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abstract: In this paper, we introduce the concept of bornological topological continuous in bornologi-
cal topological space and study some its properties. Also we define bornological topological open function,
bornological topological closed function and bornological topological homeomorphism function and investigate
some new properties of them. Finally some separation axioms have been studied in bornological topological
space like B − τ0, B − τ1, B − τ2, B − τ3, B − τ4 and the relationships among them.
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1. Introduction

Modern analysis is developed by the setting of functional analysis is done on various topological
structres, all these spaces are spacial cases of uniform spaces, one of these spaces by use bornological
structre to define a topological spaces. In 1977, Hogbe-Nlend[7] introduced the concepts of bornology
on a set. Noiri.[8] in 1984 foundα-continuous functions. In 1999[7] Balasubramanian, used fuzzy set to
detrmined fuzzy β-open sets and fuzzy β-separation axioms. In 1995, Dierolf and Domanski [6] studied
various bornological properties and Bornological Space Of Null Sequences. Barreira and Almeida[5] in
2002 introduced Hausdorff Dimension in Convex Bornological Space. Since that time, several methods
for constructing new bornologies like forming products, subspace and quotient bornologies like that which
were presented in 2007[2] by Al-Deen and Al-Shaibani, The space of entire functions over the complex
field C was introduced by Patwardhan who defined a metric on this space by introducing a real-valued
map on. In 2018 Al-Basri [8] found the relationship between the sequentially bornological continuous map
in bornological vector spaces (bvs) and sequentially bornological compact spaces have been investigated
and studied as well as between them and bornological complete space in 2018 [8]. In this paper we study
bornological topology spaces, intrduce B-open set and B -closed set and some concepts have been defined
depending on bornivorous set. The bornivorous set is the subset N of a bornonological vector space E if
it absorbs every bounded subset of E. So that many researchers investigated new properties like,B -base,
B -sub base, B -closures set,B - interior set, B -subspace. this paper contains 6 sections, introducation of
this paper in section 1, section 2 contains some basic concepts of bornological space, section 3 we introduce
the concept of bornolological topology continuous (written B-topology continuous), bornological topology
space and bornological topology open (written B-topology open), bornological topology closed (written
B-topology closed). section 3 we define bornological topology homeomorphism (written B - topology
homeomorphism), some new properties of, bornological topology open, bornological topology closed and
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bornological topology homeomorphism have been investigated in bornological topology space. section 5
some separation axioms have been studied in bornological topological space like B − τ0, B − τ1, B − τ2,
B − τ3, B − τ4 and the relationships among them we prove some bornological topological separation
axioms, section 6 is conclusion of this paper

2. Preliminaries

Definition 2.1 (7). Let X be a non-empty set. Family B of subsets of is called bornology on X if satisfy
the following axioms:
(1) X = ∪β∈BB; that is B is a covering of X.
(2) If N ⊂ M and M ∈ B, then N ∈ B ; that is B is hereditary under inclusion.
(3) M is stable under finite union. A pair (X, B) consisting of a set X and B bornology on X is called
a Bornological space, and an elements in M is called bounded subsets of X.

Definition 2.2 (7). Let (X, B) be a bornonological space, a subset N of M is called bornological open
(for brief B-open) set, if the set N −{a} is bornivorous for every a ∈ N , .The complement of bornological
open set is called bornological closed (for brief B -closed) set.

Proposition 2.3. [3] Let (X, B) be a bornonological space. Then
(1) A finite intersection of B− open sets is B -open set.
(2) Union of B-open sets is B -open set.

Remark 2.4 (7). As a consequence of the (proposition 1.3 ), family τ of all bornological open (B −open)
sets on X is topological space, (B, τ) is called bornological topological space.

Definition 2.5 (7). Let (B, τ) be a bornological topological space. A collection U of subsets of B is said
to be bornological base denoted by(B − base) for B-topology τ if
(1) U ⊂ τ .
(2) For any point a ∈ X and each B -open set N of a there exist some M ∈ U such that a ∈ M ⊂ N .

Definition 2.6 (3). Let (B, τ) be a bornolobical topological spcce and N ⊂ E the intersection of all
B-closed subsets of E containing N is called bornological closure set (B-closure set) denoted B − N .

Definition 2.7 (3). Let (B, τ) be a bornological topological space and N ⊂ M . A point x ∈ X is said to
be bornological interior point of N if there exists B -open set N1 such that x ∈ N1 ⊂ N . The set of all
bornological interior points of A is called bornological interior of A and denoted by B − int(A).

Definition 2.8 (3). Let (B, τ) be a bornological topological space and Y ⊂ E such that Y is bornivorous
set. A pair (Y, τY ) is called bornological subspace of (B, τ).

Definition 2.9. Let (τ1, B) and (τ2, B) be two bornological topologies space. We say that τ1 is B-coarser
than τ2 if τ1 ⊂ τ2; that is every B − open set in τ1is B -open set in τ2.

3. Barnological Topological Continuous

we start this section by concept of bornological topology continuous, with some result concerning
them.

Definition 3.1. Let (E, τ1) and (F, τ 2) be B-topology spaces. A function f :E −→ F is said to be
bornological topology continuous (BτC) at x0 ∈ E iff every B-open M in F containing f(x0) there exists
B -open set N in E containing x0 such that f(N) ⊂ M . f is said to be B -topology continuous if and
only if it is B -topology continuous for each point of E.

