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Stochastic Differential Equations for Orthogonal Eigenvectors of (G, ε) −Wishart Process
Related to Multivariate G−fractional Brownian Motion
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abstract: In the present paper, we introduce a new process called multivariate G−fractional Brownian

motion
(

BH
t

)
where the Hurst parameter H is a diagonal matrix. Moreover, we give an approximation

(
Rε

t

)

of Riemann-Liouville process of
(

BH
t

)
by G−Itô’s processes. Then we give stochastic differential equations for

orthogonal eigenvectors of (G, ε) −Wishart fractional process defined by Rε
t

(
Rε

t

)
∗

, which has 0 and
∣∣Rε

t

∣∣2 as

eigenvalues. An intermediate asymptotic comparison result concerning the eigenvalue
∣∣Rε

t

∣∣2 is also obtained.
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1. Introduction

In the last decade the fractional Brownian motion model (fBm for short) has found a wide range of
applications in several fields since the seminal paper of Mandelbrot and Van Ness, 1968 [14]. Examples
are mathematical finance, telecommunication engineering, internet traffic analysis, physical sciences, geo-
sciences and neurosurgery. This model was introduced as the unique Gaussian process having stationary
increments and self-similarity (see also [1], [11], [14] for a review of the basic properties). Since then,
based on the study of fBm,various extensions were introduced by many authors, for example, the multi-
variate fractional Brownian motion (mfBm for short) which is an extension of the well-known fractional
Brownian motion, has also seen considerable and fruitful research in both applications and theory (see
[2], [3], [9]).

On the other hand, aspects of model ambiguity such as volatility uncertainty have been studied by
Peng (for more details see [15], [16], [17]) who introduced as a typical and important case, a new theory
of nonlinear expectation space; the so-called G−expectation in an intrinsic way which does not rely on
any particular probability space. It reveals the probability distribution uncertainty in a fundamental way
which is crucial in many situations such as modeling risk uncertainty in mathematical finance. It can
be regarded as a counterpart of the Wiener probability space in the linear case. Within this framework,
a new kind of Brownian motion called G−Brownian motion (GBm for short) was constructed and the
corresponding stochastic calculus was established. Moreover, a stochastic integral of Itô’s type under
G−expectation was developed. A very interesting new phenomenon of the G−Brownian motion B is
that its quadratic variation process 〈B〉 is a stochastic process (not deterministic in general) and has
independent and stationary increments which are identically distributed.

Inspired by the G−Brownian motion framework as presented by Peng [17], the G−fractional Brownian
motion (GfBm for short) with Hurst parameter h ∈ (0, 1) has been defined, firstly, by Wein Chen (see [5])
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in one dimensional case, as a centered G−Gaussian process with stationary increments. Our first objective
is to present a new process called the multivariate G−fractional Brownian motion process (mGfBm for
short) in terms of the G−Brownian motion. This model is characterized by one parameter called the
Hurst exponent H which is, in our case, a diagonal matrix.

Recently, the theory of random matrices which has received an increasing interest in different appli-
cation fields such as physics, economics, psychology and so on, has in turn led to the discovery of a new
interesting theory of ”random matrices processes” in the nonlinear framework, for a recent account we
refer the reader to [12], [18]. Furthermore, historically the earliest studied ensemble of random matrices
is the Wishart ensemble, introduced by Wishart [13] in 1928.

In the present paper, we introduce two new stochastic processes that is, the G−multivariate fractional
Brownian motion process

(
BH

t

)
and the (G, ε) −Wishart process related to its Riemann-Liouville part.

Our ultimate goal is to investigate the processes of orthogonal eigenvectors of G−Wishart process. Since
the eigenvalues collide, then we could not use Bru’s approach [6], which was used in [12], [18]. Our
approach is mainly based on algebraic technics.

In summary, the structure of the paper is organized in the following way. In Section 2, we provide
the necessary background for the paper and some definitions. In Section 3, we introduce the mul-
tivariate G−fractional Brownian motion as an integral representation with respect to d−dimensional
G−Brownian motion. Moreover, we give an approximation (Rε

t ) of Riemann-Liouville process related
to
(
BH

t

)
in L2

G(Ω) by G−Itô processes. Then, in Section 4 we define the corresponding G−Wishart
processes Rε

t (Rε
t )

∗
. Finally, we give stochastic differential equations (SDEs for short) for its orthogonal

eigenvectors and an asymptotic comparison result which concerns the eigenvalue |Rε
t |2.

2. Preliminaries

We begin with a brief survey of the theory of sublinear expectation space and some main results
from the G−framework of G−stochastic calculus, essentially based on the references [4], [15], [16] and
[17], which are needed for what follows.

G−expectation and G−Brownian motion.

Briefly speaking, a G−Brownian motion is a continuous process with independent and stationary incre-
ments under a given sublinear expectation. Throughout, we let Ω :=

{
ω ∈ C

(
R+,Rd

)
: ω (0) = 0

}
, d ≥

1, be the space of all Rd−valued continuous path functions (ωt)t∈R+
such that ω0 = 0, endowed with the

distance

ρ
(
ω1, ω2

)
:=

∞∑

i=1

2−i max
0≤t≤i

∣∣ω1
t − ω2

t

∣∣ ∧ 1.

