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Periodic Solutions for a Higher-order p-Laplacian Neutral Differential Equation with

Multiple Deviating Arguments
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abstract: In this article, we consider the following higher-order p-Laplacian neutral differential equation
with multiple deviating arguments:

(ϕp(x(t) − cx(t − r))(m)(t))(m) = f(x(t))x′(t) + g(t, x(t), x(t − τ1(t)), ..., x(t − τk(t))) + e(t).

By applying the continuation theorem, theory of Fourier series, Bernoulli numbers theory and some analytic
techniques, sufficient conditions for the existence of periodic solutions are established.
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Mawhin’s continuation.
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1. Introduction

In the last several years, the existence of periodic solutions for functional differential equations have
been widely studied and are still being investigated due to their applications in many fields such as physics,
mechanics, the engineering technique fields and so on...(see for example [1-2] and the references given
therein), especially, the p-laplacian functional differential equations which arises from fluid mechanical
and nonlinear elastic mechanical phenomena has received more and more attention for example in paper
[3], by using Mawhin’s continuation theorem, the authors have studied the existence of periodic solution
for p-Laplacian neutral functional differential equation:

(ϕp(x′(t) − c(t)x′(t − r)))′ = f(x(t))x′(t) + g(t, x(t), x(t − τ1(t)), ..., x(t − τm(t))) + e(t).

where |c|0 < 1
2 , τ i ∈ C(R,R)(i = 1, 2, ..., k) with τ i(t + T ) = τ i(t).

Recently, there has been a great deal of work on the problem of the periodic solutions of higher-
order differential equations. However, as far as we know, work on the existence of periodic solutions for
higher-order p-Laplacian differential equations was discussed in [8-9]. For instance, Li [9] had studied the
existence and uniqueness of periodic solutions for a kind of higher-order p-Laplacian differential equation
as follows:

(ϕp(x(m)(t)))(m) + β(t))x′(t) + g(t, x(t)) = e(t).

In the present paper, motivated by [5-8-9] mentioned previously, we aim at studying the existence of
periodic solutions for the following higher-order p-Laplacian neutral differential equation with multiple
deviating arguments:

(ϕp(x(t) − cx(t − r))(m)(t))(m) = f(x(t))x′(t) + g(t, x(t), x(t − τ1(t)), ..., x(t − τk(t))) + e(t). (1.1)

Where p ≥ 2 is a fixed real number. The conjugate exponent of p is denoted by q, i.e 1
p + 1

q = 1. Let

ϕp : R → R be the mapping defined by ϕp(s) = |s|p−2s for s 6= 0, and ϕp(0) = 0, m is a positive integer,
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c, r are constant with |c| < 1, r ≥ 0 f, e ∈ C(R,R) are continuous T -periodic functions defined on R

and T > 0, g ∈ C(Rk+2,R) and g(t + T, u0, u1, ..., uk) = g(t, u0, u1, ..., uk), ∀(t, u0, u1, ..., uk) ∈ R
k+2,

τ i ∈ C1(R,R)(i = 1, 2, ..., k) with τ i(t + T ) = τ i(t).Therefore, in this paper based on the Mawhin

continuation theorem and some analysis skills without assumption of
∫ T

0
e(t)dt = 0, some new sufficient

conditions for the existence of T -periodic solution of p-Laplacian equation (1.1) will be established. The
rest of this paper is organized as follows: Section 2 is devoted to introducing some definitions and recalling
some preliminary results that will be extensively used. The existence results will be obtained in Section
3. Finally, a example is given to illustrate the effectiveness of our result in Section 4. Our results are
different from those of bibliographies listed in the previous texts and they are a generalization of the
results of the article [3] in the case where c is constant with |c| < 1, p ≥ 2, τ i ∈ C1(R,R)(i = 1, 2, ..., k).

2. Preliminaries

For convenience, define CT = {x|x ∈ C(R,R), x(t + T ) = x(t)} with the norm
|x|0 = maxt∈[0,T ] |x(t)|, and C1

T = {x|x ∈ C1(R,R), x(t + T ) = x(t)} with the norm
‖x‖ = maxt∈[0,T ]{|x|0, |x′|0}. Define a linear operator
A : CT → CT , (Ax)(t) = x(t) − cx(t − r).

