇒ a /∈ pZ and b ∈ pZ. But, ab ∈ pZ
⇒ ab ∈ N(Zp2 )∗

So, a and b are adjacent in Γw(Zp2 ).
Hence, Γw(Zp2 ) is bipartite. �

Proposition 2.7. Let S be a commutative semiring with unity and |N(S)| ≥ 3. Then gr(Γw(S)) ∈ {3, 4}.
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Proof. Let S be a commutative semiring with unity and |N(S)| ≥ 3. Assume that x, y ∈ N(S)∗ and
x2 = 0 then 1 is adjacent to x and y. Again we know that 1 + x is a unit element. Now x(1 + x) =
x + x2 = x + 0 = x ∈ N(S)∗ and y(1 + x) = y + yx = y + 0 = y ∈ N(S)∗ [Since, x and y are zero divisor].
Therefore, 1 + x is adjacent to both x and y. So, 1 — x — 1 + x — y — 1 forms a 4-cycle in Γw(S).
Which yields gr(Γw(S)) ∈ {3, 4}. �

Proposition 2.8. Let S be a commutative semiring with unity. If Γw(S) is a forest, then the following
holds:
(i) |N(S)| ≤ 2.
(ii) If |N(S)| = 1, then Γw(S) is a totally disconnected.
(iii) If |N(S)| = 2, then Γw(S) is a union of star and some isolated vertices.

Proof. Let S be a commutative semiring with unity.
(i) If |N(S)| ≥ 3 then from above Proposition 2.7 gr(Γw(S)) ∈ {3, 4}, which is a contradiction. Therefore
|N(S)| ≤ 2.

(ii) If |N(S)| = 1, then S is a reduced semiring and by Proposition 2.1 Γw(S) is totally disconnected.

(iii) Let |N(S)| = 2, then |N(S)∗| = 1 and say x ∈ N(S)∗ hence x2 = 0. We note that every el-
ement of U(S) is adjacent to x. If x is adjacent to all the vertices, then Γw(S) is a star graph. If
every vertex that is not adjacent to x then x is an isolated vertex, then we are done. Therefore we
can assume that there exist y ∈ V (Γw(S)) such that d(y) = 1 and y is not adjacent to x. Since x is
not adjacent to y and xy ∈ N(S). So, xy = 0. Assume that y is adjacent to a. Then, ya = x. Now,
y(a + x) = ya + yx = x + 0 = x ∈ N(S)∗. Therefore, y is adjacent to a + x, a contradiction. This implies
that if d(y) = 1 then x is adjacent to y. Since Γw(S) is a forest. So, Γw(S) is a union of a star graph
(with centre x) and some isolated vertex. �

Proposition 2.9. If S is an Artinian semiring, then the following holds:
(i) If Γw(S) is totally disconnected, then S = Πn

i=1Fi, where Fi is a semifield, for 1 ≤ i ≤ n.
(ii) Γw(S) is a forest if and only if S is isomorphic to one of the semiring Z4, Z2(x)/(x2) and πn

i=1Fi is
a semifield, for i = 1, ...., n.
(iii) Γw(S) is not a disjoint union of cycles or a unicyclic graph.

Proof. Since, S is an Artinian semiring. So, S ∼= Πn
i=1Si, where (Si, Mi) is a local semiring and every Mi

is nilpotent. Let ei be the 1 × n vector whose i-th component is 1 and other component are 0.
(i) Since

∑n
i=1 ei is adjacent to every non-zero element of Πn

i=1Mi. But, Γw(S) is a totally disconnected
graph. So, Πn

i=1Mi = 0. This implies that every Si is a semifield and so S = Πn
i=1Fi. This complete the

proof.

