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1. Introduction

The study of fixed point theory in metric spaces has done a great service in several areas of math-
ematics, namely, in solving differential and functional equations, in the field of approximation theory,
in optimization etc. In 2011 Azam A. et al (see [3]) introduced and studied complex valued metric
spaces wherein some fixed point theorems for mappings satisfying a rational inequality were established
and obtained several results in fixed point theory. The concept of complex valued b-metric space as a
generalization of complex valued metric space. Subsequently, many authors proved fixed and common
fixed point results in complex valued b-metric spaces (for example [5], [17]).

In this work we are interested in the generalization of coincidence point and fixed point theorem for
a 4-tuple of mappings satisfying a new type of implicit relation in complex valued b—metric spaces.

Let C be the set of complex numbers and z1, z3 € C. Define a partial order = on C as follows:

z1 2 zo if and only if Re(z1) < Re(zz), Im(z1) < Im(z2).

Consequently, one can infer that z; = z9 if one of the following conditions is satisfied:

(1) Re(z1) = Re(z2), Im(z1) < Im(z2),

(1) Re(z1) < Re(za), Im(z1) = Im(z2),

(1i1) Re(z1) < Re(z2), Im(z1) < I'm(z2),

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we write 21 3 22 if 21 # 22 and one of (i), (ii), and (iii) is satisfied and we will write
21 < 2o if only (iii) is satisfied.

Definition 1.1 ([4]). Let X be a nonempty set and s > 1 be a given real number. A functiond : X x X —
RY is said to be a b-metric on X if the following conditions hold:

(1) d(z,y) =0 if and only if x =y,

(1) d(z,y) = d(y,z) for all x,y € X,

(i71) d(z,y) < s[d(z, z) + d(z,y)] for all z,y,z € X.

Definition 1.2. [17] Let X be a nonempty set and s > 1 a given real number. A functiond: X x X — C,
satisfies the following conditions:

(d1) 0 2 d(z,y), for all z,y € X and d(x,y) =0 if and only if © =y,

(d2) d(z,y) = d(y,z) for all z,y € X,

(ds) d(z,y) 3 sld(x, z) + d(z,y)], for all x,y,z € X.

Then (X,d) is called a complex valued b—metric space.
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Note that every complex valued metric space is a complex valued b—metric space with s = 1. But the
converse need not be true.

Example 1.3. Let X = C. Defined : X x X — C* by d(z,y) = (Re(z — y))* +i x (Im(z — y))* for
all z,y € X. Then (X, d) is a complex valued b—metric space with s = 2.

Definition 1.4. [16] let f: C — C be a given mapping, we say that f is a non-decreasing mapping with
respect 3 if for every x,y € C, x 2y implies fz 3 fy.

Definition 1.5. Let (X, d) be a complex valued b—metric space and let

1) {zn} be a sequence in X. Then {x,} converges to x if and only if |d(x,, x)] — 0 as n — oo.

2) {zn} be a sequence in X. Then {x,} is a Cauchy sequence if and only if |d(Tn,Tnim)| — 0 as
n — oo.

3) A C X is said to be bounded is sup |d(z,y)| < +oo.

z,y€A

Definition 1.6. Let f,F : X — X

1) A point v € X is said to be a coincidence point of f and F if fo = Fa. We denote by Cy r the set
of all coincidence points of f and F'.

2) A point x € X is a fived point of F if x = Fux.

If f = Id we have Crq,r the set of all fixed points of F.

Definition 1.7. [2] The pair f, F : X — X s occasionally weakly compatible (owc) if fFxz = Ffx for
some x € Cy .

Definition 1.8. [8] The pair f : X — X and F : X — B(X) satisfies (Py,m) if 3 @ € X such that
fmx € Fx and frx € (Ff*~™x N Ff™z), withn,m € N and n > m. (f'z = z).
B(X) the set of all nonempty bounded subset of X.

Remark 1.9. [8] If f and F are owc, then (f,F) satisfies (Ps,1).