Lemma 2.1. ([7]) If |c| < 1, then A has continuous bounded inverse on CT with the following properties:

(1) ‖A−1x‖ ≤
|x|0

1 − |c|
, ∀x ∈ CT

(2)

∫ T

0

|(A−1x)(t)|pdt ≤
1

(1 − |c|)p

∫ T

0

|x(t)|pdt, ∀x ∈ CT .

Lemma 2.2. ([16]) Let T > 0 be constant, x ∈ Cm(R,R), m ≥ 2 and x(t + T ) = x(t),
|x(i)|0 = maxt∈[0,T ] |x(i)(t)| then there are Mi(m) > 0 independent of x such that

|x(i)|0 ≤ Mi(m)

∫ T

0

|x(m)(t)|dt i = 1, 2, . . . , m − 1, (2.1)

where, if m is an even integer

Mi(m) =











































M2s−1(m) = T m−2s

√

−B2m−4s

12(2m − 4s)!
, s = 1, 2, . . . ,

m

2
− 1;

M2s(m) =
(−1)

m−2s
2

+1T m−2s−1Bm−2s

(m − 2s)!
, s = 1, 2, . . . ,

m

2
− 1;

Mm−1(m) = 1
2 ,

(2.2)

if m is an odd integer

Mi(m) =











































M2s+1(m) =
(−1)

m−2s−1

2
+1T m−2s−2Bm−2s−1

(m − 2s − 1)!
, s = 1, 2, . . . ,

m + 1

2
− 2;

M2s(m) = T m−2s−1

√

−B2m−4s−2

12(2m − 4s − 2)!
, s = 1, 2, . . . ,

m + 1

2
− 2;

Mm−1(m) = 1
2

(2.3)

and Bm−2s, B2m−4s, Bm−2s−1, B2m−4s−2 are Bernoulli numbers, which can be calculed using the follow-
ing recursion formula:
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B0 = 1, Bp =
−
∑p−1

i=0 Ci
p+1Bi

p + 1
,

where Ci
p+1 is the combination number.

Lemma 2.3. Let k > 0, T > 0 be two constant, s ∈ CT (R,R), τ i ∈ C1
T (R,R) and |τ ′

i|0 < 1. Then

∫ T

0

|s(t − τ i(t))|
kdt ≤ δi

∫ T

0

|s(t)|kdt,

where δi = 1
1−|τ ′

i
|0

, |τ ′
i|0 = maxt∈[0,T ] |τ ′

i(t)|.

Proof. It is easy to see that

∫ T

0

|s(t − τ i(t))|
kdt =

∫ T

0

|s(t − τ i(t))|
kd(t − τ i(t)) +

∫ T

0

τ ′
i(t)|s(t − τ i(t))|

kdt

i.e.

(1 − |τ ′
i|0)

∫ T

0

|s(t − τ i(t))|
kdt ≤

∫ T

0

|s(t)|kdt

and thus

∫ T

0

|s(t − τ i(t)|
kdt ≤

1

1 − |τ ′
i|0

∫ T

0

|s(t)|kdt.

This completes the proof. �

Lemma 2.4. (Borsuk [14]). Ω ⊂ R
n is an open bounded set, and symmetric with respect to 0 ∈ Ω. If

f ∈ C(Ω,Rn) and f(x) 6= µf(−x), ∀x ∈ ∂Ω, ∀µ ∈ [0, 1], then deg(f, Ω, 0) is an odd number.

Now, we recall Mawhin’s continuation theorem which our study is based upon.
Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with index zero. Here
D(L) denotes the domain of L. This means that ImL is closed in Y and dim KerL = dim(Y/ImL) < +∞.
Consider the supplementary subspaces X1 and Y1 and such that X = KerL ⊕ X1 and Y = ImL ⊕ Y1

and let P : X → KerL and Q : Y → Y1 be natural projections. Clearly, KerL ∩ (D(L) ∩ X1) = {0}, thus
the restriction Lp := L|D(L)∩X1

is invertible. Denote the inverse of Lp by K.