(ii) Let us assume that Γw(S) is a forest. Then we have the following two cases:

Case-1: n ≥ 2. If M1, M2 6= 0, then we have e1 + e2 — a1e1 — e1 + a2e2 — a1e1 + e2 — a2e2 —
e1 + e2, for ai ∈ M∗

i and i = 1, 2, a contradiction. Therefore, we can assume that S2 is a semifield.
Similarly, we can assume that S2, ......, Sn are semifield. If |M1| ≥ 3, then let {a, b} ⊆ M1. Since, 1 + a
is a unit element of S1, we conclude that (1 + a)e1 — ae1 — e1 + e2 — be1 — (1 + a)e1 is 4-cycle, a
contradiction. Therefore, |M1| ≤ 2. If |M | = 2, then S1

∼= Z4, Z2(x)/(x2). Therefore S ∼= Z4 × Πn
i=1Fi

or S ∼= Z2(x)/(x2) × Πn
i=2Fi. If S ∼= Z4 × Πn

i=1Fi, then e1 — 2e1 — 3e1 — 2e1 + e2 — e1 is a 4-cycle, a
contradiction. Thus, |M | = 1 and so S1 is a semifield. Hence, S ∼= πn

i=1Fi.

Case-2: If n = 1. Since every element of U(S) is adjacent to each element of N(S)∗, we conclude
that |N(S)∗| = 0, 1 and M = N(S)∗. Therefore, M = 0 or |M | = 2. If M = 0, then S is a semifield and
if |M | = 2 then S ∼= Z4, Z2(x)/(x2). Conversely, assume that S ∼= Z4, Z2(x)/(x2), then Γw(S) = K1,2. If
S ∼= Πn

i=1Fi, then by proposition 2.1 Γw(S) is totally disconnected. This complete the proof.



On the Weakly Nilpotent Graph of a Commutative Semiring 7

(iii) To the contrary, let us assume that Γw(S) is a disjoint union of cycle or a unicyclic graph. Then, we
have the following two cases:

Case-1: If n ≥ 2 and S1 is a semifield then e1 is an isolated vertex, a contradiction. Therefore, S1

is not a semifield. Similarly, Si is not a semifield for i = 1, ......, n. Since, M1 6= 0 and |U(S)1| ≥ 2. Let
{1, u} ⊆ U(S1), a 6= 0 ∈ M1 and b 6= 0 ∈ M2. Then e1 — ae1 + e2 — ae1 + be2 — e1 and ue1 — ae1 + e2

— ae1 + be2 — ue1 are two cycles, a contradiction.

Case-2: If n = 1. Then (S, M) is an Artinian local semiring and M = N(S). We note that every
element of U(S) is adjacent to each element of M∗. This implies that |M∗| 6 1. Otherwise, if a, b ∈ M∗,
then 1 — a — 1 + a — b —1 and 1 — a — 1 + b — b — 1 are two cycles of Γw(S), a contradiction.
Now, since |M∗| 6 1. So, we can conclude that S ∼= Z2, Z4, Z2(x)/(x2). It is easy to see that Γw(Z2) is
an isolated vertex and Γw(Z4) = Γw(Z2(x)/(x2)) = K1,2, a contradiction. �

Proposition 2.10. Let S be a commutative semiring with unity and S = Πn
i=1Si, then the following

holds:
(i) ω(Γw(S)) ≥ Πn

i=1ω(Γw(Si)).
(ii) Let χ(Γw(S)) = χ and χ(Γw(Si)) = χi for every i, 1 6 i 6 n. If χi is finite for every i, 1 6 i 6 n
then χ 6

∑
J∈P Πi∈Jχi, where P is the set of all subset of {1, ......, n}.

Proof. Let S be a commuative semiring with unity.
(i) Let Ci be the clique in Γw(Si) for 1 ≤ i ≤ n. It is easy to see that C = {(a1, ....., an) | ai ∈ Ci, 1 ≤ i ≤ n}
is a clique in Γw(S). This complete the proof.

(ii) We first assume that n = 2 and (x, y) ∈ S. If x, y 6= 0, then we define f((x, y)) = (χ1(x), χ2(y)).
If x = 0 and y 6= 0 then let f((x, y)) = (0, χ2(y)). Otherwise, since (x, y) 6= 0, we conclude that x 6= 0
and y = 0. In this case, suppose that f((x, y)) = (χ1(x), 0). Obviously, f is a proper vertex coloring
for S∗. Hence, χ ≤ χ1 + χ2 + χ1χ2. Now, assume that n ≥ 3. By induction we can easily prove that
χ ≤

∑
J∈P Πi∈J χi, where P is the set of all subset of {1, ......., n}. �

Proposition 2.11. Let (R, M) be a local semiring and M 6= 0. Then the following holds:
(i) If M2 = 0, then ω(Γw(S)) = 2.
(ii) If S is a finite semiring, then χ(Γw(S)) ≤ |M |.