Example 1.10. /8] Let f :[0,1] — [0,1] and F : [0,1] — B([0,1]), such that

[ 1ifze{0,1} [ 10.1] ifz € {0,1}
flz) = { 0 else and Fx = 0 else

then f(0) € FO and f3(0) € (Ff%(0)) N (Ff(0)), so (f,F) satisfies (Ps,1).
Example 1.11. Let f:[0,1] — [0,1] and F : [0,1] — [0, 1], such that

Lifz=0 0ifze {3 1}
fl@)=< life=13 and Fz =
0 else %else

then f(0) = FO and f3(0) = Ff2(0) = Ff(0), so (f,F) satisfies (Ps1).

Definition 1.12. [7][Altering Distance Function | A function v : [0,1) — [0,1) is called an altering
distance function if the following properties are satisfied:

(1) is continuous and strictly increasing,
(73) ¥(t) =0 if and only if t = 0.

Notations(see [12])

U = {¢:]0,1) — [0,1)[) is an altering distance function },

b, = {(p : [0,00) — [0, 00), ¢ is continuous, ¢(t) =0 < ¢t =0, and <p(1ini>inf ap) < liminf <p(an)} .

n—roo

©:]0,00) x [0,00) — [0, 00), ¢ is continuous, p(z,y) =0< z =y =0,
P = and ¢(lim inf a,,, liminf b,,) < liminf ¢(a,, by,) :
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Theorem 1.13 (theorem 4[18]). Let (X,d) be a complete b-metric space with constant s > 1 and let
T:X — X be such that

d(T'(z), T(y)) < ad(z,y) + Bd(z, T(x)) +vd(y, T(y))
for every x,y € X, where a,, 5,7 > 0 with o+ f+ v < % Then T has a unique fixed point in X.

Theorem 1.14 (theorem 2.1[15]). If S and T are self-mappings defined on a complete complex valued
metric space (X,d) satisfying the condition
pd(x, Sx)d(y, Ty) + yd(y, Sx)d(x, Ty)

1+d(z,y)

d(Sz,Ty) 3 Md(w,y) +

for all z,y € X where \, i,y are nonnegative reals with X + p+ v < 1, then S and T have a unique
common fized point.

Theorem 1.15 (theorem 3.1[5]). Let (X,d) be a complete complex valued b-metric space with the co-
efficient s > 1 and xg € X. Let 0 < r € C and A,B,C,D and E are nonnegative reals such that
A+B+C+2sD+2sE < 1. Let S,T : X — X are mappings satisfying:

d(x,Sx)d(y, Ty) +Cd(y, Sx)d(xz, Ty) +Dd(x, Sx)d(xz, Ty) +Ed(y, Sx)d(y, Ty)

d(Sz,Ty) 3 Ad(z,y)+B
(Sz, Ty) 3 Ad(z, y) T+ d(z,y) 1+ d(z,y) 1+ d(z,y) 1+ d(z,y)

for all z,y € B(xo,r). If |d(zo, Szo)| < (1= A)|r| where A = max{ AL ALES then there exists

a unique point u € B(xg,r) such that v = Su = Tu.
2. Main Results

Definition 2.1. Let s > 1 and T be the set of all functions ¢ (t1,ta,...,tg) : (C?F — C satisfying the
following conditions:

(¢1) ¢ continuous on C8,
(¢o) Jav, B € Ry such that o+ 2sp < 1, Yu,v,w € C4 :

o (u,v,u,v,0,w) 20 or ¢ (u,v,v,u,w,0) 30 = |u| <aly|+ Blw|,

(¢3) Ty, € Ry such that sy + s?u < 1, Vu,v,w € Cy :
¢ (4,0,0,0,0,w) 3 0= [u] < ~yfv + plwl,
(¢4) ¢(u)07u)0705u)j0 Orqs(u)u?O)O?u’u)jO j uZO.

Example 2.2. gb(tl, to,ts, 14,15, tﬁ) =nt; — (Oth + Bts + ’}/t4).
Where 1, «, 8,y € Cy, with s(a+ 5+ 7) < 1.

Example 2.3. ¢(t1,t2,t3,t4,t5,t6) = aty — ria.
Where r,a € C4, with sr < a.

Example 2.4.
¢ (t1,t2,t3,ta, 5, t6) = nt1 — (ata + Btz + vta + plts + te]) -

Where p € Ry, n,a, 8,7 € Cy, withs(a+ﬁ)+’y+(52+s)ujn.