Now, let Ω be an open bounded subset of X with D(L)∩Ω 6= ∅, a map N : Ω → Y is said to be L-compact
on Ω, if QN(Ω) is bounded and the operator K(I − Q)N : Ω → Y is compact.

Lemma 2.5. (Mawhin [12]). Suppose that X and Y are two Banach spaces,
and L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Furthemore, Ω ⊂ X is an open bounded
set and N : Ω → Y is L-compact on Ω. If all of the following conditions hold:

(1) Lx 6= λNx, ∀x ∈ ∂Ω ∩ D(L), λ ∈]0, 1[;

(2) Nx 6∈ ImL, ∀x ∈ ∂Ω ∩ KerL;

(3) deg{JQN, Ω ∩ KerL, 0} 6= 0, where J : ImQ → KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution on Ω ∩ D(L).

In order to use Mawhin’s continuation theorem to study the existence of T-periodic solution for
equation (1.1), we rewrite equation (1.1) in the following system

{

x
(m)
1 (t) = [A−1ϕq(x2)](t),

x
(m)
2 (t) = f(x1(t))x′

1(t) + g(t, x1(t), x1(t − τ1(t)), ..., x1(t − τm(t))) + e(t).
(2.4)



4 L. Moutaouekkil, O. Chakrone, Z. El Allali and S. Taarabti

Where q ≥ 2 is constant with 1
p

+ 1
q

= 1. Clearly, if x(t) = (x1(t), x2(t))⊤ is a T -periodic solution to

equation set (2.4), then x1(t) must be a T -periodic solution to equation (1.1). Thus, in order to prove
that equation (1.1) has a T -periodic solution, it suffices to show that equation set (2.4) has a T -periodic
solution.
X = {x = (x1(t), x2(t))⊤ ∈ C1(R,R2) : x(t + T ) = x(t)} with the norm ‖x‖X = max{‖x1‖, ‖x2‖},
Y = {x = (x1(t), x2(t))⊤ ∈ C(R,R2) : x(t + T ) = x(t)} with the norm ‖x‖Y = max{|x1|0, |x2|0}.
Obviously, X and Y are two Banach spaces. Meanwhile, let

L : D(L) ⊂ X → Y, Lx = x(m) =

(

x
(m)
1

x
(m)
2

)

. (2.5)

N : X → Y,

[Nx](t) =

(

[A−1ϕq(x2)](t)
f(x1(t))x′

1(t) + g(t, x1(t), x1(t − τ1(t)), . . . , x1(t − τm(t))) + e(t),

)

(2.6)

where D(L) = {x = (x1(t), x2(t))⊤ ∈ Cm(R,R2) : x(t + T ) = x(t)}. It is easy to see that equation set
(2.4) can be converted to the abstract equation Lx = Nx. Moreover, from the definition of L, we see that

KerL = R
2, ImL = {y : y ∈ Y,

∫ T

0
y(s)ds = 0}. So L is a Fredholm operator with index zero.

Let projectors P : X → KerL and Q : Y → ImQ be defined by

P x = x(0), Qy =
1

T

∫ T

0

y(s)ds

and let K represent the inverse of L|KerP ∩D(L). Clearly, KerL = ImQ = R
2 and

[Ky](t) =

m−1
∑

i=1

1

i!
x(i)(0)ti +

1

(m − 1)!

∫ t

0

(t − s)m−1y(s)ds, (2.7)

where x(i)(0) (i = 1, 2, . . . , m − 1) are defined by the equation AX = D,
where

A =



















1 0 0 · · · 0 0
c1 1 0 · · · 0 0
c2 c1 1 · · · 0 0
...

...
...

. . .
...

...
cm−3 cm−4 cm−5 · · · 1 0
cm−2 cm−3 cm−4 · · · c1 1



















X = (x(m−1)(0), x(m−2)(0), . . . , x′′(0), x′(0))⊤

D = (d1, d2, . . . , dm−2, dm−1)⊤

di = −
1

i!T

∫ T

0

(T − s)iy(s)ds i = 1, 2, . . . , m − 1

and

cj =
T j

(j + 1)!
j = 1, 2, . . . , m − 2.