Proof. Let S be a commutative semiring with unity and M is a unique maximal ideal.
(i) Assume that x 6= 0 ∈ M. So, x is a nilpotent element of S and 1 is adjacent to x. Which yields
ω(Γw(S)) ≥ 2 .......(1).
If C is a clique for Γw(S) with maximal cardinal then C has at most one unit element. Since, each unit
element is adjacent to every element of N(S)∗. Hence, |C ∩ U(S)| ≤ 1. On the other hand M∗ = 0. So,
|C ∩ M | ≤ 1. Thus, |C| ≤ 2 ........(2)
Now (1) and (2) implies ω(Γw(S)) = 2.

(ii) we assume that M∗ = {x1, ........, x|M|−1}. We define f(xi) = i, for every i, 1 ≤ i ≤ |M | − 1
and f(u) = |M | for every u ∈ U(S). Clearly, f is a proper vertex coloring for V (Γw(S)). Therefore,
χ(Γw(S)) ≤ |M |. �

3. The structure and properties of the complement of the weakly nilpotent graph of a

commutative semiring

As we mention in the introduction, the complement of the weakly nilpotent graph Γw(S) is a graph
with the vertex set S∗ and two distinct vertices x and y in S∗ are adjacent if and only if xy /∈ N(S)∗.

Example 3.1. In the commutative semiring Zn. If n being prime or square free integer, then the
nontrivial nilpotent is φ, so Γw(Zn) is complete graph.
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Example 3.2. In the commutative semiring Z8, N(S)∗ = {2, 4, 6}. So, the graph Γw(Z8) is as follows:

Figure 5: Γw(Z8)

From the statement of Proposition 2.1, we have the following remark:

Remark 3.3. For a commutative semiring S with unity, the graph Γw(S) is complete if and only if S is
a reduced semiring.

Proposition 3.1. If S is a Artinian semiring. Then the following holds:
(i) If S is a local semiring, then Γw(S) is connected if and only if S is a semifield.
(ii) If S is a non-local semiring, then diam(Γw(S)) ≤ 4.

Proof. (i) One side is clear. For other side assume that (S, M) is a local semiring and Γw(S) is connected.
If M 6= 0, then there is not any path between a and u for every a ∈ M∗ and u ∈ U(S). Since, au ∈ N(S)∗.
This yield Γw(S) is disconnected, a contradiction. Therefore S is a semifield.

(ii) We know that S ∼= Πn
i=1Si, where n ≥ 1 and (Si, Mi) is a local semiring for every i, 1 ≤ i ≤ n.

Let ei be the 1 × n vector whose i-th component is 1 and other component are 0. Let a =
∑n

i=1 aiei,
b =

∑n
i=1 biei ∈ S∗. Then, we have the following three cases:

Case-1: If a, b ∈ U(S). Then a is adjacent to b. Since ab /∈ U(S)∗. Therefore, diam(Γw(S)) = 1.

Case-2: If a ∈ U(S), b /∈ U(S) and bi ∈ Mi for every i, 1 ≤ i ≤ n then bj 6= 0 for every j, 1 ≤ j ≤ n.

Suppose that r is the least positive integer such that br
j = 0. Hence a — b

(r−1)
j ajej — b is a path. If

bj ∈ U(S), for some j, 1 ≤ j ≤ n then a is adjacent to b. Therefore diam(Γw(S)) ≤ 2.