Let B (Ω) be the associated Borel σ−algebra, Ωt := {ω.∧t : ω ∈ Ω} and B be the canonical process.
Consider the following space of random variables:

Lip (Ωt) :=
{

ϕ (Bt1∧t, ..., Btn∧t) : t1, ..., tn ∈ [0, ∞) , ϕ ∈ Cb,Lip

(
R

d
)n
}

,

where Cb,lip

(
R

d
)n

denotes the space of all Lipschitzian and bounded functions on
(
R

d
)n

. We further
define

Lip (Ω) =

∞⋃

n=1

Lip (Ωn) .

Peng [17] constructed the G−expectation E : H : =Lip (Ω) → R as a sublinear expectation on the
lattice H of real functions that satisfies: for all X, Y ∈ H,

(a) Monotonicity: E [X ] ≥ E [Y ] if X ≥ Y.

(b) Preservation of constants: E [c] = c for all c ∈ R.

(c) Sub-additivity: E [X ] − E [Y ] ≤ E [X − Y ] .
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(d) Positive homogeneity : E [λX ] = λE [X ] , for all λ ≥ 0.

The triple (Ω,H,E) is called a sublinear expectation space. Let X = (X1, ..., Xd) be a d−dimensional
random variable on (Ω,H,E) and let

G (A) :=
1

2
E [(AX, X)] , A ∈ Sd,

where Sd is the space of d × d symmetric matrices and (., .) the Euclidian inner product of Rd. Then
there exists a non empty, bounded and closed subset Γ of Rd×d such that

G (A) :=
1

2
sup
γ∈Γ

{tr [γγ∗A] : γ∗ is the transpose of γ} .

X is called G−normal distributed if for each ϕ ∈ Cb,Lip(Rd), the function

u (t, x) := E

[
ϕ
(

x +
√

tX
)]

, (t, x) ∈ [0, ∞) × R
d,

is the unique viscosity solution of the following nonlinear partial differential equation, called the G−heat
equation:

∂u

∂t
− G

(
D2u

)
= 0 on (t, x) ∈ [0, ∞) × R

d and u(0, x) = ϕ (x) ,

where D2u =
(

∂2
xixj

u
)d

i,j=1
is the Hessian matrix of u.

The set Γ is a collection of parameters that represents the variance uncertainty of the G−distributed
random vector X . This G−normal distribution is denoted by N(0, Σ), where Σ := {γγ∗ : γ ∈ Γ} . For
more details, the reader may refer to [16].

Remark 2.1. When d = 1, Σ is an interval that is Σ =
[
σ2, σ2

]
with 0 ≤ σ ≤ σ. Here G = Gσ,σ, is the

following sublinear function parameterized by σ and σ:

G (α) =
1

2

(
σ2α+ − σ2α−

)
, α ∈ R.

Recall that α+ = max{0, α} and α− = −min{0, α}. In fact σ2 = E
[
X2
]

and σ2 = −E
[
−X2

]
.

Definition 2.2. A random vector Y = (Y1, Y2, ..., Yn), Yi ∈ H, is said to be independent under E from
another random vector X = (X1, X2, ..., Xm), Xi ∈ H, if for each test function ϕ ∈ Cb,Lip (Rm+n) we
have

E [ϕ (X, Y )] = E [E [ϕ (x, Y )]|x=X ] .

Definition 2.3. Let X1 and X2 be two n−dimensional random vectors defined on the sublinear expecta-

tion space (Ω,H,E). They are called identically distributed, denoted by X1
d
= X2, if

E [ϕ (X1)] = E [ϕ (X2)] for all ϕ ∈ Cb,Lip (Rn) .

In [16], Peng showed that under the G−expectation E, the d−dimensional canonical process
{Bt (ω) = ωt, t ≥ 0} is a G−Brownian motion, that is,

(i) B0 = 0,

(ii) For any s, t ≥ 0, Bt and Bt+s − Bs are N(0, tΣ)−distributed

and

(iii) For any s, t ≥ 0, the increment Bt+s − Bt is independent of (Bt1
, ..., Btm

) for each t1, ..., tm ∈ [0, t] .
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Note that (a, Bt) is a real Gσ
a
, σa−Brownian motion for each a ∈ R

d, where σ2
a = E

(
(a, B1)

2
)

and σ2
a = −E

(
− (a, B1)

2
)

(for more details, see [15]). In particular each component of (Bt) is a real

G−Brownian motion. In what follows, we write σi (resp. σi) instead of σei
(resp. σei

), where (ei)
n

i=1 is
the canonical basis of Rd.

Remark 2.4. In [16], Peng showed that X ∼ N(0, Σ) if and only if aX + bX
d
=

√
a2 + b2X, for each

a, b ≥ 0 and for each random variable X independent of X such that X
d
= X. Consequently, since the

random variable
Bi

t1√
t1

,
Bi

t2
− Bi

t1√
t2 − t1

, ...,
Bi

tn
− Bi

tn−1√
tn − tn−1

, for 0 < t1 < t2 < ... < tn,

are N(0, Σ)−distributed then it is not hard to prove by recurrence that, for each b1, b2, ..., bn ∈ R the
random variable

b1Bi
t1

+ b2

(
Bi

t2
− Bi

t1

)
+ ... + bn

(
Bi

tn
− Bi

tn−1

)
∼ N(0,

[
σ2

i A, σ2
i A
]
),

where A = b2
1t1 + ... + b2

n (tn − tn−1) .

For p ≥ 1, we denote by L
p
G (Ω) the closure of Lip (Ω) under the Banach norm ‖X‖p,G = (E[|X |p])

1
p .