From (2.6)and (2.7), it isn’t hard to find that N is L-compact on Ω, where Ω is an arbitrary open
bounded subset of X .
For the sake of convenience, we list the following assumptions which will be used by us in studing the
existence of T − periodic solution to equation (1.1).
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(H1) There is a constant d > 0 such that:

(1) g(t, u0, u1, . . . , uk) > |e|0, ∀(t, u0, u1, . . . , uk) ∈ [0, T ] × R
k+1 with ui > d (i = 0, 1, . . . , k).

(2) g(t, u0, u1, . . . , uk) < −|e|0, ∀(t, u0, u1, . . . , uk) ∈ [0, T ] × R
k+1 with ui < −d (i = 0, 1, . . . , k).

(H2) |g(t, u0, u1, . . . , uk)| ≤
∑k

i=0 αi|ui|p−1 + β,
where αi(i = 0, . . . , k), β are positive constants.

(H3) There exist positive constants l, δ

|f(x)| ≤ l|x|p−2 + δ.

3. Main results

Lemma 3.1. Suppose that (H1) hold, if x ∈ D(L) is an arbitrary solution of the equation Lx = λNx, λ ∈
]0, 1[,where L and N are defined by (2.5) and (2.6), respectively, then there must be a point t∗ ∈ [0, T ]
such that

|x1(t∗)| ≤ d. (3.1)

Proof. Suppose x ∈ D(L) is an arbitrary solution of the equation Lx = λNx, for some λ ∈]0, 1[, then

{

x
(m)
1 (t) = λ[A−1ϕq(x2)](t),

x
(m)
2 (t) = λf(x1(t))x′

1(t) + λg(t, x1(t), x1(t − τ1(t)), ..., x1(t − τk(t))) + λe(t).
(3.2)

From the first equation of (3.2), we have x2(t) = λ−1ϕp[(Ax1)(m))(t)] and then by substituting it into
the second equation of (3.2),we have

(ϕp(Ax1)(m)(t)))(m) = λpf(x1(t))x′
1(t) + λpg(t, x1(t), x1(t − τ1(t)), ..., x1(t − τk(t))) + λpe(t). (3.3)

Integrating both sides of equation(3.3) on the interval [0, T ], we have
∫ T

0

g(t, x1(t), x1(t − τ1(t)), ..., x1(t − τk(t))) +

∫ T

0

e(t) = 0.

By the integral mean value theorem, there is a constant t0 ∈ [0, T ] such that

g(t, x1(t0), x1(t0 − τ1(t0)), ..., x1(t0 − τk(t0))) = −
1

T

∫ T

0

e(t)dt. (3.4)

Case 1 If |x1(t0)| ≤ d, then taking t∗ = t0 such that |x1(t∗)| ≤ d.
Case 2 If |x1(t0)| > d, in this case we need to prove that there exist ξ ∈ R such that
|x1(ξ)| ≤ d.
By (3.4), we can get

g(t, x1(t0), x1(t0 − τ1(t0)), ..., x1(t0 − τk(t0))) = −
1

T

∫ T

0

e(t)dt ≤ |e|0.

From assumption (H1)(1), we see that there exist r ∈ {1, 2, ..., k} such that
x1(t0 − τ r(t0)) ≤ d.
On the other hand, we have

g(t, x1(t0), x1(t0 − τ1(t0)), ..., x1(t0 − τk(t0))) = −
1

T

∫ T

0

e(t)dt ≥ −|e|0.

From (H1)(2) there exist l ∈ {1, 2, ..., k} such that x1(t0 − τ l(t0)) ≥ −d.
In this case we consider the following two other cases

• If l = r ,we get |x1(t0 − τ l(t0))| ≤ d, then taking ξ = x1(t0 − τ l(t0)) such that |x1(ξ)| ≤ d.