Case-3: a, b /∈ U(S). Let I = {i | 1 ≤ i ≤ n, ai ∈ U(Si)} and J = {i | 1 ≤ i ≤ n, bi ∈ U(Si)}. If
I ∩J 6= φ, then let t ∈ I ∩J . It is easy to see that a and b are adjacent to et. Now, assume that I ∩J = φ,
then we have the path a —

∑
i∈I ei —

∑n
i=1 ei —

∑
i∈J ei — b. Therefore, diam(Γw(S)) ≤ 4. �

Proposition 3.2. Let S be a commutative semiring with unity. Then the following holds:
(i) ω(Γw(S)) ≥ |U(S)|.
(ii) ω(Γw(S)) = |U(S)| if and only if S is a local semiring with maximal ideal N(S).

Proof. (i) If |U(S)| = 1, then it is clear that ω(Γw(S)) ≥ |U(S)|. Now let us assume that u, v ∈ U(S)
implies uv /∈ N(S)∗, which yields u and v are adjacent in Γw(S) and so ω(Γw(S)) ≥ |U(S)|.

(ii) First, suppose that S is a local semiring with maximal ideal N(S). If C is a clique of Γw(S) and
|C| = ω(Γw(S)), then C ⊆ U(S) or C ⊆ N(S), otherwise u is adjacent to x for some u ∈ U(S) and
x ∈ N(S) which is impossible. Since, ux ∈ N(S)∗. Again we know that 1 + N(S) ⊆ U(S) implies
|N(S)| 6 |U(S)| and so ω(Γw(S)) = |U(S)|.
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Conversely suppose that ω(Γw(S)) = |U(S)|. Since U(S) is a clique of Γw(S) and ω(Γw(S)) = |U(S)|.
u is not adjacent to x for every u ∈ U(S) and x ∈ S \ U(S). This yields that x is a nilpotent element.
Therefore, S \ U(S) = N(S). Thus, N(S) is a maximal ideal. This show that S is a local semiring with
maximal ideal N(S). �

Proposition 3.3. If S is a commutative semiring, then gr(Γw(S)) ∈ {3, ∞}

Proof. Assume that x1 — x2 — ......... — xn — x1 is a cycle and n ≥ 4. If |U(S)| ≥ 3 then by Proposition
3.2 gr(Γw(S)) = 3. Therefore, we can assume that |U(S)| ≤ 2. Then, there are two cases:

Case-1: If |U(S)| = 2. Let 1, u ∈ U(S). If x 6= 0 ∈ S \ (N(S)
⋃

{1, u}) then 1 — u — x — 1 forms
3-cycles in Γw(S). Since, 1.u = u, u.x = ux, x.1 = x ∈ N(S)∗ and so gr(Γw(S)) = 3. If S \ N(S) = {1, u}
then N(S) is a maximal ideal of S. This implies S is a local semiring with maximal ideal N(S). Since
1 + N(S) ⊆ U(S). |N(S)| 6 2. If |N(S)| = 1 then S ∼= Z2,Z3 and Γw(S) = K1 and K2 respectively, a
contradiction. If |N(S)| = 2 then S ∼= Z4,Z2(x)/(x2) and Γw(S) = K3, a contradiction.

Case-2: If |U(S)| = 1. We know that 1 + N(S) ⊆ U(S). So, S is a reduced semiring. This implies
1 is adjacent to x1 and x2. Now, x1 — x2 — 1 — x1 is a 3-cycle. This completes the proof. �

Proposition 3.4. Let S be a commutative semiring with unity. Then Γw(S) is a cycle if and only if S
is a semifield of order 4 or S ∼= Z2 × Z2.

Proof. Clearly, if S is a semifield of order 4 or S ∼= Z2 × Z2, then Γw(S) is a cycle.
Conversely, assume that Γw(S) is a cycle. Then by Proposition 3.3, Γw(S) is a 3-cycle. This implies that
|S| = 4. If S is a local semiring, then S is a semifield or S ∼= Z4, Z2(x)/(x2). Obviously, gr(Γw(Z4) =
gr(Γw(Z2(x)/(x2)) = ∞. Therefore, S is a semifield of order 4. Now, suppose that S ia a non-local
semiring. Then Γw(S) is a 3-cycle, and so |S| = 4. Hence S ∼= Z2 × Z2, as desired. �
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