Example 2.5.

ts +t
¢(751,t2,753,t4,t5,t6)=t1—7“max{t2,t3,t4, 52 6}-
S

Where 0 < r < 1, with rs < 1.
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Example 2.6. ¢(t1,t2,t3,t4,t5,t6) =1 — TmaX{tQ,tg,t4}.
With 0 <r < %

Example 2.7. ¢(t1,t2,t3,t4,t5,t6) =t — M[tg + t4].
With 1 < min{3, 1},

Example 2.8. ¢(t1,1l2,13,t4,t5,t6) = t1 — (M2 + M) Where A, i,y are nonnegative reals with

1+to
A4 p+v<1,
Example 2.9. ¢(t1,ta,t3,t4,t5,t6) =1 — (Atg—i—B%—l—Cfftﬁz —I—D%—l—E%). Where A, B,C,D, E

are nonnegative reals with A+ B+ C +2sD + 2sE < 1,

Example 2‘10' ¢(t1) t2) t3) t4) t5) tﬁ) = tl - t_g

Example 2.11. ¢(t1,t2,t3,t4,t5,t6) = t1 - (% + 84(1(5—6_‘_1)) .

Theorem 2.12. Let (X,d) be a complex valued b—metric space with constant s, f,g, F and G : X — X
satisfying GX C fX, FX C gX, and

¢ (d(Fz,Gy),d(fz,gy),d(fz, Fx),d(gy,Gy),d(fz,Gy),d(Fz,gy)) 30, (2.1)

for all x,y € X, where ¢ € Fs, if one of FX, GX, fX or gX is a complete subspace of X,
then Cpp # 0, Coc # 0 and f(Crr) = F(Crr) = 9(Cyc) = G(Cyc) = {fr} = {gy} = {.}, for all
xr e CfJ:*, Yy e C G-

Proof.

Let 2y be an arbitrary point in X. Since FFX C ¢gX, we find a point 27 in X such that Fzy = gx;.
Also, since GX C fX, we choose a point x5 with Gx1 = fxo. Thus in general for the point 2,5 one find
a point xo,_1 such that Fxs,_o = gre,—1 and then a point zo, with Gre,—1 = fxo, forn=1,2,......

Repeating such arguments one can construct sequences z,, and y, in X such that,

Yon—1 = Fwon_o0 = gron_1,y2n = GT2n—1 = fr2,,n=1,2,..... (2.2)
For x = x9, and y = 2,41 By the inequality (2.1) we have :

o ( FFvon, Granin) ([ 2o, g0on 1), d (fTon, Fwan) <0
A (92on+t1, Gont1), d (fron, Gronti1) , d (9T2n11, Faon) ) ~

Implies
O (d (Y2n+1,Y2n+2) s d (Y2n, Y2n+1) » d (Y2, Y2nt1) » A (Y2nt1, Y2n+2) » d (Y2n, Y2nt2) ,0) 3 0.
So, by (¢5) we have

Id (Y2nt1,y2n12) | < ald(Y2n, Yont1) | + Bld (Y2n, Yoni2) |
< ald (yan, Yant1) | + Bs[ld (Yan, y2nt1) | +1d (Y2nt1, Yont2) []-
So L 58
. « S
|d (Y2n-+1, Y2n+2) | < hld (Y2n, yon41) | with b = —— 5 < (2.3)

For x = w42 and y = Top,41, by the inequality (2.1) we have :

é d(Faznio, Grantr) , d (frant2, 9Tant1) ,d (Fronte, Foanga) ) <
yd(9T2nt1, Gront1) , d (frons2, Grany) , d (9Tont1, Foong2) )~

Implies

¢ (d (y2n+3, Y2n+2) » d (Y2nt2, Yant1) , d (Y2nt3, Y2nt2)  d (Y2nt2, Yont1) 0, d (Y2nt1, Yonts)) 3 0.
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So, by (¢5) we have

ald (Yan+2: Yon+1) | + B1d (Y2n+3, Y2n+1) |
ald (Yont2, Yan+1) | + sB[|d (Yant3, Y2n+2) | + |d (Y2n+2, Y2n+1) |]-

|d (Y2n+3: Y2n+2) |

IAIA

|d (Y2n+3, Yont2) | < hld (Y2n+2, Y2nt1) |- (2.4)
By (2.3) and (2.4) we have

|d(yn+1ayn)| S hn71|d(y17y2) |7 n = 273a """