• If l 6= r we consider three other cases:
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– If x1(t0 − τ l(t0)) ≤ x1(t0 − τ r(t0)), which yield |x1(t0 − τ l(t0))| ≤ d and |x1(t0 − τr(t0))| ≤ d,
let ξ = x1(t0 − τ l(t0)) or ξ = x1(t0 − τ r(t0)) obviously |x1(ξ)| ≤ d.

– If x1(t0 − τ r(t0)) ≤ x1(t0 − τ l(t0)) and one of the following assumption hold
x1(t0 −τr(t0)) ≥ −d or x1(t0 −τ l(t0)) ≤ d, we assume ξ = x1(t0 −τ l(t0)) or ξ = x1(t0 −τr(t0)),
we can obtain |x1(ξ)| ≤ d.

– If x1(t0 − τ r(t0)) ≤ x1(t0 − τ l(t0)), x1(t0 − τ r(t0)) < −d and x1(t0 − τ l(t0)) > d.
By intermediate value theorem there exist t1 such that x1(t1) = 0, then taking ξ = t1, we have
|x1(ξ)| ≤ d.

Let k′ =
[

ξ
T

]

, where
[

ξ
T

]

is integer part of the number ξ
T

, then taking t∗ = ξ − k′T . Furthermore,

|x1(t∗)| ≤ d with t∗ ∈ [0, T ].
�

Theorem 3.2. Suppose |τ ′
i|0 < 1, (i = 1, · · · , k) and assumption (H1) − (H3) hold.

Then equation (1.1) has at one least one T −periodic solution,

if
(1 + |c|)Mp

1 (m)T 2p−1

2p−1(1 − |c|)p

[

l +
T

2
(α0 +

k
∑

i=1

αiδi)

]

< 1, where M1(m) and δi are defined in Lemma 2.2,

Lemma 2.3.

Proof. Let Ω1 = {x ∈ X : Lx = λNx, λ ∈]0, 1[} if x(.) = (x1(.), x2(.))⊤ ∈ Ω1, then from (2.5) and (2.6),
we have

{

x
(m)
1 (t) = λ[A−1ϕq(x2)](t),

x
(m)
2 (t) = λf(x1(t))x′

1(t) + λg(t, x1(t), x1(t − τ1(t)), ..., x1(t − τm(t))) + λe(t).
(3.5)

From Lemma 3.1, we have

|x1(t)| = |x1(t∗) +

∫ t

t∗

x′
1(s)ds| ≤ d +

∫ t

t∗

|x′
1(s)|ds, t ∈ [t∗, t∗ + T ],

and

|x1(t)| = |x1(t − T )| = |x(t∗) −

∫ t∗

t−T

x′
1(s)ds| ≤ d +

∫ t∗

t∗−T

|x′
1(s)|ds, t ∈ [t∗, t∗ + T ].

Combining the above two inequalities, we obtain

|x1|0 = max
t∈[0,T ]

|x1(t)| = max
t∈[t∗,t∗+T ]

|x1(t)| ≤ max
t∈[t∗,t∗+T ]

{

d +
1

2

(

∫ t

t∗

|x′
1(s)|ds +

∫ t∗

t−T

|x′
1(s)|ds

)}

≤ d +
1

2

∫ T

0

|x′
1(s)|ds.

(3.6)

On the hand, multiplying both sides of equation (3.3) by [Ax1](t) and integrating it from 0 to T , we obtain

∫ T

0

(ϕp(Ax
(m)
1 )(t))(m)(Ax1)(t)dt ≤ (1 + |c|)|x1|0

∫ T

0

|f(x1(t))||x′
1(t)|dt

+ (1 + |c|)|x1|0

∫ T

0

|g(t, x1(t), x1(t − τ1(t)), ..., x1(t − τk(t)))|dt

+ (1 + |c|)|x1|0

∫ T

0

|e(t)|dt.