Derived in [8], the G−expectation E can be viewed as an upper expectation of ordinary expectations, i.e.

there exists a weakly compact set of probability measure P on (Ω,B (Ω)), such that for each X ∈ L1
G (Ω)

E [X ] := sup
P ∈P

E
P [X ] ,

where E
P stands for the linear expectation under the probability measure P .

Definition 2.5. A property holds ‘quasi-surely’ (q.s., for short) if it holds p.s. for each P ∈ P.

Note that the convergence in L2
G implies the convergence q.s. Now, we introduce the definition of

d−dimensional two-sided G−Brownian motion.

Definition 2.6. Let (B̃t)t≥0 be another d−dimensional G−Brownian motion on (Ω,H,E) independent
of (Bt)t≥0. The process (Wt)t∈R

defined by

Wt =

{
Bt if t ≥ 0,

B̃−t if t < 0,

is called a two-sided G−Brownian motion.

G−Itô processes.

In this subsection we recall some notions on G−stochastic calculus with respect to
(
Bi

t

)
t≥0

. Let T > 0

and let πT = {t0, ..., tN } be a partition of [0, T ] . Let M
p,0
G (0, T ) be the collection of processes in the

following form

ηt (ω) =

N−1∑

j=0

ξj (ω) 1[tj ,tj+1) (t) ,

where ξj ∈ L
p
G

(
Ωtj

)
; j = 0, ..., N − 1. For each η ∈ M

2,0
G (0, T ) , the G−stochastic integral is defined

pointwisely by

I (η) =

T∫

0

ηsdBi
s :=

N−1∑

j=0

ξj

(
Bi

tj+1
− Bi

tj

)
.
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A remarkable result of Peng [15] is that the quadratic variation process
〈
Bi
〉

of Bi is not a deterministic
process, unlike the classical case and it is defined by

〈
Bi
〉

t
:=
(
Bi

t

)2 − 2

t∫

0

Bi
sdBi

s.

It was proved in [8] that σ2
i t ≤

〈
Bi
〉

t
≤ σ2

i t. We define the mutual variation process by

〈
Bi, Bj

〉
=

1

4

[〈
Bi + Bj

〉
−
〈
Bi − Bj

〉]
.

Note that
〈
Bi, Bi

〉
=
〈
Bi
〉

. Following Peng, a G−Itô process is defined as follows:

Definition 2.7. A d−dimensional G−Itô process X is defined by

Xt = X0 +
d∑

i=1

t∫

0

ηi
sdBi

s +
d∑

i,j=1

t∫

0

θij
s d
〈
Bi, Bj

〉
s

+

t∫

0

αsds,

where the initial condition X0 ∈ H, α, θij ∈ M1
G (0, T ) and ηi ∈ M2

G (0, T ) .

We have the following Burkholder-Davis-Gundy-type estimates (BDG, in short) formulated, for each
p ≥ 2 and 0 ≤ s ≤ t, by

E


 sup

0≤s≤t

∣∣∣∣∣∣

s∫

0

ηi
udBi

s

∣∣∣∣∣∣

p
 ≤ Kt

p

2
−1

t∫

0

E

[∣∣ηi
u

∣∣p
]

du,

where K is a positive constant independent of η. (For further details see [10]).

Remark 2.8. It follows from Remark 2.4, for each deterministic function f ∈ L2 (R+, dt) , that

t∫

0

f (s) dBi
s ∼ N

(
0,
[
σ2

i (t) , σ2
i (t)

])
,

where σ2
i (t) = σ2

i

t∫
0

f2(s)ds and σ2
i (t) = σ2

i

t∫
0

f2(s)ds.

Furthermore, for each convex function ϕ ∈ Cb,Lip

(
R

d
)n

, we have

E


ϕ




t∫

0

f(s)dBs




 =

1

σi (t)
√

2π

+∞∫

−∞

ϕ (y) exp

(
− y2

2σ2
i (t)

)
dy.

In particular, we have

E




t∫

0

f(s)dBs




4

= 3σ4
i (t) .

We will need the vectorial G−Itô formula [15].

Theorem 2.9. Let f ∈ C2 (Rn) be a real function with bounded derivatives such that
{

∂2
xkxl

f
}n

k,l=1
are

uniformly Lipschitz and let Xt =
(
X i

t

)n

i=1
be an n−dimensionnal vector of G−Itô processes. Then, we

have

df (Xt) =
n∑

k=1

∂f

∂xk

(Xt) dXk
t +

1

2




n∑

k,l=1

∂2f

∂xk∂xl

(Xt) d
〈
Xk, X l

〉
t


 .
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Note that d
〈
Xk, X l

〉
t

= dXk
t dX l

t. In particular, as a consequence of G−Itô formula, if f (x, y) = xy ,
then we obtain the G−integration formula by parts in terms of Itô differential:

d (XtYt) = XtdYt + YtdXt + dXtdYt,

for each (Xt) , (Yt) two unidimensional G−Itô processes.

3. Multivariate G−fractional Brownian motion

We are interested here in the multivariate G−fractional Brownian motion, called also operator G−
fractional Brownian motion. For further readings on the classical case see [2], [3] and [9].

In the rest of this paper, we consider the d−dimensional two side G−Brownian motion (Wt)t∈R
defined

on (Ω,H,E) where d > 1. Let H = diag [h1, h2, ..., hd] be a diagonal matrix such that hi ∈ (0, 1) for
i = 1, 2, ..., d and let KH (t, u) be the matrix of kernels defined by

KH (t, s) := (t − s)
D
+ − (−s)

D
+ = diag [kh1

(t, s) , kh2
(t, s) , ..., khd

(t, s)] ,

where D = H − 1
2 I and khi

(t, s) = (t − s)
hi− 1

2

+ − (−s)
hi− 1

2

+ . In this notation, aD is understood as the

exponential of the matrix D log a for each a > 0 and MH = Γ (I + D)
−1

depending only on H, where Γ (x)
is the usual Gamma function and I is the identity matrix. Note that the matrix Γ (I + D) is invertible.