Proposition 3.2. Let E and F are B -topological spaces. A function f :E −→ F is (BτC) if and only
if the inverse image under fof every B -open set in F is B -open in E.
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Proof. suppose that f is (BτC) and let M be any B -open set in F to prove f−1(M) is B-open inE. If
f−1(M) = φ, there is nothing to prove. So let f−1(M) 6= φ and let x ∈ f−1(M), then f(x) ∈ M . By
B -topology continuous of f there exists a B -open set N in E such that x ∈ N and f(N) ⊂ M that is
x ∈ N ⊂ f−1(M) this shows that f−1(M) is B -open E.
Conversely, suppose f−1(M) be B -open in E for every B-open set M in F . To prove f is (BτC) at
x ∈ E. Let M be any B -open set in F such that f(x) ∈ M so that x ∈ f−1(M). Since f−1(M) is B
-open in E. If f−1(M) = N , then N is a B -open set in E containing x such that f(N) ⊂ f(f−1(M))
Hence f is (BτC) �

Corollary 3.3. Let E and F be B -topology spaces. A function f :E −→ F is (BτC) if and only if the
inverse image under f of B -closed set in F is B -closed in E.

Proof. Let f is B -topology continuous and let F1 be any B -closed in F . To prove that f−1(F1) is
B-closed in E, Since f is (BτC) and (f−1(F1))c is B-open in F , that is f−1(F c

1 ) = (f−1(F1))c is B -open
in E, f−1(F1) is B -closed in E. �

Proposition 3.4. Let E and F be B -topology spaces. Then a function f :E −→ F is (BτC) if and only
if the inverse image under f of every member of a B -subbase for F is B -open in E.

Proof. Let f be (BτC) and M∗ a B-subbase for E. Since each member of M∗ is B -open in F , f−1(D)
is B -open in E for every D ⊂ M∗, and let Di be any B -open set in F . Let M be the family of all finite
intersections of members M∗ so that M is a B -base for F . If M1 −→ M , then there exists D1, D2, ...,
Dn(n finite) in M∗ such that M1 = D1 ∩D2 ∩ ...∩Dn. Then f−1(M1) = f−1(D1)∩f−1(D2 ∩ ...∩f−1(Dn)
by given each f−1(Di), i = 1, ..., n is B-open in E. There for f−1(M1) is also B open in M is a B-open for
E, D1 = ∪M1:M1 ∈ M∗ ⊂ M . Then f−1(D1) = f−1{(∪(M1):M1 ∈ ∪M∗ ⊂ M} = ∪{f−1(M1):M1 ∈ M}
which is B-open in E since each f−1(M1) is B -open in E (as shown above). Thus f−1(D1) is B-open
in E for every B -open set D1 in F and there for f is B -topology continuous.
Conversely, let f−1(F1) be B-closed in E for every B -closed set F1 in F . We want to prove that f is a B
-topology continuous function, let M be any B -open set in F . Then M c is B -closed in F and f−1(M c)
= (f−1(M))c is B -closed in E, that is f−1(M) is B -open in E. Hence f is (BτC) .

�

Proposition 3.5. Let E and F are B -topological spaces. Then a function f :E −→ F is (BτC) if and
only if the inverse image of every member of a B -base for F is B -open in E.

Proof. Let f be (BτC) and M1 any member of B -base M for F , since M1 is B -open in F , f−1(M1) is
B - open in E.
Conversely, let f−1(M1) be B -open in E by for every M1 ∈ B, and let M2 be any B-open set in F . Then
M2 is a union of members of M that is M2 = ∪(M :M ∈ U ⊂ B) therefore f−1(M2) = f−1(∪M :M ∈ U)
which is B -open in E since each f−1(M1) is B-open in E by given. He is (BτC). �

Proposition 3.6. A function f from a B -topological space E into B -topological space F is (BτC) if
and only if f(B − N) ⊂ (B − f(N)) for every N ⊂ E.

Proof. Let f be (BτC), since B − f(N) is B-closed in Y , f−1(B − f(N)) is B-closed in E and B −

(f−1(f(N))) = f−1(B − f(N)) .....(1)

since f(N) ⊂ (B −f(N)), N ⊂ f−1(f(N) ⊂ f−1(B − {f(N)}). Then (B −N) ⊂ (B − (f−1(B − (f(N)))

= B − f
−1

by (1), that is f(B − N) ⊂ (B − (f(N))).
Conversely, let f(B − N) ⊂ B − f(N) for every N ⊂ E. Let F1 be any B-closed set in F so that
B −F1 = F1. f−1(F ) is a subset of E, f(B −f−1(F1) ⊂ B −F1 = F1,so that B −f−1(f1) ⊂ f−1(F1).But
f−1(F1) ⊂ (B −f−1(F1)) always. Hence B − ¯f−1(F1) = f−1(F1) and so f−1(F1) is B-closed in E. Hence
f is (BτC). �
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Proposition 3.7. A function f of a B-topological space E into B-topology space F is (BτC) if and only
if B − f−1(N) ⊂ f−1(B − N)for ever N ⊂ F .