Case 1. If m is even,we obtain
∫ T

0

(ϕp(Ax
(m)
1 )(t))(m)(Ax1)(t)dt = (−1)m

∫ T

0

|(Ax1)(m)(t)|pdt =

∫ T

0

|(Ax1)(m)(t)|pdt.
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In view of assumption (H2) − (H3) we have
∫ T

0

|(Ax1)(m)(t)|pdt ≤ (1 + |c|)|x1|0

∫ T

0

(l|x1(t)|p−2 + δ)|x′
1(t)|dt

+ (1 + |c|)|x1|0

∫ T

0

α0|x1(t)|p−1 +

k
∑

i=1

αi|x1(t − τ i(t))|
p−1dt

+ (1 + |c|)|x1|0T (|e|0 + β).

(3.7)

By Lemma 2.3 and (3.7), we obtain

∫ T

0

|(Ax1)(m)(t)|pdt ≤ (1 + |c|)(l|x1|p−1
0 + δ|x1|0)

∫ T

0

|x′
1(t)|dt + (1 + |c|)T (α0 +

k
∑

i=1

αiδi)|x1|p0

+ (1 + |c|)T (|e|0 + β)|x1|0.

(3.8)

By Lemma 2.2, (3.6) and (3.8), we obtain

∫ T

0

|(Ax1)(m)(t)|pdt ≤ (1 + |c|)T l

(

d +
1

2
T M1(m)

∫ T

0

|x
(m)
1 (t)|dt

)p−1

× M1(m)

∫ T

0

|x
(m)
1 (t)|dt

+ δ(1 + |c|)T

(

d +
1

2
T M1(m)

∫ T

0

|x
(m)
1 (t)|dt

)

× M1(m)

∫ T

0

|x
(m)
1 (t)|dt

+ (1 + |c|)T (α0 +

k
∑

i=1

αiδi)

(

d +
1

2
T M1(m)

∫ T

0

|x
(m)
1 (t)|dt

)p

+ (1 + |c|)T (|e|0 + β)

(

d +
1

2
T M1(m)

∫ T

0

|x
(m)
1 (t)|dt

)

.

(3.9)

By applying Jensen inequality,we can see that

∫ T

0

|(Ax1)(m)(t)|pdt ≤ (1 + |c|)T l

[

dp−1M1(m)

∫ T

0

|x
(m)
1 (t)|dt +

1

2p−1
T p−1Mp

1 (m)

(

∫ T

0

|x
(m)
1 (t)|dt

)p]

+ δ(1 + |c|)T



dM1(m)

∫ T

0

|x
(m)
1 (t)|dt +

1

2
T M2

1 (m)

(

∫ T

0

|x
(m)
1 (t)|dt

)2




+ (1 + |c|)T (α0 +

k
∑

i=1

αiδi)

[

dp +
1

2p
T pMp

1 (m)

(

∫ T

0

|x
(m)
1 (t)|dt

)p]

+ (1 + |c|)T (|e|0 + β)

(

d +
1

2
T M1(m)

∫ T

0

|x
(m)
1 (t)|dt

)

.

(3.10)
Furthermore

∫ T

0

|(Ax1)(m)(t)|pdt ≤ (1 + |c|)
Mp

1 (m)

2p−1
T p

[

l +
T

2
(α0 +

k
∑

i=1

αiδi)

](

∫ T

0

|x
(m)
1 (t)|dt

)p

+ (1 + |c|)
M2

1 (m)

2
T 2δ

(

∫ T

0

|x
(m)
1 (t)|dt

)2

+ (1 + |c|)T M1(m)

[

δd + ldp−1 +
1

2
T (|e|0 + β)

]∫ T

0

|x
(m)
1 (t)|dt

+ (1 + |c|)T d

[

(α0 +

k
∑

i=1

αiδi)d
p−1 + (|e|0 + β)

]

.

(3.11)
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From which by applying Holder inequality, we have

∫ T

0

|(Ax1)(m)(t)|pdt ≤
(1 + |c|)Mp

1 (m)T 2p−1

2p−1

[

l +
T

2
(α0 +

k
∑

i=1

αiδi)

]

∫ T

0

|x
(m)
1 (t)|pdt

+
(1 + |c|)δM2

1 (m)T 2+ 2

q

2

(

∫ T

0

|x
(m)
1 (t)|pdt

)
2

p

+ (1 + |c|)T 1+ 1

q M1(m)

[

δd + ldp−1 +
1

2
T (|e|0 + β)

]

(

∫ T

0

|x
(m)
1 (t)|pdt

)
1

p

+ (1 + |c|)T d

[

(α0 +

k
∑

i=1

αiδi)d
p−1 + (|e|0 + β)

]

.

