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Global Existence and General Decay of Moore—Gibson—-Thompson Equation with not
Necessarily Decreasing Kernel

Draifia Alaeddine!»?

ABSTRACT: In this paper, we consider the Moore-Gibson-Thompson equations. By using the potential well
theory we obtain the existence of a global solution. Then, we prove the general decay result of solutions
under weaker assumptions than the ones frequently used in the literature. In particular, the kernels we are
considering are not necessarily exponentially decaying to zero as was assumed before. The present results
improve also a previous work of the authors.
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1. Introduction

In this works, we study the global existence and general decay of the following for the Moore-Gibson-
Thompson equation with term viscoelastic memory

t
TUgsr + gy — 2 Au — bAuy —|—/ gt—s)Au(s)ds =0, (x,t) € QxRy, (1.1)
0

with initial data
u(x,0) = uo(x), w(z,0) =ui(z), up(z,0) =uz(z), x€Q, (1.2)

and boundary conditions
u(x,t) =0, (x,t) €00 xRy, (1.3)

where Q € R", ¢(.): Ry — Ry are given functions which will be spaced later, and wug (z), u1 (z) and
us (x) are given functions. All the parameters 7 and b are assumed to be positive constants. In a physical
context of the acoustic waves, the variable u denotes a scalar acoustic velocity potential v = —Vu with
v denoting the acoustic particle velocity, ¢? denotes the speed of sound, o denotes thermal relaxation
resulting from replacing Fourier law by the Maxwell-Cattaneo law, the coefficient b = § + ac? where §
is the diffusibility of the sound and the coefficient v > 0 describes natural damping effects associated
with an acoustic environment, see Lebon and Cloot [18]. The convolution term f(f g(t—s)Au(s)ds
reflects the memory effects of materials due to viscoelasticity. Here the convolution kernel g satisfies
proper conditions exhibiting “memory character” which will be explained later. This model of (1.1)
arises in high-frequency ultrasound applications accounting for thermal flux and molecular relaxation
times. According to revisited extended irreversible thermodynamics, thermal flux relaxation leads to the
third-order derivative in time while molecular relaxation leads to non-local effects governed by memory
terms.

The presence of the third time derivative is typical in extended irreversible thermodynamics (EIT) a
theory originally proposed to remove the unpleasant property of propagation of heat and velocity signals
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with an infinite velocity when Fourier-Navier-Stokes equations are used [20]. The guiding idea behind
is that physical quantities such as thermodynamic fluxes typically given by constitutive relations, in
EIT theory, are governed by evolution equations with a suitable relaxation time 7. In addition, more
recently the EIT theory has been revisited by adding non-local effects with an eye on reaching agreement
between theory and experiment particularly in systems with long relaxation times (viscoelastic fluids)
and phenomena involving high frequencies. The latter leads to a presence of additional integral terms
in the equation [20]. Moore-Gibson—Thompson (MGT) equation arises from modeling high-frequency
ultrasound waves.Without memory, the linearized MGT equation reads

Ty + quy + ¢ Au+ bAAu, = 0. (1.4)

Certainly this equation is in abstract form, and it has a simple prototype where A = —A with Dirichlet
boundary conditions. In [15], the well posedness of (1.4) and the uniform decay of its energy are studied
under proper functional setting and initial boundary conditions. Spectral analysis for this model has
been carried out in [22], which confirms the validity and sharpness of the results in [21]. A linear MGT
equation is the prelude to nonlinear ones. The classical nonlinear acoustics models include the Kuznetsov
equation, the Westervelt equation and the KZK equation. This research field is highly active due to a wide
range of applications such as the medical and industrial use of high intensity ultrasound in lithotripsy,
thermotherapy, ultrasound cleaning, etc. There have been quite a few works in this aspect, more from
engineering viewpoint. The motivation of our work is due to some results regarding the following research
papers: Lasiecka, I. and Wang, X. [16] studied the Moore—Gibson-Thompson equation with memory, part
I: exponential decay of energy

TUse + Qg + 2 Au + bAAu, — fot gt —3s)Aw(s)ds =0, (z,t)€Q xRy,
u(x,0) = uo(x), w(z,0) =ui(x), up(z,0) =uz(z), x€Q,
u(z,t) =0, (x,t) €0 xRy,

where Q@ € R", h(.) : Ry — R, are given functions (See [16]), ug (x), ui (z) and us (z) are given
functions, and 7, «, ¢? and b parameters in MGT equation. A is a positive self-adjoint operator on a
Hilbert space H.