Definition 3.1. The process
(
BH

t

)
t∈R

defined by

BH
t =

∫

R

KH (t, s) MHdWs,

is called multivariate G−fractional Brownian motion.

Remark 3.2. Let Chi
:= Γ

(
hi − 1

2

)−1
for each i = 1, ..., d. Since,

B
H,i
t = Chi

∫

R

khi
(t, s) dW i

s ,

then all the components of
(
BH

t

)
t∈R

are real fractional G−Brownian motions.

Remark 3.3. Clearly, we can easily check that B
1
2

I

t = Bt, t ≥ 0.

Proposition 3.1. The mGfBm (BH
t )t∈R satisfies the following properties:

(i) H−self-similarity, that is BH
at

d
= aHBH

t .

(ii) Stationarity of increments.

Proof. (i) Since B is 1
2 I−self-similar then W is also 1

2 I−self-similar, so that

KH (at, s) MHdWs = aDKH

(
t,

s

a

)
MHdWs

d
= aDKH

(
t,

s

a

)
a

1
2

IMHdW s
a

d
= aHKH

(
t,

s

a

)
MHdW s

a
,

then for each a > 0, we have

BH
at

d
= aHBH

t .
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(ii) Observe that, following Peng [15], [16], [17], the process
(

W̃v

)
v∈R

defined by W̃v = Wu−v − Wu is a

G−Brownian motion and then W̃v
d
= Wv. It follows that

BH
t − BH

s =

∫

R

(
(t − u)

D

+ − (s − u)
D

+

)
MHdWs =

∫

R

(
(t − s − v)

D

+ − (−v)
D

+

)
MHdW̃v

d
= BH

t−s.

The proof is complete.
�

Recall that, for each t ≥ 0,

BH
t :=

0∫

−∞

[
(t − s)D − (−s)D

]
MHdWs +

t∫

0

(t − s)D
MHdWs.

The first one of these two Wiener integrals is called the low-frequency part of mGfBm and the other one
its high-frequency part. Roughness of paths of mGfBm is mainly due to its high-frequency part, which
is also called the Riemann-Liouville process given by

RH
t :=

t∫

0

(t − s)
D

MHdWs =

t∫

0

(t − s)
D

MHdBs.

In the rest of this section, we assume that:

either all hi ∈
(

0,
1

2

)
, either all hi ∈

(
1

2
, 1

)
, for i = 1, 2, ..., d.

We introduce at first an approximation of RH
t by G−Itô processes as follows:

R
H,ε
t =

t∫

0

(t − s + ε)DMHdBs.

(see [7], [19] for the classical case).
Next, we prove the following lemma which plays an important role in our results.

Lemma 3.4. For every ε > 0, the process
(

R
H,ε
t

)
t≥0

is a d−dimensional G−Itô process satisfying the

following G−SDE

dR
H,ε
t = εDMHdBt +




t∫

0

D(t − s + ε)D−IMHdBs


 dt (3.1)

Proof. Let
F (s, Bs) = ϕ (s) Bs,

where ϕ (s) = (t − s + ε)DMH is the deterministic diagonal d × d matrix, which is differentiable in s. By
using the G−integration formula by parts, we obtain

d
(
ϕij

s Bj
s

)
= ϕij

s dBj
s + dϕij

s Bj
s

and then
t∫

0

ϕ (s) dBs = ϕ (t) Bt −
t∫

0

dϕ (s) Bs.
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Taking into account the facts that

ϕ (t) = εDMH and dϕ (s) = −D (t − s + ε)D−I
MHds,

we have
R

H,ε
t = εDMHBt + I (t) (3.2)

where

I (t) :=

t∫

0

MH (t − s + ε)D−I
DBsds.

We set f(t, s) = MH (t − s + ε)
D−I

DBs. Note that the deterministic function I (t) is derivable and

I ′ (t) =

t∫

0

∂

∂t
f(t, s)ds + f (t, t)

=

t∫

0

∂

∂t

(
MH (t − s + ε)

D−I
D
)

Bsds + MHεD−IDBt.

Since
∂

∂t

(
MH (t − u + ε)

D−I
D
)

= − ∂

∂u

(
MH (t − u + ε)

D−I
D
)

,

then

I ′ (t) = −
t∫

0

∂

∂u

(
MH (t − u + ε)

D−I
D
)

Budu + MHεD−IDBt.

By using the G−integration formula by parts, we have

t∫

0

∂

∂u

(
MH (t − s + ε)

D−I
D
)

Bsds = MHεD−IDBt −
t∫

0

MH (t − s + ε)
D−I

DdBs,

then

I ′ (t) =

t∫

0

MH (t − s + ε)
D−I

DdBs.

Consequently, the G−Itô differential of (3.2) is given by

dR
H,ε
t = d

(
εDMHBt

)
+ I ′ (t) dt = εDMHdBt +




t∫

0

D (t − s + ε)
D−I

MHdBs


 dt.

Then, we obtain the desired result. �

We will need the following lemma.

