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Sequence Spaces
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abstract: The well-known difference sequence spaces were introduced by Kızmaz [16] in 1981 and have
been generalized by many authors uptill now. These spaces were extended for the first time by Sarıgöl [30]
to the sequence spaces l∞(∆q), c(∆q) and c0(∆q). The aim of this paper is to establish some identities or
estimates for the operator norms and the Hausdorff measures of noncompactness of certain matrix operators
on the extended spaces and also to characterize some classes of compact operators by using the Hausdorff
measure of noncompactness.
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1. Background, notation and preliminaries

Let w denotes the space of all complex valued sequences. Any vector subspace of w is called a sequence
space. Let X , Y be two sequence spaces and A = (ank) be an infinite matrix of complex numbers. If the
series

An(x) =

∞
∑

k=0

ankxk (n ∈ N) ,

converges for all x = (xk) ∈ X and the sequence A(x) = (An(x)), A-transform of a sequence x, is in Y ,
then we say that A defines a matrix mapping from X into Y . By (X, Y ), we denote the class of all such
matrices A.

Let l∞, c0, c and φ be the linear spaces of all bounded, null, convergent and finite sequences; cs, bs
and lp, 1 ≤ p < ∞, be the linear spaces of all convergent, bounded and p-absolutely convergent series,
respectively. Further, for any sequence space X , the matrix domain XA is defined by

XA = {x ∈ ω : A(x) ∈ X} ,

which is also a sequence space. The new sequence space XA generated by the limitation matrix A from
the sequence space X can be the expansion or the restriction of the original space X .

The concepts of α, β, γ-duals of a sequence space play very important role in the summability theory.
For the sequences spaces X, Y , the set M(X, Y ) defined by

M(X, Y ) = {y = (yk) : ∀x ∈ X, (xkyk) ∈ Y }

is called the multiplier space of X and Y . According to this notation, the α, β, γ-duals of a sequence
space X are denoted by

Xα = M(X, l), Xβ = M(X, cs), Xγ = M(X, bs).
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2 F. Gökçe

An infinite matrix A = (ank) is called a triangle if ann 6= 0 for all n and ank = 0 for n < k.
A complete linear sequence space X with a norm is called a BK-space provided that the map pn :

X → C defined by pn(x) = xn is continuous for all n ≥ 0, where C denotes the complex field. A sequence
(bn) in a normed space X is called a Schauder base for X if for every x ∈ X there is a unique sequence
(xn) of scalars such that x =

∑∞
n=0 xnbn, or,

∥

∥

∥

∥

∥

x −

m
∑

n=0

xnbn

∥

∥

∥

∥

∥

→ 0 as m → ∞.

Also a BK-space X ⊃ φ is said to have AK if the sequence
(

e(j)
)

is a Schauder base for X, where e(j) is

the sequence whose only non-zero term is 1 in jth place for each j ∈ N. For example, the sequence (e(j))
is a Schauder base of lp, 1 ≤ p < ∞, with respect to its natural norm, but the space l∞ doesn’t have the
Schauder base [21].

The theory of BK-spaces is one of the most important tools characterizing of matrix transformations
between sequence spaces. For example, matrix operators between BK-spaces are continuous and the
matrix domain of a triangle A in the BK-space X is also a BK-space and its norm is given by

‖x‖XA
= ‖A(x)‖X ,

[32].

Let X and Y be two Banach spaces. By B(X, Y ), we denote the set of all continuous linear operators
from X into Y and write

‖A‖ = sup
x 6=0

‖A(x)‖Y

‖x‖X

for the operator norm of A. In the special case Y = C, we write X∗ = B(X,C), the set of all continuous
linear functionals on X .

If a ∈ ω and X ⊃ φ is a BK-space, then

‖a‖
∗
X = sup

x∈SX

∣

∣

∣

∣

∣

∞
∑

k=0

akxk

∣

∣

∣

∣

∣

provided the right hand side of the equation exists, where SX is the unit sphere in X, and it is finite for
a ∈ Xβ.

The well known difference sequence spaces l∞(∆), c(∆) and c0(∆) were introduced by Kızmaz [16].
These spaces are generalized and studied for the first time by Sarıgöl [30] as follows:

l∞(∆q) = {x = (xk) : ∆qx ∈ l∞, q < 1}

c(∆q) = {x = (xk) : ∆qx ∈ c, q < 1}

c0(∆q) = {x = (xk) : ∆qx ∈ c0, q < 1} ,

which are also Banach spaces with respect to the norm

‖x‖∆q
= |x1| + ‖∆qx‖

∞
,

where y = ∆qx = (nq(xn − xn+1)). According to the matrix domain, these spaces can also be redefined
by (l∞)∆q

= l∞(∆q), (c)∆q
= c(∆q), (c0)∆q

= c0(∆q), where the matrix ∆q = (δq
nv) is defined by

δq
nv =







nq, v = n
−nq, v = n + 1
0, otherwise.