Medjden, M. Tatar, N. [21] studied the asymptotic behavior for a viscoelastic problem with not
necessarily decreasing kernel. Mesloub, F. Boulaaras, S. [22] studied the general decay for a viscoelastic
problem with not necessarily decreasing kernel. Boumaza, N. Boulaaras, S. [2] studied the general decay
for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Boulaaras, S. Draifia, A.
Alnegga, M. [3] studied the polynomial decay rate for kirchhoff type in viscoelasticity with logarithmic
nonlinearity and not necessarily decreasing kernel.

However, Lasiecka, I. and Wang, X. [17] did not study the general decay of problem (1.1) — (1.3) with
not necessarily decreasing kernel. Motivated by the above research, we will consider the general decay
with not necessarily decreasing kernel of the model (1.1) — (1.3) in this paper.

The outline of the paper is as follows. In the second section we define the classical energy E (t)
associated to (1.1) — (1.3) and define the modified energy e (t) associated to (1.1) — (1.3) and show that
it is a non-increasing function of ¢. In section 3, we prove global existence of solution of (1.1) — (1.3).
Finally, in section 4, we prove general decay of solution of the posed problem.

2. Assumptions and main results

In this section, we define the classical energy F (t) associated to (1.1) — (1.3) and define the modified
energy e (t) associated to (1.1) — (1.3) and show that it is a non-increasing function of ¢. In order to state
our main results we make further assumptions on g :

(A1) We suppose that the kernel g (t) is a C*(Ry,Ry) and [ g (s)ds < c?.
(A2) There exists a positive differentiable function v (¢) such that
g )+ (t)g(t) >0and e [¢' (t) + 9 (t) g (t)] € L' (Ry) for a > 0, and 1 (t) satisfis, for somme positive
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constant L,
¥ (t) / > _
(t) 0
(A3) ¢ (t) <0and ¢g” (t) >0 forall t > 0.
We recall the binary notation

(g0w) (t) = / 9t —5) (5, 5) — 0 (@,8)|3a(0y ds.

(2.1)

(2.2)

Lemma 2.1. Assume that (A1) — (A3) holds. Then the classical energy associated to (1.1) — (1.3) is

defined by
kT kb
E@lt) « = - ||Utt|\iz(n) + ke (Vu, V) 120y + 5 Hvut||2L2(Q)

2
« 2 C 2
T (e, u) 2y + 5 uellze @) + 5 1Vulia )

and its derivative is
d
G EM} = —ka s 32y + ke IV uel 7o) + 7 el 720

t

bVl 2y + K / 9(t — ) (Vu(s), Varee (£) 12 e ds

4 /0 glt — ) (Vu(s), Ty (1)) 12 0y ds.

where b b
-
—<1l<k< —< —.
o 2¢2 " 2

Proof. Step .1 Multiplying (1.1) by u and integrating over 2, we have

7 (Ustts utt)L2(Q) + a (ug, utt)LQ(Q) —* (Au, utt)LQ(Q)

—b (Auy, utt)L2(Q) + </Ot g(t — s)Au(s)ds, uy (t))

= 0.

L2(Q)

By direct calculations, we get

Td 2
T(Utttautt)L2(Q) ~9oat {”Utt”m(ﬂ)} )

and
2
o (uet; ute) 2 () = o [lueel|72(q) -

And using integration by parts, we have

—c (A, utt)L2(Q)

d
= 02E {(VU, Vut)LQ(Q)} —_ CQ HVUtHiQ(Q) 5

bd
—b (Autautt)LQ(Q) 5w {HVUtHi?(Q)} J

(/ gl — ) Au(s)ds, e ) .

— / gt = 5) (Vu(s), Y (£)) (g ds.