Lemma 3.5. Assume that 1
2 < hi < 1. Then, for each a, b > 0, we have

∥∥∥(a + b)
D − aD

∥∥∥ ≤
∥∥bD

∥∥ ,

where ‖A‖ :=

(
∑
i,j

A2
ij

) 1
2

denotes the classical norm of the matrix A.
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Proof. We have
∥∥∥(a + b)

D − aD
∥∥∥

2

=

d∑

i=1

(
(a + b)

hi− 1
2 − ahi− 1

2

)2

Note that 0 < hi − 1
2 < 1

2 , then by using the inequality (a + b)
p ≤ ap + bp if 0 < p < 1, we have

(a + b)
hi− 1

2 − ahi− 1
2 ≤ bhi− 1

2

and so
∥∥∥(a + b)

D − aD
∥∥∥

2

≤
d∑

i=1

b2(hi− 1
2 ) =

∥∥bD
∥∥2

.

The proof is complete. �

Proposition 3.2. For each deterministic matrix process ν ∈ L2 ([0, ∞[ , dt) , there exists a positive con-
stant µ independent of ν such that

E




∣∣∣∣∣∣

t∫

0

vsdBs

∣∣∣∣∣∣

2

 ≤ µ

t∫

0

‖vs‖2
ds (3.3)

Proof. We have

E




∣∣∣∣∣∣

t∫

0

vsdBs

∣∣∣∣∣∣

2

 = E




d∑

i=1




d∑

j=1

t∫

0

vi,j
s dBj

s




2



≤
d∑

i=1

E




d∑

j=1

t∫

0

vi,j
s dBj

s




2

.

On the other hand

E




d∑

j=1

t∫

0

vi,j
s dBj

s




2

= E




d∑

j=1




t∫

0

vi,j
s dBj

s




2

+
∑

m 6=k

t∫

0

vi,m
s dBm

s

t∫

0

vi,k
s dBk

s




≤
d∑

j=1

E




t∫

0

vi,j
s dBj

s




2

+
∑

m 6=k

E




t∫

0

vi,m
s dBm

s

t∫

0

vi,k
s dBk

s




≤
d∑

j=1

σ2
j




t∫

0

(
vi,j

s

)2
ds


+ 2

∑

m<k

E




t∫

0

vi,m
s dBm

s

t∫

0

vi,k
s dBk

s


 ,

where σ2
j = E

[(
B

j
1

)2
]

. Therefore

E




∣∣∣∣∣∣

t∫

0

vsdBs

∣∣∣∣∣∣

2

 ≤

d∑

i=1





d∑

j=1

σ2
j




t∫

0

(
vi,j

s

)2
ds


+ 2

∑

m<k

E




t∫

0

vi,m
s dBm

s

t∫

0

vi,k
s dBk

s





 (3.4)

Thanks to the G−integration formula by parts, we have

d




t∫

0

vi,m
s dBm

s

t∫

0

vi,k
s dBk

s


 = v

i,k
t




t∫

0

vi,m
s dBm

s


 dBk

t + v
i,m
t




t∫

0

vi,k
s dBk

s


 dBm

t

+v
i,k
t v

i,m
t d

〈
Bk, Bm

〉
s

.
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Thus

t∫

0

vi,m
s dBm

s

t∫

0

vi,k
s dBk

s =

t∫

0

vi,k
s




s∫

0

vi,m
u dBm

u


 dBk

s +

t∫

0

vi,m
s




s∫

0

vi,k
u dBk

u


 dBm

s

+

t∫

0

vi,k
s vi,m

s d
〈
Bk, Bm

〉
s

.

Taking into account the fact that

E




t∫

0

vi,k
s




s∫

0

vi,m
u dBm

u


 dBk

s


 = E




t∫

0

vi,m
s




s∫

0

vi,k
u dBk

u


 dBm

s


 = 0,

we have

E




t∫

0

vi,m
s dBm

s

t∫

0

vi,k
s dBk

s


 ≤ E




t∫

0

vi,k
s vi,m

s d
〈
Bk, Bm

〉
s


 .

Recall that for each t ≥ 0, Bk
t ± Bm

t = (ek ± em, Bt) is a G±−Brownian motion, where
G± (α) = 1

2

(
σ2

± (k, m) α+ − σ2
± (k, m) α−

)
with

σ2
± (k, m) = E

(
(ek ± em, B1)

2
)

and σ2
± (k, m) = −E

(
− (ek ± em, B1)

2
)

.

Hence

〈
Bk, Bm

〉
t

=
1

4

[〈
Bk + Bm

〉
t

−
〈
Bk − Bm

〉
t

]

≤ 1

4

(
µ2 − µ2

)
t,

where µ = max
k<m

σ+ (k, m) and µ = min
k<m

σ− (k, m) . Finally, we obtain by the inequality (3.4)

E




∣∣∣∣∣∣

t∫

0

vsdWs

∣∣∣∣∣∣

2

 ≤

d∑

i=1

t∫

0




d∑

j=1

σ2
j

(
vi,j

s

)2
+

1

2

(
µ2 − µ2

) ∑

k<m

vi,k
s vi,m

s


 ds.

Therefore, by setting µ = max
(
σ2

j , 1
4

(
µ2 − µ2

)
; j = 1, 2, ..., d

)
, we have

E




∣∣∣∣∣∣

t∫

0

vsdBs

∣∣∣∣∣∣

2

 ≤ µ

t∫

0

‖vs‖2
ds.

The proof is complete. �

Lemma 3.6. The random variables R
H,ε
t converge to RH

t in L2
G(Ω) when ε tends to 0 for each t ≥ 0.