Proof. Let f be B-topological continuous. Since B − N is B -closed in F , f−1(B − N) is B -closed inE
and therefore B − f−1(B − N)) = f−1(B − N).....(1)

Now N ⊂ B − N, f−1(N) ⊂ (B − f−1(B − N) = f−1(B − N) .
Conversely, let the condition hold and let F1 be any B -closed set in F so that (F1) = F1. By given
B − f−1(F1) ⊂ f−1(F1) but f−1(F1) ⊂ B − (f−1(F1) always. Hence B − (f−1(F1) = f−1(F1) and so
f−1(F1) is B-closed in E, thatf is (BτC). �

Proposition 3.8. A function f of a B -topology space E into another B-topology space F is (BτC) if
and only if B − int(f−1) ⊃ f−1(B − int(M)) for every M ⊂ F .

Proof. Let f be (BτC), B − int(M) is B-open in F, f−1(B − int(M)) is B -open in E B − int(f−1(B −
int(M))) = f−1(B − int(M)))......(1)
Now M ⊃ B − int(M),then f−1(M) ⊃ f−1(B − int(M)). Thus B − int(f−1(M)) ⊃ B − int(f−1(B −
int(M)))) = f−1(B − int(M)) by (1).
Conversely, let the condition hold and let N be any B -open set in F so that B − int(N) = N . By
given B − int(A)) ⊃ f−1(B − int(M)) = f−1(N) but f−1(N) ⊃ B − int(f−1)(N)) always and so
B − int(f−1(N)) = f−1(N). Therefore f−1(N) is B-open in E and consequently f is (BτC) �

Proposition 3.9. Let E, F, H be B -topological spaces and the functions f :E −→ F and g:F −→ H be
(BτC) then the composition function g ◦ f :E −→ H is (BτC).

Proof. Let A be any B -open set in H . Since g is B -topology continuous g−1(N) is B -open set in F .
Since f is (BτC), f−1(g−1(N)) is B-open in E, f−1(g−1(N)) = (f−1 ◦ g−1)(N) = (g ◦ f)−1(N). Thus
the inverse image under g ◦ f of every B-open set in H is B-open in E and therefore g ◦ f is B-topology
continuous. �

Proposition 3.10. Let E and F are B topology spaces and N non-empty subset of E. If f :E −→ F is
(BτC) then the restriction fN of f to N is (BτC).

Proof. Since fN :N −→ F is defined by fN(x) = f(x) for every x ∈ N . Let N1 be any B -open subset of

F . Then fN it is evident that f−1
N (N1) = N ∩ f−1(N1). Since f is B -topology continuous f−1(N1) is

B-open in E. Hence ∩f−1(N1) is B-open in N . It follows fN is a (BτC). �

Proposition 3.11. Let τ i be an arbitrary collection of B -topologies on a set E and (F, V ) any other B-
topology space. If the function f : E −→ F is (BτC) for all i = 1, . . . , n, then f is B -topology continuous
with respect to the intersection B -topologies τ ∩ τi.

Proof. Let N be any B-open set in F . Since f is (BτC), f−1(N) ∈ τ i for all i = 1, ..., n. This implies
that f−1(N) ∈ ∩τ i = τ , the inverse image of every B-open set under f is B-open in E with respect to τ .
Hence f is (BτC) �

4. Bornolopical Topological Homeomorphism

We define bornological topology open function, bornological topology closed function in this section
and we define bornological topology homeomorphism function and investigate some properties on them.

Definition 4.1. Let (E, τ1) and (F, τ 2) be B -topology spaces, and let f be a function of E into F . Then
(i) f is said to be a B-topology open and denoted by (BτO) if f(N) is B -open in Fwhen ever N is B
-open in E.
(2) f is said to be B- topology closed iff and denoted by (BτD), f(H) is B -closed in Fwhen ever H is
B -closed in E.
(3) f is said to be B- topology homeomorphism and denoted by (BτH) iff:
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(i) f is one-one and onto.
(ii) f is B - topology continuous.
(iii) f−1 is B- topology continuous.

Example 4.2. Let τ1 and τ2 be two B-topological spaces on E and τ2 be B-finer than τ1. If τ1 is a
B − τ0 then τ2 is B − τ0.

Proposition 4.3. Let (E, τ1) and (F, τ 2) be B-topology spaces. f be an one-one and onto function of E
to F . Then the following statements are equivalent:
(1) f is (BτH) .
(2) f is (BτC) and (BτO) .
(3) f is a B- topological continuous and B- topological closed.

Proof. (1)=⇒(2): assume (1), let g be the inverse function of f so that f−1 = g and g−1 = f . Since f
is one-to-one and onto, g is also one-to-one and onto. Let N be a B -open set in E. Since gis (BτC),
g−1(N) is B-open in F . But g−1 = f so that g−1(N) = f(N) is B-open in F . It follows that f is a B -
topology open function. Also f is (BτC) by given. Hence (1) =⇒ (2).
It’s clear that (2) =⇒ (3). Now assume (3) to prove that g = f−1 is (BτC). Let N be any B- open
set in E. then E − A is B-closed since f is a (BτD) function f(E − N) = g−1(E − N) = F − g−1(N)
is B -closed in F , that is g−1(N) is B-open in F . Thus inverse image under gf every B-open set in E is
B-open set in F . hence g = f−1 is(BτC) and so (3) =⇒ (1). �

Proposition 4.4. Let (E, τ1) and (F, τ 2) two B- topological spaces. Then a function f :E −→ F is
(BτO) if and only if f(B − int(N)) ⊂ B − int(f(N)) for every N ⊂ E.