Therefore, for any n,m € N* with n > 2, we have

Id (Yn, Yntm) | < sld (Yn, Yns1) | + 52|d (Ynt1,Yns2) | + 53|d (Yn+2,Ynis) | +
-t Sm_1|d (yn+m—2; yn+m—1) | + 5m_1|d (yn+m—17 yn+m) |

On the other hand we have :

d (Yrs Ypm) | < (Sh"7Hd (g1, y2) | + oo 4+ 8" RT3 d (y1, y2) |+ 8™ TR 2 d (1, y2) |)

< shnl (1 + (sh) + (sh)? + ... + (sh)™ 2 + sm”hm*l) Id (y1,12) |
1—(sh)™ !

= shn! (% +5m2hm1> |d (y1,y2) |

<

o S m—
pn—1 <m + (sh) 1) |d(y1ay2) |’

from where lim d (yn, Yn+m) = 0 for m € N*. By definition 1.5 then (y,) is a Cauchy sequence in (X, d).
n—oo
If fX is a complete subspace of X, there exists u € fX such that li_>m d(yan,u) = 0. Then we can
find v € X such that
fv=u (2.5)

We claim that u = Fv.

|d (Fv,y2n) | sld (Fv, yan+1) | + sld (y2n+1,Y2n) |

s?[|d (Fv,u) [+ 1d (u, y2n41) [] + 51d (y2n+1, y2n) |

VANVAN

we deduce that the sequence (d (F'v,y2y)) is bounded, similarly, we obtain (d (F'v,y2,—1)) is bounded.
Then there exists a strictly increasing application § : N — N such that (d (Fv,yag(,)—1)) and
(d (Fv, ygg(n))) are convergent.
Using inequality (2.1) and (2.5), we have

qu ( d(FUanQH(n)fl) ad(fvvngG(n)fl) ,d(f’U,FU) ) <0
A (9T20(n) -1, GT20(n)—1) » d (fv, Grog(n)—1) s d (Fv, gT2g(my—1) ) ~
We have successively

(b (d (F’U, y29(n)) ) d (U, y29(n)—1) ) d (’LL, F’U) ) d (y20(n)—17 y20(n)) ’ d (U, y29(n)) ’ d (FU, y20(n)—1)) j 0.

letting n — oo by (¢;) we obtain

. . =
QS <nll>r_{_100 d (F’U, y29(n)) ,0, d (U, FU) ;0,0, ngg-loo d (F’U, y29(n)1)) ~ 0.
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Then by (¢5), we have

. < .
|n£I_EDQd(FUay29(n)) | = ’Y|d(U,FU)| +N|n£de(FUay29(n)fl) |
< ’Y|d (’U,, F’U) | + 8/14| ngr—‘,r-loo[d (FU7 U) +d (U, y29(n)—1)]|a
SO

On the other hand we have
|d (U, FU) | < SHd (’U,, y29(n)) | + |d (y29(n)aFU) ”
By (2.6) we have

|d(u, Fv)| < lim s[|d (U,ygg(n)) |+ |d (ygg(n),F’U) ]

n—-+oo

s lim |d (y20(n), Fv) |

(s7+ s°p)|d (u, Fv) |
|d (u, Fv) |,

ARVAN

so d (F'v,u) =0, that is u = fv = Fv.
By FX C gX we have w € X such that gw = w. Then we have also w € Cy ¢ # 0, and f(Cfr) N

9(Cy.c) # 0.
Forx =v e Cfp and y = w € Cy ¢ by (2.1) we have successively

¢ (d(Fv,Gw) ,d(fv,gw),d(fv, Fv),d(gw, Gw) ,d(fv, Gw),d(Fv,gw)) 30,
SO
o (d(fv,Gw),d(fv,Gw),0,0,d(fv,Gw),d(fv,Gw)) 30,

then by (¢,), we have d(fv, Gw) = 0, there is ¢(Cy.c) = G(Cy,¢) = gw = fv = Fv. Similarly, we
have f(CﬁF) = F(Cf,p) = g(ng) = G(Cg7(;) =gw = fv, for all v € CfJ:*, w e Cg,g.
If GX is a complete subspace of X, there exists u € X such that lim d(yan,u) = 0. Then we can find
n—oo
w € X such that

Gw = u.