(1.1)



Difference Sequence Spaces 3

Note that, using lim
n

1
n1−q

n
∑

k=1

1
kq = 1

1−q [17], we have a constant M such that, for all x,

|pn(x)| =

∣

∣

∣

∣

x1 −
n−1
∑

k=1

k−qyk

∣

∣

∣

∣

≤ |x1| + sup
k

|yk|

∣

∣

∣

∣

n
∑

k=1

k−qnq−1

∣

∣

∣

∣

n1−q

≤ Mn1−q ‖x‖∆q
, for each n ≥ 0,

which means that the coordinate functional pn defined on these difference spaces is bounded. So, these
are also BK- spaces.

Throughout the paper, we denote E and F by one of the spaces l∞, c, c0, and E′
q = (E)∆q

, F ′
q =

(F )∆q
by one of the spaces l∞(∆q), c(∆q) and c0(∆q). Further, define the operator S : E′

q → E′
q by

S(x) = (0, x2, x3, ...), q < 1. It is clearly that the operator is a bounded linear operator with ‖S‖ = 1.
Then the space

SE′
q =

{

x = (xk) : x ∈ E′
q, x0 = 0

}

is also Banach space with the same norm [30]. Moreover, the transformation ∆q from SE′
q to E is a

linear bijection, that is, SE′
q

∼= E.
In the literature, many difference spaces have been introduced and investigated by the authors. For

example, the space bvp, consisting of all sequences x such that (xv − xv−1) is in lp, was introduced and

studied by Başar & Altay [2] for 1 ≤ p < ∞, and Altay & Başar [1] for 0 < p < 1, the sequence spaces l̂∞,

l̂p, ĉ, ĉ0, the set of all sequences whose B(r, s)-transforms are in the spaces l∞, lp, c, c0, respectively, were
studied by Kirişçi & Başar [15]. Also, using Fibonacci band matrix, the Fibonacci difference sequence
spaces lp(F̂ ) and l∞(F̂ ) are investigated by Kara [14]. Further, in different perspective, using the absolute
summability, a lot of series spaces have been given and investigated by Mohapatra, Sarıgöl, Gökçe, Güleç
(see [5,6,7,8,9,10,11,24,29]).

The Kuratowsky measure of noncompactness α, the first meausure of noncompactness, was defined
by Kuratowsky [18]. Then, the Hausdorff measure of noncompactness χ was introduced by Goldenstein,
Gohberg and Markus [4]. By using the Hausdorff measure of noncompactness, many authors characterized
the class of compact operators on the sequence spaces. For example, Mursaleen and Noman in [25,26],
Malkowsky and Rakocevic in [22] have used the Hausdorff measure of noncompactness to characterize
the class of compact operators on the spaces, (see also [5,12,28]).

In the present paper, we give some identities and estimates for the norms and the Hausdorff measure
of noncompactness of the matrix operators on the spaces l∞(∆q), c(∆q) and c0(∆q) and also characterize
certain compact operators.

We require the following theorems given by Sarıgöl [30].

Theorem A Let q < 1. Then,

{

E′
q

}α
=

{

a = (ak) :
∞
∑

k=1

k1−q |ak| < ∞

}

= D1,

{

E′
q

}β
=

{

a = (ak) :

∞
∑

k=1

k1−qak is convergent and

∞
∑

k=1

k−q |Rk| < ∞

}

= D2,

{

E′
q

}γ
=

{

a = (ak) : sup
n

∣

∣

∣

∣

∣

∞
∑

k=1

k1−qak

∣

∣

∣

∣

∣

< ∞,

∞
∑

k=1

k−q |Rk| < ∞

}

= D3,

where

Rk =

∞
∑

v=k+1

av.

Theorem B Let q < 1. A ∈ (E′
q, F ) if and only if

(i) (an1) ∈ F and (An(k1−q)) ∈ F
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(ii) Rq = (k−qrnk) ∈ (E, F ),

where

An(k1−q) =

∞
∑

k=1

k1−qank, rnk =

∞
∑

v=k+1

anv.