(3.12)

It follows from conclusion (2) of Lemma 2.1 that
∫ T

0

|x
(m)
1 (t)|pdt =

∫ T

0

|(A−1(Ax1)(m))(t)|pdt ≤

∫ T

0
|(Ax1)(m)(t)|pdt

(1 − |c|)p
,

which together with (3.12)yields

∫ T

0

|x
(m)
1 (t)|pdt ≤

(1 + |c|)Mp
1 (m)T 2p−1

2p−1(1 − |c|)p

[

l +
T

2
(α0 +

k
∑

i=1

αiδi)

]

∫ T

0

|x
(m)
1 (t)|pdt

+
(1 + |c|)δM2

1 (m)T 2+ 2

q

2(1 − |c|)p

(

∫ T

0

|x
(m)
1 (t)|pdt

)
2

p

+
(1 + |c|)T 1+ 1

q M1(m)

(1 − |c|)p

[

δd + ldp−1 +
1

2
T (|e|0 + β)

]

(

∫ T

0

|x
(m)
1 (t)|pdt

)
1

p

+
(1 + |c|)T d

(1 − |c|)p

[

(α0 +

k
∑

i=1

αiδi)d
p−1 + (|e|0 + β)

]

.

(3.13)

In view of p ≥ 2 and
(1 + |c|)Mp

1 (m)T 2p−1

2p−1(1 − |c|)p

[

l +
T

2
(α0 +

k
∑

i=1

αiδi)

]

< 1, from(3.13) we see that there

is a constant M0 independent of λ such that

∫ T

0

|x
(m)
1 (t)|pdt ≤ M0. (3.14)

So it follows Lemma 2.2 and (3.14) that we have

|x′
1|0 ≤ M1(m)

∫ T

0

|x
(m)
1 (t)|dt ≤ M1(m)T

1

q M
1

p

0 := M11. (3.15)

By (3.6) and (3.15), we have

|x1|0 ≤ d +
1

2
T M11 := M12. (3.16)

Let Mf = max|u|≤M12
|f(u)| , Mg = maxt∈[0,T ],|u0|≤M12,...,|uk|≤M12

|g(t, u0, . . . , uk)| and from the second
equation of (3.5), we have
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∫ T

0

|x
(m)
2 (t)|dt ≤

∫ T

0

|f(x1(t))x′
1(t)|dt +

∫ T

0

|g(t, x1(t), x1(t − τ1(t)), . . . , x1(t − τk(t)))|dt +

∫ T

0

|e(t)|

≤ Mf

∫ T

0

|x′
1(t)|dt + T (Mg + |e|0)

≤ MfT |x′
1|0 + T (Mg + |e|0)

≤ MfT M11 + T (Mg + |e|0) := M0.
(3.17)

Again from Lemma 2.2, we have

|x′
2|0 ≤ M1(m)

∫ T

0

|x
(m)
2 (t)|dt ≤ M1(m)M0 := M21.

Integrating the first equation of (3.5), we have

∫ T

0

|x2(t)|q−2x2(t)dt = 0, which implies that there is a

constant η ∈ [0, T ] such that x2(η) = 0, thus

|x2(t)| = |

∫ t

η

x′
2(s)ds + x2(η)| ≤

∫ T

0

|x′
2(s)|ds.

Then we can get

|x2|0 ≤

∫ T

0

|x′
2(t)|dt ≤ T M21 := M22. (3.18)

Let Ω2 = {x|x ∈ KerL, QNx = 0} if x ∈ Ω2 then x ∈ R
2 is a constant vector with























1

T

∫ T

0

[A−1ϕq(x2)](t)dt = 0,

1

T

∫ T

0

[f(x1(t))(A−1ϕq(x2))(t) + g(t, x1(t), x1(t − τ1(t)), . . . , x1(t − τk(t))) + e(t)]dt = 0.