Proof. The case 1
2 < h

i
< 1:

From the inequality (3.3) we have

E

[∣∣∣RH,ε
t − RH

t

∣∣∣
2
]

≤ µ

t∫

0

∥∥∥
(

(t − s + ε)
D − (t − s)

D
)

MH

∥∥∥
2

ds

≤ µ

t∫

0

∥∥∥(t − s + ε)
D

− (t − s)
D
∥∥∥

2

‖MH‖2
ds.
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Thus, it follows from the above lemma, that

E

[∣∣∣RH,ε
t − RH

t

∣∣∣
2
]

≤ µ ‖MH‖2

t∫

0

∥∥∥ε
D
∥∥∥

2

ds ≤ µ ‖MH‖2
t

d∑

i=1

ε2hi−1,

which implies that R
H,ε
t converges to RH

t in L2
G(Ω) when ε tends to 0.

The case 0 < hi<
1
2 :

For each i = 1, 2, ..., d, there exists θ ∈ (0, 1) such that

(t − s + ε)
hi− 1

2 − (t − s)
hi− 1

2 = ε

(
hi − 1

2

)
(t − s + θε)

hi−

3
2

,

so that

∣∣∣(t − s + ε)
hi− 1

2 − (t − s)
hi− 1

2

∣∣∣
2

≤ ε2

(
hi − 1

2

)2

sup
0<θ<1

|t − s + θε|2hi−3

= ε2

(
hi − 1

2

)2

(t − s)
2hi−3

, if 0 ≤ s ≤ t.

It follows, by proposition 3.2, that

E

(∣∣∣RH,ε
t − RH

t

∣∣∣
2
)

≤ µ

t∫

0

∥∥∥(t − s + ε)
D − (t − s)

D
∥∥∥

2

‖MH‖2
ds

≤ µ ‖MH‖2
ε2

d∑

i=1

(
hi − 1

2

)2
t∫

0

(t − s)
2hi−3

ds

= µ ‖MH‖2
ε2

d∑

i=1

(
hi − 1

2

)2
t2hi−2

2hi−2
,

which insure the desired convergence. �

4. (G, ε) −Wishart fractional process

The objective of this section is to find stochastic differential equations of eigenvalues and eigenvectors
for the (G, ε) −Wishart fractional process (Σε

t )t≥0 defined by Σε
t = Rε

t (Rε
t )

∗
where Rε

t := R
H,ε
t . Let

Σε,ij be the entries of the matrix Σε and Rε,i be the components of the vector Rε.

In fact, the only eigenvalues of Σε are 0 with multiplicity (d − 1) and λε := |Rε|2 with multiplicity
1. Indeed, the characteristic polynomial of Σε is given by

P
ε (λ) = det (Σε − λI) = (−λ)d det

(
I − Σε

λ

)
, for λ 6= 0.

We conclude, by Weinstein–Aronszajn identity, that

P
ε (λ) = (−λ)d

(
1 − Rε,∗Rε

λ

)

= (−λ)
d

(
1 − |Rε|2

λ

)

= (−λ)
d−1

(
λ − |Rε|2

)
.
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Proposition 4.1. The eigenvalue λε = |Rε|2 satisfies the following G−SDE:

dλε (t) =
d∑

i=1


2εhi− 1

2 Chi
R

ε,i
t dBi

t +

(
hi − 1

2

)
Chi

R
ε,i
t




t∫

0

(t − s + ε)hi− 3
2 dBi

s


 dt + ε2hi−1C2

hi
d
〈
Bi
〉

t




(4.1)

Proof. In view of the embedding (3.1), we may write

dR
ε,i
t = εhi− 1

2 Chi
dBi

t +

(
hi − 1

2

)
Chi




t∫

0

(t − s + ε)
hi− 3

2 dBi
s


 dt.

The formula (4.1) follows from G−Itô formula:

dλε
t =

d∑

i=1

(
2R

ε,i
t dR

ε,i
t + dR

ε,i
t dR

ε,i
t

)
.

�

Remark 4.1. Similarly, the process Σ := RR∗ admits only two eigenvalues: 0 with multiplicity (d − 1)

and λ := |R|2 with multiplicity 1 and then by Lemma 3.6, λε
t converges to λt in L2

G(Ω) when ε tends to
0 for each t ≥ 0.

In what follows, we set, for each i, j = 1, ..., d, η
i,j
t = Ri

tξ
j
t where,

ξ
j
t =

t∫

0

(t − s + ε)hj− 3
2 dBj

s .

We will need the following lemma.

Lemma 4.2. We have

E

((
η

i,j
t

)2
)

≤ 3

8
σ4



(

(t + ε)
2hi − ε2hi

hi

)2

+

(
(t + ε)

2hj−2 − ε2hj−2

hj − 1

)2

 ,

with σ = max
1≤i≤d

σi.

Proof. We have, by using inequalities ab ≤ a2+b2

2 and (c + d)2 ≤ 2
(
c2 + d2

)
for a, b, c, d ∈ R,

∣∣∣ηi,j
t

∣∣∣
2

≤




∣∣Ri
t

∣∣2 +
∣∣∣ξj

t

∣∣∣
2

2




2

≤

∣∣Ri
t

∣∣4 +
∣∣∣ξj

t

∣∣∣
4

2
,

and so,

E

(∣∣∣ηi,j
t

∣∣∣
2
)

≤
E

(∣∣Ri
t

∣∣4
)

+ E

(∣∣∣ξj
t

∣∣∣
4
)

2
.