In the rest of the paper, we define the terms of the matrix Ã = (ãnk) as follows

ãnk = k−q
∞
∑

v=k+1

anv

and let’s denote p∗ as the conjugate of p such that p∗ = p/ (p − 1) for p > 1, 1/p∗ = 0 for pn = 1. Also,
we use the following conditions:

(i) sup
n

∑

k

|ank| < ∞.

(ii) lim
n→∞

ank = 0 for each k ∈ N.

(iii) There is some ak such that lim
n→∞

ank = ak ∈ R, for each k ∈ N.

(iv) lim
n→∞

∑

k

ank = 0.

(v) There is some a such that lim
n→∞

∑

k

ank = a ∈ R.

(vi)
∑

k

|ank| converges uniformly in n.

(vii) lim
n→∞

∑

k

|ank| = 0.

(viii)
∑

n

∣

∣

∣

∣

∣

∑

k

ank

∣

∣

∣

∣

∣

p

< ∞.

Lemma 1.1. [31]
(a) A ∈ (c0, c0) if and only if (i) and (ii) hold.
(b) A ∈ (c0, c) if and only if (i) and (iii) hold.
(c) A ∈ (c, c0) if and only if (i), (ii) and (iv) hold.
(d) A ∈ (c, c) if and only if (i), (iii) and (v) hold.
(e) A ∈ (c0, ℓ∞) = (c, ℓ∞) = (ℓ∞, ℓ∞) if and only if the condition (i) holds.
(f) A ∈ (ℓ∞, c) if and only if the conditions (iii) and (vi) hold.
(g) A ∈ (ℓ∞, c0) if and only if the condition (vii ) holds.
(h) A ∈ (c0, ℓp) = (c, ℓp) = (l∞, ℓp), 1 ≤ p < ∞ if and only if the condition (viii ) holds.

Lemma 1.2. [21] Let T be a triangle. Then, we have

(a) For arbitrary subsets X and Y of ω, A ∈ (X, YT ) if and only if B = T A ∈ (X, Y ).

(b) Further, if X and Y are BK-spaces and A ∈ (X, YT ), then ‖LA‖ = ‖LB‖.
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We note that the following results are immediate from Lemma 1.1, Lemma 1.2 and Theorem B.

Theorem 1.3. Let q < 1. A ∈ (E, F ′
q) if and only if B = (bnk) ∈ (E, F ) where bnk = nq(ank − an+1,k).

Theorem 1.4. Let q < 1, the matrix B = (bnk) be as in Theorem 1.3. Then, A ∈ (E′
q, F ′

q) if and only if

(i) (bn1) ∈ F ,
(

Bn(k1−q)
)

∈ F

(ii) B̃ ∈ (E, F ).

2. The Hausdorff Measure of Noncompactness

Let S and H are subsets of a metric space (X, d). Then S is called an ε-net of H , if, for every h ∈ H ,
there exists an s ∈ S such that d(h, s) < ε; if S is finite, then the ε-net S of H is called a finite ε-net of
H . Let X and Y be Banach spaces. A linear operator L : X → Y is called compact if its domain is all
of X and, for every bounded sequence (xn) in X , the sequence (L(xn)) has a convergent subsequence in
Y . We denote the class of such operators by C(X, Y ). If Q is a bounded subset of the metric space X ,
then the Hausdorff measure of noncompactness of Q is defined by

χ (Q) = inf {ε > 0 : Q has a finite ε − net in X} ,

and χ is called the Hausdorff measure of noncompactness.

Lemma 2.1. [19] Let X be a Banach space with a Schauder basis (bn), Q be a bounded subset of the
space X and Pr : X → X is a projector onto the linear span of {b0, b1, ..., br}. Then, we have

1

a
lim sup

r→∞

{

sup
x∈Q

‖(I − Pr) (x)‖X

}

≤ χ(Q) ≤ lim sup
r→∞

{

sup
x∈Q

‖(I − Pr) (x)‖X

}

,

where a = lim sup
r→∞

‖I − Pr‖X .

Lemma 2.2. [27] Let Q be a bounded subset of the normed space X where X = c0 or X = ℓp for
1 ≤ p < ∞. If Pn : X → X is the operator defined by Pr (x) = (x0, x1, ..., xr, 0, ...) for all x ∈ X, then

χ(Q) = lim
r→∞

{

sup
x∈Q

‖(I − Pr) (x)‖X

}

,

where I is the identity operator on X.