(2.3)

(2.9)

(2.10)

(2.11)
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By replacement of (2.7) — (2.11) into (2.6), we get

d
dt

= —afunliag + IVl
(2) (@)

4 / g(t = 5) (Vu(s), Vs (1)) oy ds.

Step .2 Multiplying (1.1) by u; and integrating over € over

{ HuttHL2 () + C (V’U, V’U,t)L2 () + = ||V’U,t||L2(Q }

T (Um, ut)L2(Q) + (Utt, Ut)Lz(Q) - (AU, ut)LQ(Q)
¢

—=b (Aug, ut) 2y + (/ g(t — s)Au(s)ds, us (t))
0

= 0.

L2(Q)

By direct calculations, we get

d 2
T (uttt;ut)L2(Q) = TE {(uttaut)LQ(Q)} - T ||utt||L2(Q) ,

ad
(st ue) gy = 5 2 { el T} -
Using integration by parts, we have

2d
=& (D) gy = 5 3 {IVulZage |

—b (Aut,ut)L2(Q) =b ||VutHL2(Q) ’

(/ gt~ ) Au(s)ds, ) o

- / glt = 5) (Tu(s), Vg (£)) (g ds.

By replacement of (2.14) — (2.18) into (2.13), we get

d

e+ § ol + 5 19000 )

t
= THUttHQp(Q)—bHVUtlliamﬁ/o 9(t =) (Vu(s), Vuy (1)) 2 () ds-

On multiplying (2.12) by & and summing by (2.19), we get

a
dt

kb
{ el gy + ke (T, V) oy + - V020

a 2 2 2
() ey + 5 Nl + 5 19l |
= —kallunl7z) + ke VUl o) + 7 luul 7z
t
bVl + K / glt — ) (Vu(s), Ve (£)) 1oy s
0

+ / gt — ) (Vu(s), Vg (£)) 12y ds,

using (2.3) into (2.20), we get (2.4).
This completes the proof.

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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Lemma 2.2. Assume that (A1) — (A3) holds. Then the modified energy to (1.1) — (1.3) is defined by

kT 2 « 2
e(t) = =7 llulliaqo) + 5 lluellpe @) + 7 (e, ) 2y + ke (Vu, V) 20

kb k k
t5 IVuel 720 + 3 (—¢g'OVu) (t) + 59 () IVull?2q)

—l—% <02 _ /0 g (s) ds) ||Vu|\2L2(Q) - k/o g (t—s) (Vu(s), Vu (t)) 12(q) ds

+% (gOVu) (1), (2.21)

and its derivative satisfies the following
d 2 2 2
—H{e®} = Tllualizo) = kallullizq) + ke [[Vuelzz o)
dt
k 1
—b||VurllZe ) — 5 (¢"0Vu) () + 5 (9'OVu) (¢)

k 2 1 2
g 1) 190l ) — 200 [l

0, (2.22)

IN

where k is definite in (2.5).

Proof. By direct calculations, we get

_ /0 g(t = 5) (Vu(s), Vug (1) 2 ds

- %% {(QDVU) (t) — (/Otg(s)ds) ||VU||i2(Q)}

1 1
—5 (¢0V) (1) + 59 (1) [Vul 2 (2:23)

—k/o g (t—5) (Vu(s), Vug (1)) r2(q) ds

d (k k 2
= {5 T @+ fa 0 1Tul

—k/o g (t—=5)(Vu(s), Vug (1)) 2 (0 ds}
R (DY) (1)~ o (1) [Vl (224

By replacement (2.23) and (2.24) into (2.4) , we get

d kT 2 kb 2
7 {7 et 720y + ke (Vu, V) 2 gy + 5 IVuellzz (o)

«@ 1
+7 (wee, wt) 2y + 3 ||ut||i2(9) t3 (9Vu) (t)

+5 (@ = [ 00)ds) IVl + 5 <60V O+ 50 )Vl
—k/o g(t = ) (Vu(s), Vur () 12 0 ds}

= —ka Hutt||2L2(Q) + ke? ||VUtHi2(Q) +7 Hutt||2L2(Q) —b Hvul‘/”i?(Q)

k k 1 1
3 "DV () + 56’ () IVullf o) + 5 GOV () = 59 () [Vulaqy,  (2:25)
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using (2.21) into (2.25), we get (2.22).
This completes the proof. O

3. Global existence

In this section we show that any solution of the system (1.1) — (1.3) is global and decays uniformly
provided that e(0) is positive and small enough.