Proof. Let f be (BτO) and let N ⊂ E. We know that B − int(N) is B-open set in E. since f is a (BτO)
function, f(B − int(N)) is B-open in F . Since B − int(N) ⊂ N , we have f(B − int(N)) ⊂ f(N). since
f(B − int(N)) is a B -open in F we have B − int(f(B − int(N))) = f(B − int(N)).....(1)
Also f(B − int(N)) ⊂ f(N) =⇒ B − int(f(b − int(N))) ⊂ B − int(f(N)). . . ......(2)
From (1) and (2), we have f(B − int(N)) ⊂ B − int(f(N)).
Conversely, let f(B − int(N)) ⊂ B − int(f(N)) for all N ⊂ E and let N1 be any B-open set in E, so that
B − int(N1) = N1. Then f(N1) = f(B − int(N1)) ⊂ B − int(f(N1)) (by given). But B − int(f(N1)) ⊂
f(N1). Hence f(N1) = B − int(f(N1)). Therefore f(N1) is B-open set in F . �

Proposition 4.5. Let (E, τ1) and (F, τ2) be B- topology spaces. A function f :E −→ F is (BτO) if and
only if B − f(N)) ⊂ f(B − N) for every N ⊂ E

Proof. Let f be (BτO) and let N ⊂ E. Since B − N is B -closed set in E and f is a (BτD) function, if
follows that f(B − N) is B-closed set in F and B − (f(B − N) = f(B − N)).........(1)
N ⊂ N , f(N) ⊂ f(B − N) Also, f(N) ⊂ f(B − N), (B − f(N) ⊂ B − (f(B − N)) ⊂ B − ((f(B − N)).
Hence f is a B - topology closed function. �

Proposition 4.6. Let (E, τ1) and (F, τ2) be two B- topology spaces. A function f :E −→ F be one- one
and onto. Then f is a B- topology homeomorphism if and only if f(B − N̄) = (B − ¯f(N)) for every
N ⊂ E.

Proof. Let f be (BτH). Then f is one-one, onto, f is a (BτC) and f is a (BτD). Let N be any subset
of E. Then f(B − N̄) ⊂ B − ( ¯f(N))) by (Proposition 2.8), N ⊂ B − N̄ , f(N) ⊂ (B − N̄), then
B − ¯f(N) ⊂ M̄ − ¯f(B − N).......(2)
Since f is B- topology closed and N is B -closed in E, therefore f(B − A) is B-closed in F . hence
B − (f(B − N)) = (f(B − Ā)).........(2)
from (2) and (3) we have B − (f(N)) ⊂ f(B − N)......... (4)
Hence from (1) and (4), we have f(B − N) = B − f(N).
Conversely, let B − f(N) = B − (f(N)) for all N ⊂ E........(5)
Then f(B − N) ⊂ B − (f(N)) so that f is (BτC). Now let M be any B -closed set in E. so that
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B − M̄ = M . Therefore f(B − M) = f(M) then from (5), we get f(M) = B − (f(M)). It follows that
f(M) is B -closed set in F . Hence f is a (BτD) function. Thus it is shown that f is (BτC) as well as
B - topology closed. f is one-one and onto. Hence f is (BτH). �

Proposition 4.7. Let (E, τ1) and (F, τ 2) be two B- topological spaces. A function f :E −→ F be (BτO)
and onto. If M is a B-base for τ1 then f(N):N ∈ M is a B -base for τ2.

Proof. Let H be any B -open set in τ2 and let y be any arbitrary point of H . since f is onto, there
exists x ∈ E such that f(x) = y. Since M is a B -base for τ1, there exists a member of M containing
x. Let N∗ be the smallest member of M containing x. Then N∗ is the smallest B-open containing x.
Since f is B-open, f(N∗) is a B-open set in τ2. Also, x ∈ N∗ that is f(x) ∈ f(N∗). Since N∗ is the
smallest B-open in E containing x, f(N∗) is the smallest B-open set in F containing f(x). Now since H
is one of the B-open set in F containing y = f(x), we have y = f(x) ∈ f(N∗) ⊂ H . Hence the collection
{f(N):N ∈ M} is a B-base for τ2. �

Proposition 4.8. Let (E, τ1) and (F, τ2) be two B- topology spaces and let M be a B -base for τ1. If
the function f :E −→ F satisfy f(N) is B-open in F for every N ∈ M , then f is a (BτO) function.

Proof. Let G be any B-open in E. Since M is a B -base for τ1 we have G = ∪Nλ:Nλ ∈ M . Then
f(G) = f(∪Nλ ∈ M By hypothesis each f(Nλ) is M -open in F it follows that f(G) is B -open in F .
Hence f is a (BτO) function. �

Proposition 4.9. Let (E, τ1) and (F, τ2) be two B -topology spaces and let f :E −→ F be a (BτH). Let
N ∈ E and let M ⊂ F such that f(N) = M then the function fN : (N, τ1N ) −→ (M, τ2M ) is also a
(BτH) where fN denoted the restriction of f to N where τ1N and τ2M are the relative B- topologies.