By Remark 2.8 with f (s) = (t − s + ε)hi− 1
2 (resp. (t − s + ε)hj− 3

2 ), we then obtain

E

(∣∣Ri
t

∣∣4
)

= 3σ4




t∫

0

(t − s + ε)
2hi−1

ds




2

≤ 3

4
σ4

(
(t + ε)

2hi − ε2hi

hi

)2
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(resp. E

(∣∣∣ξj
t

∣∣∣
4
)

≤ 3
4 σ4

i

(
(t+ε)2hj −2−ε

2hj −2

hj−1

)2

), which implies that

E

((
η

i,j
t

)2
)

≤ 3

8
σ4



(

(t + ε)
2hi − ε2hi

hi

)2

+

(
(t + ε)

2hj−2 − ε2hj−2

hj − 1

)2

 .

Then, we obtain the desired result. �

The next theorem expresses an asymptotic comparison of λε.

Theorem 4.3. We have, for each t ≥ 0

1. λε
t ∈ L2

G (Ω) ,

2. εα λε
t = o (1) as ε → 0, q.s. for each α > 0.

Proof. 1. Let Oε
t be an eigenvector associated to λε

t . Since ΣtOt = λε
t Ot and Σ0 = 0, then λε

0 = 0. It

follows from the SDE (4.1) and inequality

(
n∑

i=1

ai

)2

≤ n
n∑

i=1

a2
i for ai ≥ 0, that

|λε
t |2 ≤ 3d

d∑

i=1


4ε2hi−1C2

hi

∣∣∣∣∣∣

t∫

0

Rε,i
s dBi

s

∣∣∣∣∣∣

2

+

(
hi − 1

2

)2

C2
hi

∣∣∣∣∣∣

t∫

0

ηi,i
u du

∣∣∣∣∣∣

2

+
∣∣ε2hi−1C2

hi

〈
Bi
〉

t

∣∣2



(4.2)
Then, by using Hölder’s inequality and the fact that

〈
Bi
〉

t
≤ σ2t, we get

E
(
|λε

t |2
)

≤ 3d

d∑

i=1


4ε

2hi−1
C

2

hi
σ

2

t∫

0

E
(
R

ε,i
s

)2

ds +
(

hi −
1

2

)2

C
2

hi
t

t∫

0

E

(∣∣ηi,i
s

∣∣2
)

ds + σ
4
ε

4hi−2
C

4

hi
t

2




≤ 3d

d∑

i=1


4ε

2hi−1
C

2

hi
σ

2

t∫

0

E (λε
s) ds +

(
hi −

1

2

)2

C
2

hi
t

t∫

0

E

(∣∣ηi,i
s

∣∣2
)

ds + σ
4
ε

4hi−2
C

4

hi
t

2




Thanks to the inequality |λε
t | ≤ 1+|λε

t |2

2 , we have

E

(
|λε

t |2
)

≤ 3d

d∑

i=1


2ε2hi−1C2

hi
σ2

t∫

0

E (λε
s)2

ds +

(
hi − 1

2

)2

C2
hi

t

t∫

0

E

(∣∣ηi,i
s

∣∣2
)

ds

+2ε2hi−1C2
hi

σ2t + 2σ4ε4hi−2C4
hi

t2
)

.

On the other hand, we may apply Lemma 4.2 to obtain,

E

(
|λε

t |2
)

≤ L (ε, t, hi, d) + A(ε, t, hi, d, σ) + 6σ2d

d∑

i=1

ε2hi−1C2
hi

t∫

0

E (|λε
s|)2

ds, (4.3)

where L (ε, t, h, d) = 6d
d∑

i=1

(
ε2hi−1C2

hi
σ2t + σ4ε4hi−2C4

hi
t2
)

and

A(ε, t, h, d, σ) =
9

8
σ

4
dt

d∑

i=1

(
hi −

1

2

)2

C
2

hi

t∫

0

[(
(s + ε)2hi − ε2hi

hi

)2

+

(
(s + ε)2hi−2 − ε2hi−2

hi − 1

)2
]

ds.

Thanks to Gronwall’s lemma, the inequality (4.3) implies

E

(
|λε

t |2
)

≤ (L (ε, t, h, d) + A(ε, t, h, d, σ)) exp

(
6σ2d

d∑

i=1

ε2hi−1C2
hi

t

)
< ∞.
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2. Consequently, E
[
(εα(λε

t )
2
]

converges to 0 when ε goes to 0 and then εαλε
t tends to 0 q.s. when

ε goes to 0. The proof is complete.
�

5. Stochastic differential equations for orthogonal eigenvectors of Σε

The purpose of this section is to study stochastic differential equations satisfied by orthogonal eigen-
vectors of Σε. Let Λε

t = O
ε,∗
t Σε

t Oε
t be the factorization with Oε

t an orthogonal matrix, where Λε
t :=

diag (λε
t , 0, ..., 0) and let τ ε = inf

{
t > 0 : R

ε,i

t = 0 for some i ∈ 1, d
}

. In the sequel, we write for nota-

tional convenience Ot (resp. Rt, Σt, Λt, O∗
t , τ) instead of Oε

t (resp. R
ε

t , Σε
t , Λε

t , O
ε,∗
t , τε).

Our approach is mainly based on algebraic technics. Indeed, the eigenvalues collide, so that we can
not use Bru’s approach [6] as in [12], [18]. To simplify the proofs and also to avoid the difficulties that
the components of B are not necessarily independent, we make the following assumptions:

(H1) There exists an increasing real process u such that
〈
Bi, Bj

〉
t

= δijut q.s. for each i, j ∈ 1, d and
t ≥ 0, where δuv is the Kronecker symbol.