Theorem 3.1. Assume that (A1) — (A3) holds. Then the solution to problem (1.1) — (1.3) is bounded
and global.

Proof. Tt suffices to show that HutHiz(Q) + ||Vu||iz(ﬂ) is bounded independently of ¢.
Using (2.5) and (A1) into (2.22), we get

wi [[uellzzo) +w2 IVl g2 < () <e(0),
where w1 > 0 and ws > 0, then
el 0y + 1Vul|Z2(q) < wse (0).
Then the solution to problem (1.1) — (1.3) is bounded and global.

This completes the proof. O

4. General decay

In this section we state and prove our result.
Notation We denote by 6, 6, 0, 0, and g the following expressions

Y (t)6(t) =g () +¢(t)g(t),

0:= [70(s)ds, 0o :=e0(t), (4.1)
O = [y bals)ds, G:= [ g(s)ds.

In the previous work it supposed that ¢ (£) < 0. Therefore from (2.22) we see that ¢ (¢) < 0. This implies
that e (t) < e(0), for all ¢ > 0. In our case we are not assuming that ¢’ (¢) < 0. In fact, we are allowing

the function g (¢) to oscillate.
To prove our result we need to introduce the following auxiliary functional

L(t):= (utt,u)Lz(Q) , (4.2)
and
// ko (t —5) [V (t) — Vu(s)]? dsd
(kaOVu) ( (4.3)
where

+oo
= e*at/ 0(s)e**ds, (4.4)
t
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and 6 (t) is defined in (4.1). Further, we consider the functional

M) : =e(t)+ep()T(t)+ E—O‘w (t) (ue, u)pa(q) + %1# (t) ”VUHiQ(Q)

o0 -xo / fa(5)ds ) 19
2y (t { / Vo (t / o (t—s) Vu(s)dsdx}
e (/ 00y 5 ) 28500 (/ ey )

23,0 0) ([ 1Vl t5) =280 0 ([ IV0lomas) . 49)

for some positive constant ¢, k, x, 8, B, B3 and 3, to be determined.

Remark 4.1. Let
Qi) © = M) +iBo (/ Jots 2 mds)ﬂxw ( / Jusall 2 mds)

TiBat (0 (/ IVl 22 0 d )wm (/ 192 ) for =12,

Qa(t) =)+ VDT () + =20 (1) (wrw) oy + oot () [Vulage

Tt (10 (1) — xtb (1) ( / t ka<s>ds) IVl 0

+2x (¢ {/ Vu (¢ / ko (t — s) Vu(s )dsdm} (4.6)

then

Proposition 4.2. Assume that (A1)—(A3) holds. Then there exists positive constants Ca > 0 and C5 > 0
such that

Co{E (t) + (gOVu) (1)} < Q2 (t) < Cs {E (t) + (¢OVu) (t) + (—¢'0OVu) (t) + © (1)}, (4.7
where Cy definite in (4.22) and Cs definite in (4.25) .
Proof. For the function T (¢) definite in (4.2).
—¥ ()
¥ (0)

Using Young’s inequality (for e = 1), Poincaré inequality and —1 <

< 0, we get

€ e (0) C,
DT (1) 2 - LD el - L% | Tulag (48)

where C), is the Poincaré constant.
Similarly, by using Young’s inequality (for € = e35), we get

ear) (0) g ear) (0) C,
2T

e 2
7¢ (t) (Ut,u)m(g) 2 = HUtHL2(Q) e, — ||VUHL2(Q) (4.9)

—¥ (t)
¥ (0)

0) 0
i 0) ([ a1 ) 19y = 20 . (4.10)

Note that from (4.1), (4.4) and using —1 < <0, we get
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— (1)
¥ (0)