Proof. Since f is one-to-one and fN is also one-to-one and f(N) = M we have fN(N) = M so that
fN is onto also. We now show that fN is (BτO) and (BτC) Let H be any B -open in M . Then by
definition of relative B -topology, we have H = N ∩ G where G is B -open in E. Since f is one-one we
have f(N ∩ G) = f(N) ∩ f(G). Hence fN (H) = f(H) = f(N ∩ G) = f(N) ∩ f(G) = M ∩ f(G).......(1)
Since f is (BτO) and G is B-open in E, it follows that f(G) is B-open in F . Hence from (1) fA(H) is
B -open in M . It follows that fA is a (BτO) function. Also since the restriction of any (BτC) function
(BτC)fN is (BτC). Hence fN is a (BτH). �

5. Bornological Topological Separaeion Axioms

Definition 5.1. A B-topological space (E, τ ) is said to be a bornological topology (B − τ0) space if and
only if given any distinct pointsx, y there exist a B -open set N such that x ∈ N and y /∈ N or there
exists a B-open set M such that y ∈ M and x /∈ M . Here you can put your definition.

Example 5.2. Let τ1 and τ2 be two B-topology spaces on E and let τ2 be B-finer than tau1. If τ1 is a
B − τ0 space then τ2 is B − τ0 space.

Theorem 5.3. Every sub space of a B − τ0 space is a B − τ0 space.

Proof. Let (E, τ ) be a B − τ0 space and (Y, τy) be a sub space of (E, τ ). Let y1, y2 be two distinct points
of Y . Since Y ⊂ E, y1, y2 are also distinct points of E. Since (E, τ ) is aτ0 space, there exists a B -open
N in E of y1 and y2 /∈ N . Then N ∩ Y is a B-open set inY such that y1 ∈ (N ∩ Y ) and y2 /∈ (N ∩ Y ).
Hence (Y, τy) is a B − τ0 space. �

Theorem 5.4. A B-topology space (E, τ ) is a B − τ0 space if and only if for any distinct points x, y of
E, the B- closure of x and y are distinct.
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Proof. Let x /∈ y =⇒ B − (x) /∈ B − (y) where x, y are points of E. Since B − (x) /∈ B − (y), there
exists at least one point z of E which belongs to one of them, say B − (x), and does not belong to
B − (y). We claim that x /∈ B − (y) . Let x ∈ B − (y). Then B − (x) ⊆ B − (B − (y)) = B − (y),
and so z ∈ B − (x) ⊂ B − (y) which is a contradiction. Accordingly x /∈ B − (y) and consequently
x ∈ E − (B − (ȳ). Also since B − (ȳ) is B -closed, E − (B − (ȳ)) is B-open set. Hence E − (B − (ȳ)) is a
B -open set containing x and not containin y, then (E, τ ) is B − τ0 space.
Conversely, Let (E, τ ) be a B − τ0 space and let x, y be two distinct points of E. Then we have to
show that B − (x̄) = B − (ȳ). Since the space is B − τ0, there exists a B-open set N containing one
of them, suppose contining x, but not containing y. Then (E − N) is a B -closed set which does not
contain x but contains y. B − (ȳ) is the intersection of all B -closed sets containing y . It follows that
B − (ȳ) ⊂ (E − N). Hence x /∈ (E − N) implies that x /∈ B − (ȳ). Thus x ∈ B − (x̄), but x /∈ B − (ȳ).
It follows that B − (x̄) 6= B − (ȳ). Thus it is shown that in a B − τ0 space distinct points have distinct
closures. �

Definition 5.5. A B -topology space (E, τ ) is said to be a B − τ1 space if and only if given any pair of
distinct points x and y of E there exists two B -open sets N1 and N2 such that x ∈ N1 but y /∈ N1 and
y ∈ N2 but x /∈ N2.

Theorem 5.6. Every B-subspace of a B − τ1 space is a B − τ1 space.

Proof. Let (E, τ ) be a B − τ1 space and let (Y, τy) be a B-subspace of (E, τ ). Let y1, y2 be two distinct
points of Y . Since Y ⊂ E, y1, y2 are also distinct points ofY . Since (E, τ ) is a B − τ1 space, there exist
B-open sets N and M such that y1 ∈ N but y2 /∈ N and y2 ⊂ M but y1 /∈ M . Then N1 = N ∩ Y and
M1 = M ∩Y are B -open sets such that y1 ∈ N1 but y2 /∈ N1 and y2 ∈ M1 but y1 /∈ M1. We have (Y, τy)
is a B − τ1 space. �

Example 5.7. Every bornological topological space B -finer than a B − τ1 on any B-topology space E is
a B − τ1 space.

Definition 5.8. A B-topology space (E, τ ) is said to a be a B − τ2 space iff for every pair of distinct
points x, y of E there exists B-open N of xand M of y such that N ∩ M = φ

Example 5.9. Let (E, τ0) is a B − τ2 space, if τ1 be a B-topology space on E and B-finer than τ0 then
(E, τ1) is also B − τ2 space.