And like GX C fX, there exists v € X such that fv = u. In the same previous way we find u = F'v and
there exists w’ € X such that guw’ = Guw' = u.
If FX or gX is complete, then by permuting the roles of f with g and F' with G, we find the proof.

Corollary 2.13. Let (X,d) be a complex valued b—metric space with constant s, let F,G : X — X
satisfying

¢ (d(Fzx,Gy),d(z,y),d(z, Fr),d(y,Gy),d(z,Gy) ,d(Fz,y)) 30, (2.7)

for all z,y € X, where ¢ € Fs, if one of FX, GX, or X is a complete subspace of X, then F' and G have
a unique common fixed point.

Proof. Suppose f = g = Id, so (2.7) = (2.1), by theorem 2.12 we have Crq.r = Crq,c # 0 and
C[d,p = F(C[d,p) = C[d,(; = G(Cld,G) = {x} = {y} = {}, for all z € CId,F; Yy € CId,G-
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Theorem 2.14. Let (X, d) be a complex valued b—metric space with constant s, let f,9,F,G : X — X
satisfying GX C f™mX, FX C ¢g"™ X, mj,me € N and

¢ (d(Fz,Gy),d(f"x,g™y),d(f™x, Fzr),d(g"y, Gy),d(f"x,Gy),d(Fz,g"*y)) 20, (2.8)

for all x,y € X, where ¢ € Fy, if one of FX, GX, f™ X or ¢" X is a complete subspace of X. Then
(i) Cpmip # 0, Cgma ¢ # 0 and f (Cpmi p) = F(Cymi p) = g™ (Cgmz ) = G(Cymz ) = {.}.
(1) If the pair (F, f) satisfies (Pny.m,), and (G, g) satisfies (Pnym,) , then F, G, fm1~™1 and g"2~™2
have common fixed point u € X.
Moreover, if n1 = 2my or ng = 2me, then u is unique.

Proof. (i) For f = f™ and g = ¢g™* we have (2.8) = (2.1), so by theorem 2.12, Cym: p # 0,
Cynss £ 0 and f™ (Cpms p) = F(Cpms ) = g™ (Cys ) = G(Cyrs.0) = L.},

(77) Now, we prove that F, G, f"*~™ and ¢"2~"™2 have a common fixed point. Since (F, f) satisfies
(Pny m, ), and (G, g) satisfies (Ppy.m, ), there exist v,w € X such that f'v = Fv, f"v = Ff™uy =
Ffm=my g™ w = Gw and ¢g™w = Gg"™*w = Gg™2~™2w, then v € Cymi p, w € Cyma ¢ and we have
(7). Sou = fmMy =Fv=g¢"w=Gu.

For x = f™ =™y, y = w, by (2.1) we have successively :

& d(Ffm=m, Gw),d(f" v, g"™w), d(f"o, Ff"~™) 0
,d (g™ w, Gw) ,d(f"v, Gw) ,d (F ™™™, g™ w) ~

10) (d (Ff"l_mlv, Gw) .d (Ff"l_mlv, Gw) ,0,0,d (Ff"l_mlv, Gw) ,d (Ff"l_mlv, Gw)) =0,

by (¢3), we have d (F fm =™y, Gw) = 0, this implies that F'f™ "™y = Guw = u. fM~""y = fMoy =
Ffmy=Ffm~ ™y = Fu = u. Similarly, we have uv = ¢"*~"2u = Gu.

Suppose that nqy = 2m4 and v/ is an other common fixed point of fm1=™1 g"2=™2 [ and G.

Then o' = fm =" = f™u' = Fu/, so v € Cpmy p and we have Fu = u = f"~ "y = f™u by
theorem 2.12 we have f™(Cymi p) = F(Cpmi p) = g™ (Cyma,c) = G(Cymz ) = {g™u} = {f™u'},
hence u = /.