2 (t {/ Vu(t /k: (t - 5) V(s )dsda:}

Using Young’s inequality (for €= 8—23) , (4.3) and —1 < < 0, we get

X 2x (1 +e3) ¥ (0) ba
> —5-v(e) - - IVullz2o) - (411)
Using Young’s inequality (for e = &4) , we get
’7'84 T
(s (61 ) ey = 5 e (D) = 5 e (Ol (4.12)
Using Young’s inequality (for e = e5) , we get
k:c £ ch
ke? (Vu, Vi) 1) = ——— | Vul| 7o) — Hvutn;(m . (4.13)
Using Young’s inequality (for € = g6 and & = e7) and using fo s)ds < g, we get
k[ 900 5) (V). T )
ki—?(g, k k|- 2 kf‘:?g
> 520 GOV 0 - {55 + o b1Vl - S5 9l (114)
By replacement (4.8) — (4.14) into (4.6), we get
a 1 eap(0)ey 2
Q2(t) = {5 2% T} lutllz2(q)
kr 71eqs e (0)e; 2
+ {7 TS T T 5 lueellzz2q)
N (¢>=9) kc*es  kger eaip(0)C,
2 2 2 2Te9
SO0 b0 2 +) e O8] oo
2e1 o « ULz
kb k> kg kg 9
R
1—-k 1
+%(QDVU) (t)+x{1 - g}w(t)é)(t). (4.15)
3
) kT (ak—T)T k  4c? -3 4g
learly, ch = — = =1 ==, —
Clearly, choosing &7 457?(0)’82 2k£o¢w(0)’€3 , €4 5 < ey < B <egg <
1 43 ?—g -7 2—g)(ak—1)k
— Y. g7 < ,g, X = w, and € < V(e —g)(oh —7) , into (4.15), we get
2k’ b 5kg 50¢ (0) 0, ¥ (0) \/10C, [ak + 2 (ak — 7) 7]
ak — c“—g
Q) > (4—,6) ||ut||L2(Q> T gy + D Pl
HVUtHLz(Q) +7 (QDVU) (t) + 51!1 ) O (), (4.16)
using

ar { Il ey + ooy + 196320y + 190l 2(0) }
B (1)

2 2 2 2
< {HutHL2(Q) + l[uetll 20y + [IVullp2 ) + ||VUtHL2(Q)} ; (4.17)

AN VA
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where
2

min{(a—r)n’(k—1),%ak(b_2k02)}
2

aq = > O,

and

= max{(a+7)a7(k+1)2,02(k+1),k(c2+b)} o

into (4.16), we get
Q2 (t) = C2{E (1) + (90Vu) (1)},

where

1
Cy =04 min{—,l} > 0,
s

and

(4.18)

(4.19)

On the other hand, by replacement (4.8) — (4.14) into (4.6) and taking e; =1 fori=1,...,7, we get

Q2 (t)

IN

T+a e (0) 9 {r+ ey (0) + k7} 9
( ) + o ) ||ut||L2(Q) + D) HU,ttHLQ(Q)

k{c*+b+2g
+C3 || Vull72(q) + f{c+b+29)

2
+L;Ll) (gOVu) (t) + g (—g'O0Vu) (t) +

[Vue ||2L2(Q)

3xy (0)
2

@),

where

2
¥ (0) (eaC)p + €b+ 10Tx0,) } ~o

Oy :{kc2—|—ksup(g(t))+k§+5¢(0)0p+(62+§)

* 27

Using (4.17) into (4.20), we get
Q2 (t) < Cs{E(t) + (¢9OVu) (t) + (—¢g'OVu) (t) + © (1)},

where

1
Cs := C4max{—,1} >0,
aq

y ::max{(T+a n 6a¢(0)> ’ {T+5¢(O)+k‘7’}703,
2 2T 2

R{+b+29) (k+D) 3w O]
2 o272 ’

using (4.18) and (4.21), we get (4.7).
This completes the proof.

(4.20)

(4.21)

(4.22)
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Let
i /(2 —g) (ak — 1)k BT /BBy
' 0)/10C, [0k + 2 (ak —7) 7] 4o’ 2
4617 (ka — 1) ( — §) <0
12 (ka — 1) [@2L2C), + 26, 9] + 36, 72L2Cype) (0) ’
and
_ o? (02 — Q)

e > 0.