Proof. Let x, y be any two distinct points of E since (E, τ0) is a B − τ2 space, there exists B -open sets
in τ0, A0, A1 such that x ∈ A0, y ∈ A1 and A0 ∩ A1 = φ. Since τ1 is B-finer than τ0. Then A0, A1 are
also B-open sets in τ1 such that x ∈ A0, y ∈ A1 and A0 ∩ A1 = φ. Hence (E, τ1) is also B − τ2 space. .
�

Theorem 5.10. Every B-subspace of B − τ2 space is B − τ2 space.

Proof. Let (E, τ ) be a B−τ2 space and Y be a non-empty subset of E. Let x, y be two distinct points of Y
then x, y are also distinct points of E. Since E is Bτ2 space there exists disjoint B -open sets N, M in E of
x and y respectively. N ∩Y and M ∩Y are B-open sets in Y . Also x ∈ A and x ∈ Y then x ∈ N ∩Y and
y ∈ B and y ∈ Y . Then y ∈ M ∩Y and ∩M = φ, we have (Y ∩N)∩(Y ∩M) = Y ∩(N ∩M) = Y ∩φ = φ.
Thus, N ∩ Y and M ∩ Y are disjoint B-open set in Y of x and y respectively. Hence (Y, τy) is B − τ2

space. �

Theorem 5.11. Every B − τ2 space is a B − τ1 space.

Proof. Let (E, τ ) be a B −τ2 space and let x, y be any two distinct points of E. Since the space is B −τ2,
there exists a B -open set N of x and a B-open M of y such that N ∩ M = φ. Hence the space is B − τ1

space. �
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Theorem 5.12. Let (E, τ∗) be a B − τ2 space. Let f be a one-to-one, onto and (BτO) mapping from
(E, τ∗) to (F, τ ∗∗) then (F, τ∗∗) is B − τ2 space.

Proof. Let y1, y2 be two distinct points of F . f is one-to-one, on-to map, there exists distinct point
x1, x2 of E such that f(x1) = y1 and f(x2) = y2. (E, τ∗) is B − τ2 space, there exist B -open sets in E
N and M such that x1 ∈ N, x2 ∈ M and N ∩ M = φ. Now since f is a (B$τ$O), f(N) and f(M) are B
-open sets in F such that:
y1 = f(x1) ∈ f(N), y2 = f(x2) ∈ f(M) and f(N)∩f(M) = f(N ∩M) = f(φ) = φ (since f is one-to-one).
Then (F, τ ∗∗) is B − τ2 space. �

Theorem 5.13. Let (E, τ∗∗) be B-topology space and (F, τ ∗∗) be a B − tau2 space. If f :E −→ F be a
one-to-one and (BτC) then (F, τ ∗∗) is a B − τ2 space..

Proof. Let x1, x2 be any two distinct points of E. Since f is one-to-one, if x1 6= x2 then f(x1) 6=
f(x2). Let y1 = f(x1), y2 = f(x2) so that x1 = f−1(y1) and x2 = f−1(y2). Then y1, y2 ∈ F such
that y1 6= y2. Since (F, τ ∗∗) is a B − τ2 space there exists B -open sets in F , N and M such that
y1 inN and y2 ∈ M and N ∩ M = φ. Since f a (BτC). f−1(N) and f−1(M) are B -open sets
in E. f−1(N) ∩ f−1(M) = f−1(N ∩ M) = f−1(φ) = φ and y1 ∈ N, f−1(y1) ∈ f−1(N), that is
x1 ∈ f−1(N)y2 ∈ M, f−1(y2) ∈ f−1(M), x2 ∈ f−1(M). Thus for every pair of distinct points x1, x2 of E
there exist disjoint B -open sets if f−1(N) and f−1(M) such that x1 ∈ f−1(N) and x2 ∈ f−1(M), we
have (E, τ∗∗) is B − τ2 space. �

Theorem 5.14. Let (E, τ∗) be a B -topology space and let (F, τ ∗∗) be a −τ2 space. If f, g are B
-continuous function of E into F then N = {x ∈ E:f(x) = g(x)} is a B -closed subset of E.

Proof. E − N = x ∈ E : f(x) 6= g(x)..... (1)
Let y ∈ E−N then y1 = f(y), y2 = g(y). By (1) we have y1 6= y2. Thus, y1, y2 are two distinct points of F .
Since (F, τ ∗∗) is a B−τ2 space there exist B -open sets N, M in F such that y1 = f(y ∈ N, y2 = g(y) ∈ M
and N ∩ M = φ. Then y ∈ f−1(N), y ∈ g−1(M), so that y ∈ f−1(N) ∩ g−1(M) . Since f, g are B-
continuous functions, f−1(N) and f−1(M) are B- open sets in E and f ( − 1)(N) ∩ f ( − 1)(M) is a B-
open set in E containing y. Let 0 ∈ f−1(N) ∩ f−1(M). Then y0 ∈ f−1(N) and y0 ∈ f−1(M). We have
f(y0) ∈ N and f(y0) ∈ M.......(2)
Since N ∩ M = φ it follows from (2) that f(y0) /∈ g(y0) and so by (1), y0 ∈ E − N . Thus we have shown
that y0 ∈ f−1(N) ∩f−1(M), y0 ∈ E − N . Therefore f−1(N) ∩f−1(M) ⊂ E − N . Hence E − N contains
a B- open set of each of its points and so E − N is B -open set in E. It follows thatN is a B- closed
subset of E. �

Corollary 5.15. Let (E, τ ) be a B − τ2 space and let f be a B-continuous function of E into itself.
Then N = {x ∈ E:f(x) = x} is B- closed set of E.