(3.19)

By the first formula of (3.19) , we have x2 = 0. Which together with the second equation of (3.19) yields

1

T

∫ T

0

[g(t, x1, x1, . . . , x1) + e(t)]dt = 0. In view of (H1), we see that |x1| ≤ d.

Now, Let M1 = max{M11, M12}, M2 = max{M21, M22}, then ‖x1‖ ≤ M1, ‖x2‖ ≤ M2. Taking Ω =
{x|x = (x1, x2)⊤ ∈ X, ‖x1‖ < M1 + d, ‖x2‖ < M2 + d}, then Ω1 ∪ Ω2 ⊂ Ω. So from (3.16) and (3.18), it
is easy to see that conditions (1) and (2) of Lemma 2.5 are satisfied.
Next, we verify the condition (3) of Lemma 2.5. To do this, we define the isomorphism

J : ImQ → KerL, J(x1, x2)⊤ = (x1, x2)⊤,

then

JQN(x) =









1

T

∫ T

0

[A−1ϕq(x2)](t)dt

1

T

∫ T

0

[f(x1(t)(A−1ϕq(x2))(t) + g(t, x1, x1, . . . , x1) + e(t)]dt









.

By Lemma 2.4 , we need to prove that

JQN(x) 6= µ(JQN(−x)), ∀x ∈ ∂Ω ∩ KerL , µ ∈ [0, 1]
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Case1. If x = (x1, x2)⊤ ∈ ∂Ω ∩ KerL\{(M1 + d, 0)⊤, (−M1 − d, 0)⊤}, then x2 6= 0 which, gives us

1

T

∫ T

0

[A−1ϕq(x2)](t)dt 6= 0

(

1

T

∫ T

0

[A−1ϕq(x2)](t)dt

)(

1

T

∫ T

0

[A−1ϕq(−x2)](t)dt

)

< 0,

obviously, ∀µ ∈ [0, 1] JQN(x) 6= µ(JQN(−x)).
Case2. If x = (M1 + d, 0)⊤ or x = (−M1 − d, 0)⊤, then

JQN(x) =





0

1

T

∫ T

0

[g(t, x1, x1, . . . , x1) + e(t)]dt



 ,

which, together with (H1), yields ∀µ ∈ [0, 1], JQN(x) 6= µ(JQN(−x)).
Thus, the condition (3) of Lemma 2.5 is also satisfied. Therefore, by applying Lemma 2.5, we conclude
that the equation Lx = Nx has at least one T -periodic solution on Ω, so equation(1.1) has at least one
T -periodic solution.
The case m is odd can be treated similarly. �

4. Example

In this section, we provide an example to illustrate effectiveness of Theorem 3.2.
Let us consider the following equation

(ϕ3(x(t) −
1

10
(x −

π

8
))(8)(t))(8) = f(x(t))x′(t) + g(t, x(t), x(t −

cos 20πt

90
), x(t −

sin 20πt

100
)) + e(t), (4.1)

where p = 3, m = 8, T = 1
10 , c = 1

10 , f(u) =
u2

6 + |u|
+ 3, l =

1

6
, τ1(t) =

cos 20πt

90
, τ2(t) =

sin 20πt

100
,

e(t) = 6
225 cos 20πt + 1

2 , g(t, u, v, w) = sgn(u)u2(2 + sin 20πt) +
3

225

(

sgn(v)v2 + sgn(w)w2
)

| cos 20πt|.

Therefore we can choose d = 1, α1 = α2 = 0, 014, M1(8) =
(

1
10

)6

√

691

2730 × 12 × 12!
.

We can easily check the condition (H1), (H2) of Theorem 3.2 hold. We can compute

(1 + |c|)Mp
1 (m)T 2p−1

2p−1(1 − |c|)p

[

l +
T

2
(α0 +

k
∑

i=1

αiδi)

]

< 1.

By Theorem 3.2, equation (4.1) has at least one
1

10
-periodic solution.
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