<
“ 737 (L +2a) (2L + 3a)
Now we are in position to state and prove our first result.

Theorem 4.3. Assume that the hypotheses (A1) — (A3) holds, the initial data (ug,u1) satisfy E(0) >0
and that 0., is as above. Then the classical energy E (t) of (1.1) — (1.3) decays to zero exponentially. That
is, there exist positive constants Cy > 0, C5 > 0 and C7 > 0 such that

C1’7 t
—— P(s)ds
E(t)SQl(O)e 05(f0 )7
C
where Cy is definite in (4.19), Cs is definite in (4.22) and Cr is definite in (4.41).
Proof. Now a differentiation of M () definite in (4.5) with respect to time gives

d
o 1@}

+x%{¢(t) (/k ) IVl
+2u) (t /vu /0 o (t—8) Vu(s )dsdx}

— 311 (0) [|uel[ 23y — Bot (0) st 720

t>0

)

=831 (0) |V 720 — B (0) | Ve 72 - (4.23)
A differentiation of (4.2) along the solution of (1.1) — (1.3) yilds
d
LT
= (o) [ wnuds+0(6) [ wpundo — 200) [ wuds
Q Q T Q
c? b
+—1 (t)/ Auudz + —1p (t)/ Augudz
T Q T Q
t
—l'(!J (t) / u (t) [/ g(t—s)Au(s) ds} dx. (4.24)
T Q 0
By direct calculations, we get
—g'(/J (t)/ uggude
T Q
ad

= _;E {’lﬂ (t) (ut, )L2 Q)} + ¢ ( )(ut’u)L2(Q)

a 2
9 () uellzz ) - (4.25)
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Using integration by parts, we get

—w / A () (t) dr = ——¢< VIV ()2

b
- Augud
7_w(t)/ﬂ upudz

b d

b
=~ v IVl | + ¥ O IVula

Lo [wo[ [ st-s2u0)s] do

= %g{;(t) {/Otg(t—s)/QVu(t).Vu(s)dxds}.

Using (4.25) — (4.28) into (4.24) , we get

d b

% {¢ (t)r (t) + %¢ (t) (Ut,U)Lz(Q) + Z¢ (t) |Vu||i2(ﬂ)}

= (1) (e, 0) gy + ¥ () (s ) oy + =8 (1) (w0 0) 2 g

2
o 2 c 2 b 2
+;¢ () [[uell 20y — —¥ ) [Vullz2(q) + —2T¢ ) [Vull2(0

+%w(t){/0tg(t—s)/gw (t).Vu(s) dxds}.

By direct calculations, we get

t

oo~ ([ ki) o019

+29 (t) < 5 Vu (t) ./0 ko (t—s) Vu(s)dsdx) }
= {0 - au (D} O (1)~ (1) (60Va) (1)
- {¢ (ko 0+ ([ Fao)ds ) 07 () = 20 00 0} IVl

1) — b (¢ {/QVut /k t—s)Vu()dsda:}
oyt {/Vu /Otﬁt—s dsdx}

11

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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Taking into account (2.19), (4.29) and (4.30) into (4.23), we obtain

d

— t

2 2 2 2
= 7 ulzz) — ke lluwliz o) + ke (Vudllz @) — 01 Vuell72 0
k 1 k
2OV 1)+ 5 GOV 1) + 2o 1)Vl

1
—59(1) ||VUHQL2(Q) + e’ (1) (e, w) o) + € (8) (wre, ue) 20

2
(1) (ury ) oy + 0 (8) [l o
22 () IV ulZagy + oot () IVl

€ t
+;¢ (t) {/0 g(t—2s) /Q Vu(t).Vu(s) dmds}
Fx {0 () = b (D} © (1) = xeb (1) (OIV) (1)

S{vwr o+ ( t bas)ds ) 0/ () = 26 (016 0} [Vl
1ax (¢ (1) — anb (1)) { /Q Y (t). /0 et 9) Vu(s)dsda:}

- ea- dsd
2X¢(t){ /Q Vau (t) /0 (t — 5) Vu(s)ds x}
=819 (0) [[ull72(cr) — Bath (0) [ueell72

—B31 (0) [Vl 720y — Batb (0) [ Varel|72 g -

Next, we use the estimate (4.31).