Definition 5.16. A B-topological space (E, τ ) is said to be B − τ3 space if and only if for every B-closed
set F1 in E and every point a /∈ F1, there exists B- open sets N and M in E such that F1 ⊂ N , a ∈ M
and N ∩ M = φ.

Theorem 5.17. A B-topology space E is B − τ3 space if for every point x ∈ E and for all B- open set
N such that x ∈ N , there exists a B- open set M containing x such that B − M̄ ⊂ N .

Proof. Let N be any B- open set of x. Then there exists B- open set N1 such that x ∈ N1 ⊂ N , Since N c
1

is B - closed and x /∈ N c
1 . There exists B- open sets N2, M such that N c

1 ⊂ N2, x ∈ M and N2 ∩ M = φ
so that M ⊂ N c

2 , (B − M)M̄ ⊂ B − N̄ c
2 ........ (1)

N c
1 ⊂ N2, N c

2 ⊂ N1 ⊂ N....... (2)
From (1) and (2), we have B − M̄ ⊂ N .
Conversely, Let M be any B- closed set and let x /∈ M . Then x ∈ M c. M c is a B- open set containing
x by given there exists a B- open set N such that x ∈ N and B − N ⊂ M c, therefore M ⊂ (B − N)c.
Then (B − N)c is a B-open set containing M . Also N ∩ N c = φ, N ∩ (B − N̄ c

2 )c = φ. Hence E is B − τ3

space. �
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Theorem 5.18. Every B − τ3 space is a B − τ2 space.

Proof. Let (E, τ ) be a B − τ 3 space and x, y be two distinct points of E. Since x ∈ E then every B-
open set N containing x and y /∈ N there exists a B- open set M containing x such that B − M̄ ⊂ N
(Theorem (4-14)). Thus x ∈ B − M̄ and x ∈ N0 since (B − M̄) closed set containing x not y. Then
there exists B- open set N1, y ∈ N1 and N ∩ N1 = φ (E is B-τ3)space. Hence E is B − τ2 space �

Theorem 5.19. Let (E, τ∗) be a B − τ3 space if f{:}(E, τ∗) −→ (F, τ∗∗) be a B- homomorphism then
(F, τ∗∗) be a B − τ3 space.

Proof. Let M be a B-closed subset of F and let y be a point of F such that y ∈ M . Since f is a one-
one, on to function, there exists x ∈ E such that f(x) = y then f−1(y) = x. Since f is B- continuous
function f−1(M) is B- closed set in E. Also, y /∈ M , then f−1(y) /∈ f−1(M) that is x /∈ f−1(M). Thus
f−1(M) is a B - closed set in E and x is a point of E such that x /∈ f−1(M). (E, τ ) is B − τ3 space,
there exists B- open sets N1 and N2 such that x ∈ N1, f−1(M) ⊂ N2 and N1 ∩ N2 = φ. x ∈ N1. Then
f(x) ∈ f(N1) that is y ∈ f(N1), f−1(M) ⊂ N2 therefore f(f−1(M)) ⊂ f(N2), implies B ⊂ f(N2) and
N ∩ N2 = φ. f(N1 ∩ N2) = f(φ), f(N1) ∩ f(N2) = φ (since f is one-to- one).Also since f is a B- open
function, N3 = f(N1) and N4 = f(N2) are B- open sets in F . Thus there exists B- open sets N3 and N4

such that y ∈ N3, M ⊂ N4 = φ and N3 ∩ N4 = φ. Then (F, τ ∗∗) is also B − τ3 space. �

Theorem 5.20. Let (E, τ ) be a B −τ3 space and (Y, τY ) be a B-subspace of (E, τ ) then (Y, τY ) is B −τ3

space.

Proof. Let M be a B-closed subset of y and x be a point of Y such that x /∈ M . Then (B − B̄)Y =
(B − M̄E ∩ Y . Since M is B-closed set in Y , we have (B − M)Y = M , M = (B − M̄) ∩ Y.........(1)
Therefore x /∈ M , /∈ (B − {̄M})E ∩ Y that is x /∈ (B − M̄)E . Thus (B − M̄)E is a B-closed subset of E
such that x /∈ (B − M̄)E , Since (E, τ) is a B − τ3, there exists B- open set N1 and N2 such that x ∈ N1,
(B − M)E ⊂ N2 and N1 ∩ N2 = φ. Since x ∈ N1, x ∈ Y that is x ∈ N1 ∩ Y , (B − M)E ⊂ N2. Then
(B − M)E ∩ Y ⊂ N2 ∩ Y, M ⊂ N2 ∩ Y by (1). Also (N1 ∩ Y ) ∩ (N2 ∩ Y ) = (N1 ∩ N2) ∩ Y = φ ∩ Y = φ.
Thus (Y, τY ) is a B − τ3 space. �

Definition 5.21. A B-topology space (E, τ ) is said to be B − τ4 if and only if for every pair M1, M2 of
disjoint B-closed sets of E there exists B- open sets N1, N2 such that M1 ⊂ N1, M2 ⊂ N2 and N1∩N2 = φ.