Note that if (F, f), (G, g) are owc, then (F, f), (G, g) satisfies (P,1), so by theorem 2.14 we obtain :

Corollary 2.15. Let (X,d) be a complex valued b—metric space with constant s, let f,g, F,G: X — X
satisfying GX C fX, FX C gX and

¢ (d(Fzx,Gy),d(fz,gy),d(fx, Fz),d(g9y,Gy),d(fz,Gy),d(Fz,gy)) 30, (2.9)

for all x,y € X, where ¢ € Fs, if one of FX, GX, fX or gX is a complete subspace of X. Then

(i) Cr.r 0, Co # 0 and f(Crr) = F(Cr.r) = 9(Cya) = G(Cya) = {.}.

(1i) If the pair (F, f), (G,g) are occasionally weakly compatible (owc). Then F, G, f and g have a
unique common fixed point.

Proof.

(F, f), (G, g) are owc, then (F, f), (G,g) are satisfies (P 1). So all conditions of theorem 2.14 are
satisfied with m; = mo =1 and n; =ny = 2, then F, G, f = f>~! and g = ¢g>~! have a unique common
fixed point.

3. Consequences

By corollary 2.13 and example 2.10 we obtain:

Theorem 3.1. Let (X,d) be a complexr valued b—metric space with constant s, let F,G : X — X
satisfying

d(z,y)

d(Fa,Gy) 3 — 5

(3.1)

for all x,y € X, if one of FX, GX, or X is a complete subspace of X, then F' and G have a unique
common fized point.
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Corollary 3.2 (theorem 2.1[6]). Let (X,d) be a complet b—metric space with constant s, let T : X — X
be a self-mapping satisfying the (¢, ¢)—weakly contractive condition

d(z,y)
82

P(sd (T, Ty)) < (

) —ld(z,y)), (3.2)

for all x,y € X, where ¢» € U, o € ®1. Then T has a unique fixed point.

Proof. we have

U(sd (T2, Ty)) < ¥(—5) = ¢ldz,y)) < d(—57)
implies
sd(Tx,Ty) < d(fz’ y)

then (3.2) = (3.1).
By corollary 2.13 and example 2.11 we obtain:

Theorem 3.3. Let (X,d) be a complexr valued b—metric space with constant s, let F,G : X — X
satisfying

s*d (x,Gy) +d (y, Fx)

=<
d(anGy) ~ 84(8 T 1)

(3.3)

for all z,y € X, if one of FX, GX, or X is a complete subspace of X, then ' and G have a unique
common fized point.

Corollary 3.4 (theorem 3.1[6]). Let (X,d) be a complet b—metric space with constant s, let F,G : X —»
X be a self-mapping satisfying the (v, p)—generalized Chatterajea-type contractive condition

s3d (z,Gy) + d (y, Fx)

Y(sd (Fzx,Gy)) < ( (s + 1)

) —¢ld(z, Gy) ,d(y, Fr)), (3-4)

for all x,y € X, where ¢ € U, o € ®y. Then F and G have a unique common fixed point.

Proof. we have

s3d (z,Gy) + d (y, Fx)
$(s+1)

s3d (z,Gy) + d (y, Fx)
$(s+1)

P(sd (Fz, Gy)) < ( ) —ld(z,Gy),d(y, Fx)) < ( )

implies

s3d (z,Gy) +d (y, Fx)

<

then (3.4) = (3.3).
By corollary 2.13 and example 2.2 with F' = G we obtain theorem 1.13
By corollary 2.13 and example 2.3 with F' = G we obtain theorem 1 [13]
By corollary 2.13 and example 2.4 with F' = G we obtain theorem 3.1.2[14]
By corollary 2.13 and example 2.5 with F' = G we obtain theorem 3.1.8[14]
By theorem 2.14 and example 2.5 with r = Sj_a we obtain corollary 2.3 [19]
By theorem 2.14 and example 2.5 with r = % we obtain corollary 2.4[19]
By corollary 2.13 and example 2.8 we obtain theorem 1.14
By corollary 2.13 and example 2.9 we obtain theorem 1.15
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