V' (1)
(t)

ey’ (t) (u, U)L2(Q)

1
< el (1) {4—51 leel| 72 () + Co |VU||%?(Q)} '

0
By using Young’s inequality <for €= é) ,

‘ < L and Poincaré inequality, we get

Using Young’s inequality (for e = ds), we get
e (t) (wre, ur) 2 (g
< b ()] 2 funlaoy + 5 el
= 2 ttliL2(Q) 252 tilL2Q) (-
/

¥ (1)
e (t)

' (1) () o

1
Using Young’s inequality (for €= g) , ‘ < L and Poincaré inequality, we get

eal 9 1 5
< 20 { e ITulg + g5 Il }-

Using Young’s inequality (for € = 04) and using fot g (s)ds < g, we get

;w(t) {/Otg(t— S)/QVU (t) . Vu(s) dmds}

046 eg [ 1
< eV 0+ L 1@ 1Vulg

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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zf;/((tt)) ‘ < L and fo s)ds < — Oa , we get

2x( t) — o) (t {/Vu /k (t —s)Vu(s dsdm}

< “Tt%@eaw L) A0y 1) vul

Using Young’s inequality (for e = d5)

Similarly, by using Young’s inequality (for e = dg), we get

—2x (t {/ Vu (t / 0(t—s)Vu(s dsdx}

S 55 ¥ (0 (O0V0) (1) + 2 (1466) 8 (1) [V ()] 720y -

Making use of (4.32) — (4.37) into (4.31) and

ka(0) = [ Bals)ds
0
- gav
we get
d
p {Q1 (1)}
L
< = (B g - - L) v lulg
(ka—71) €L €d
- (52 + v0) 15 72) Y (1) ||Utt|‘i2(ﬂ)
—{ﬁ3+§<c2—g—awp53 TLC,5; — 2(; )—%
— 2x (L 1+96 Ha -
2y, - D) (L0 —2X<1+56>0}w<t> 190l 0
b— kc?
- (m + %) W () Vel 2
L e ) (gOVu) (¢ L t 'OVu) (¢
(1= 55) v O U0V 0 - 50 (O (D70 0
L 1 1
(o= N vwen - (x{1- 55| - 1) v Eovu 0.
Finally, we choo?e 5y = %, 0o = Z—i, 03 = %, 04 = 4l€, 05 = Ll-a
x:=1, f5:= 1?09, and

da’ 2 T 12(ka —7)[a?L2Cy + 2B,g] + 38, 72L2Cpip (0)

5<mm{& VBB 47 (ho =) (¢~ 9) }

13

(4.36)

(4.37)
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o o2 (62
Then if 0, <

_g)
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37 (L +2a) (2L + 3a)

e, we entail from (4.38) that

d
o @10}
s -
< By )l — Z20 0 Tl - =L 019 ula
b — kc? 1
- (m - %) 0 0) IV ula ey — 226 1) (G000 (1)
1 , «@
oY (t) (=g BVu) (t) = 59 (1) O (2). (4.39)
Using (4.21) into (4.39), we get
% {Q1 (1)} < =Crp (O {E () + (9OVu) () + (—¢g'OVu) () + 4 (1)}, (4.40)
where
C7 := Cg min {ai’ 1} > 0,
2
and (4.41)
By By e(2—9) (b—k*)\ 1 1 «a
Ce '—mm{f%’T’ <B4+W IR
In virtue of Proposition 1 (the right hand side inequality) into (4.40) and using Q1 (t) < Q2 (t) <
2Q1 (t),, we find for all t >0
Lanmy<-Zumaw. (1.42)
5

Using Gromwell’s Inequality in (4.42), we find

J; v

__7(
Qi (t) <Qi(0)e Cs . t>0.

Notice that by our assumption E (0) > 0 in the theorem we have @1 (0) > 0. Again by Proposition
1 (the left hand side inequality ), we conclude the assertion of our theorem

C? t
6755 (fo w(s)ds) ’
Co

t>0.
This completes the proof.
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