Theorem 5.22. A B- topology space E is B − τ4 if and only if for any B-closed M and B-open set
N1 ⊃ M t here exists a B-open set N2 such that M ⊂ N2 and B − N2 ⊂ N1.

Proof. Let E be a B−τ4 space and M be B- closed set and N1 a B-open set such that M ⊂ N1. Then N c
1

is a B-closed set such that M ∩ N c
1 = φ. Thus, N c

1 and M are disjoint B- closed subset of E. Since the
space is B − τ4, there exists B-open sets N2 and N3 such that N c

1 ⊂ N2, M}subsetN3 and N1 ∩ N3 = φ
so that N3 ⊂ N c

2 . But N3 ⊂ N c
2 , B − N̄3 ⊂ B − (N c

2 ) = N c
2 (N c

2 is closed ) .......(1)
Also, N c

1 ⊂ N2, N c
2 ⊂ N1.......(2).

from (1)and (2), we get B − N3 ⊂ N1. Then there exists a B- open set N3 such that M ⊂ N3 and
B − N3 ⊂ N1.
Conversely, Let M1 and M2 be B-closed subsets of E such that M1 ∩ M2 = φ so that M1 ⊂ M c

2 . Thus
the B-closed set M1 is contained in the B-open set M c

2 . Then there exists a B-open set N1 such that
M1 ⊂ N1 and B − N1 ⊂ M c

2 which implies M2 ⊂ (B − N1)c.
Also, N1 ∩ (B − N1)c = φ. Thus N1 and (B − N1)c are two disjoint open set such that M1 ⊂ N1 and
M2 ⊂ (B − N1) Then the space is B − τ4. �

Theorem 5.23. Let (E, τ1) be a (B − τ4) space and f :(E, τ1) −→ (F, τ 2) is a B-homomorphism then
(F, τ2) is a B − τ4 space.
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Proof. Let M1, M2 be a disjoint B-closed subset of F . Since f is a B-continuous function f−1(M1)
and f−1(M2) are B-closed subset of E. f−1(M1) ∩ f−1(M2) = f−1(M1 ∩ M2) = f−1(φ) = φ. Thus
f−1(M1), f−1(M2) is a disjoint of B-closed subsets of E. Since the space (E, τ1) is B − τ4 space, there
exists B-open sets N1 and N2 of E such that f−1(M1) ⊂ N1, f−1(M2) subsetN2 and N1 ∩ N2 = φ. But
f−1(M1) ⊂ N1. Then f(f−1(M1) ⊂ f(N1), therefore M1 ⊂ f(N1) and we have M2 ⊂ f(N2). since f is a
B-open function, f(N1) and f(N2) are B -open subsets of F , such that f(N1) ∩ f(N2) = f(N1 ∩ N2) =
f(φ) = φ (since f is one-to-one). There exists B-open subsets N3 = f(N1) and N4 = f(N2) of F such
that M1 ⊂ N3, M2 ⊂ N4 and N3 ∩ N4 = φ. Then (F, τ 2) is also a B − τ4 space. �

Theorem 5.24. Every B − τ4 space is also a B − τ3 space.

Proof. Let (E, τ ) be a B − τ4 space and (Y, τy) any B-closed B-subspace of E, then (Y, τy) is B − τ4

space. Let B∗
1 , B∗

2 be disjoint B-closed subsets of Y . Then there exists B-closed subsets M1, M2 of E
such that M∗

1 = M1 ∩ Y and M∗
2 = M2 ∩ Y . Since Y is B-closed it follows that M∗

1 , M∗
2 are disjoint

B-closed subsets of E. Then there exists B-open subsets N1, N2 of E such that M∗
1 ⊂ N1, M∗

2 ⊂ N2

and N1 ∩ N2 = φ. (E, τ ) be a B − τ4 space. Since M∗
1 ⊂ Y and M∗

2 ⊂ Y , these relations imply that
M∗

1 ⊂ N1 ∩ Y = N∗
1 , M∗

2 ⊂ N2 ∩ Y = N∗
2 and N∗

1 ∩ N∗
2 = φ. Then N∗

1 , N∗
2 are B-open subsets of Y. Such

that M∗
1 ⊂ N∗

1 , N∗
2 ⊂ N∗

2 and N∗
1 ∩ N∗

2 = φ. We have (Y, τY ) is a B − τ4 space. �

6. Conclusion

In this paper we find new structure by use bornological space, we introduce the structre of brnolog-
ical topological space. we define bornological topological open function, bornological topological closed
function and bornological topological homeomorphism function, bornological topological continuous and
investigate some new properties of them. Separation axioms have been studied in bornological topolog-
ical space like B − τ0, B − τ1, B − τ2, B − τ3, B − τ4 and the relationships among them, also we study
topological properties and heredity property under exist this axioms.
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