(H2) hi = h ∈ (0, 1) \
{

1
2

}
, for each i ∈ 1, d.

We have then σ2t ≤ ut ≤ σ2t where σ := min
i

σ
i
. Note that in the classical case, the assumption (H1)

is satisfied with ut = t for each t ≥ 0.

Lemma 5.1. Let the processes αij := RiRj

(R1)2+(Ri)2 and βij := R1αij for 1 < i < j. Then, it holds that

(i)

dαij =
1

(R1)
2

+ (Ri)
2


−2βijdR1 + RidRj +

Rj
((

R1
)2 −

(
Ri
)2
)

(R1)
2

+ (Ri)
2 dRi


 (5.1)

(ii)

dβij =
1

(R1)2 + (Ri)
2

[
αij
(

1 − 2
(
R1
)2
)

dR1 + R1RidRj

+
R1Rj

((
R1
)2 −

(
Ri
)2
)

(R1)2 + (Ri)
2 dRi − 2ε2h−1C2

hβijdu


 (5.2)

Note that ξi
t =

t∫
0

(t − s + ε)
h− 3

2 dBi
s and the formula (3.1) becomes

dRi
t = εh− 1

2 ChdBi
t +

(
h − 1

2

)
Chξi

tdt.

Proof. (i) The formula (5.1) follows from the G−Itô formula with

f (x1, x2, x3) =
x2x3

x2
1 + x2

2

, Xt =
(
R1, Ri, Rj

)

and the following facts:

•
d
〈
Ri, Rj

〉
t

= ε2h−1C2
hδijdut,

which follows from the assumption (H1).
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•
∂f

∂x1
(x1, x2, x3) =

−2x1x2x3

(x2
1 + x2

2)
2 ,

∂f

∂x2
(x1, x2, x3) =

x3

(
x2

1 − x2
2

)

(x2
1 + x2

2)
2

and
∂f

∂x3
(x1, x2, x3) =

x2

x2
1 + x2

2

.

•
∂2f

∂x2
1

(x1, x2, x3) = −∂2f

∂x2
2

(x1, x2, x3) =
2x2x3

(
3x2

1 − x2
2

)

(x2
1 + x2

2)
3 .

(ii) The formula (5.2) follows from formula (5.1) and G−integration by parts formula. The proof is
complete.

�

Now, we are able to state the main result of the paper.

Theorem 5.2. The orthogonal eigenvectors satisfy the following G−SDEs on {t < τ} ,

dOi1
t = dRi

t, dOi2
t = −δi1dR2

t + δi2dR1
t ,

dO
ij
t = δi1


−dR

j
t +

j−1∑

k=2


Rk

t dαkj + αkjdRk
t + ε2h−1C2

h

Rj
((

R1
)2 −

(
Rk
)2
)

[
(R1)2 + (Rk)

2
]2 dut







−
j−1∑

k=2

δikdβkj + δijdR1
t (5.3)

for each i ∈ 1, d and for each j ∈ 3, d, where αkj and βkj are defined in the above lemma.

Proof. We give the proof in two steps.
Step 1: Firstly, we construct an orthogonal basis of Rd. Obviously, since ΣR = λR then V 1 := R is an
eigenvector associated to λ = |R|2 . It is easy to check that

V 2 :=
(
−R2, R1, 0, ..., 0

)∗
, V 3 :=

(
−R3, 0, R1, 0, ..., 0

)∗
, ..., V d :=

(
−Rd, 0, ..., 0, R1

)∗
,

are eigenvectors associated to the eigenvalue 0. Then
{

V 1, V 2, ..., V d
}

is a basis of Rd but not orthog-
onal. Let O be the orthogonal matrix which columns are O1, O2, ..., Od, obtained by Gram-shmidt’s
orthogonalization process. Then we have

O1 = V 1 = R, (5.4)

O2 = V 2 −
(
V 2, V 1

)

|V 1|2
V 1 = V 2,

and

Oj = V j −
j−1∑

k=1

(
V j , V k

)

|V k|2
V k, for j ∈ 3, d.

Since
∣∣V k

∣∣2 =
(
R1
)2

+
(
Rk
)2

,
(
V k, V 1

)
= 0 and

(
V k, V l

)
= RkRl for each k, l ∈ 2, d, then

Oi2 = −δi1R2 + δi2R1,

Oij = δi1

(
−Rj +

j−1∑

k=2

Rj
(
Rk
)2

(R1)2 + (Rk)
2

)
−

j−1∑

k=2

δik

R1RkRj

(R1)2 + (Rk)
2 + δijR1

= δi1

(
−Rj +

j−1∑

k=2

Rkαkj

)
−

j−1∑

k=2

δikβkj + δijR1, j ∈ 3, d (5.5)
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Step 2: We have by G−integration by parts formula:

d
(
Rkαkj

)
= Rkdαkj + αkjdRk + dαkjdRk

= Rkdαkj + αkjdRk + ε2h−1C2
h

Rj
((

R1
)2 −

(
Rk
)2
)

[
(R1)

2
+ (Rk)

2
]2 dut (5.6)

Hence, the formula (5.3) follows from (5.4) ,(5.5) and (5.6) . �

Remark 5.3. To avoid the explosion of the solutions of system (5.3), it is necessary to have τ = +∞
q.s..

To see this, it suffices to repeat the same proof used in corollary 2 [12] with U := −
∑d

i=1 log
(
Ri
)2

.
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