Let X and Y be Banach spaces and χ1 and χ2 be Hausdorff measures on X and Y , the linear operator
L : X → Y is said to be (χ1, χ2)- bounded if L(Q) is a bounded subset of Y and there exists a positive
constant M such χ2 (L(Q)) ≤ Mχ1 (L(Q)) for every bounded subset Q of X . If an operator L is (χ1, χ2)-
bounded, then the number

‖L‖(χ
1

,χ
2
) = inf {M > 0 : χ2 (L(Q)) ≤ Mχ1 (L(Q)) for all bounded set Q ⊂ X}

is called the (χ1, χ2)-measure noncompactness of L. In particular, if χ1 = χ2 = χ then ‖L‖(χ,χ) = ‖L‖χ .

Lemma 2.3. [13] Let X and Y be Banach spaces, SX be the unit sphere in the space X and L ∈ B (X, Y ) .
Then, the Hausdorff measure of noncompactness of L, denoted by ‖L‖χ , is defined by

‖L‖χ = χ (L (SX)) ,

and
L is compact iff ‖L‖χ = 0.
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Lemma 2.4. [13] Let X be a normed sequence space, T = (tnv) be a triangle matrix, χT and χ denote
the Hausdorff measures of noncompactness on MXT

and MX , the collections of all bounded sets in XT

and X, respectively. Then, χT (Q) = χ(T (Q)) for all Q ∈ MXT
.

Also, the Hausdorff measure of noncompactness χ has the following basic properties: Let Q, Q′ be
bounded subsets of the metric linear space X , x ∈ X and a ∈ C, then

χ(Q) = 0 ⇔ Q is totally bounded,

Q ⊂ Q′ ⇒ χ(Q) ≤ χ(Q′),

χ(Q + Q′) ≤ χ(Q) + χ(Q′),

χ(aQ) = |a| χ(Q),

χ(x + Q) = χ(Q).

3. Compact operators on the space E′
q and applications

In this section, we determine the norms and the Hausdorff measures of noncompactness of some matrix
operators related to the space E′

q, and also characterize compact operators using Hausdorff measure of
noncompactness.

We first note that if x ∈ E′
q and a = (ak) ∈

{

E′
q

}β
, then ã = (ãk) = (k−q

∞
∑

v=k+1

av) ∈ ℓ and

∞
∑

k=1

akxk = a1x1 −

∞
∑

k=1

ãkyk, (3.1)

where x and y are connected with xn = −
n−1
∑

k=1

k−qyk for all n > 1, [30].

Lemma 3.1. [21] Let 1 < p < ∞ and p∗ denotes the conjugate of p. Then, we have ℓβ
p = ℓp∗ and

ℓβ
∞ = cβ = cβ

0 = ℓ1, ℓβ
1 = ℓ∞. Also, let X denotes any of the spaces ℓ∞, c, c0, ℓ1 and ℓp. Then, we have

‖a‖
∗
X = ‖a‖Xβ

for all a ∈ Xβ , where ‖.‖Xβ is the natural norm on the dual space Xβ.

Lemma 3.2. [20] Let X and Y be BK-spaces. Then, we have

(a) (X, Y ) ⊂ B (X, Y ) , that is, every matrix A ∈ (X, Y ) defines an operator LA ∈ B (X, Y ) by
LA (x) = A(x) for all x ∈ X.

(b) If X has AK, then B (X, Y ) ⊂ (X, Y ) , that is, for every operator L ∈ B (X, Y ) there exists a
matrix A ∈ (X, Y ) such that by L (x) = A(x) for all x ∈ X.

Lemma 3.3. [3] Let X ⊃ φ be a BK-space and Y be any of the spaces ℓ∞, c, c0. If A ∈ (X, Y ) , then

‖LA‖ = ‖A‖(X,ℓ∞) = sup
n

‖An‖∗
X < ∞.

Theorem 3.4. Let Y be any of the spaces ℓ∞, c, c0. If A ∈
(

E′
q, Y

)

, then A defines a bounded linear
operator LA such that LA(x) = A(x) and

‖LA‖ = ‖A‖(E′

q,ℓ∞) ≤ sup
n

{

∞
∑

k=1

|ãnk| + |an1|

}

.
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Proof: Since E′
q and Y are BK-spaces, by Theorem 4.2.8 of Wilansky [32], it is clear that LA is a

bounded linear operator. To calculate the norm, let SE′

q
be a unit sphere and x ∈ E′

q. Note that

‖LA‖ = ‖A‖(E′

q,ℓ∞) = sup
n

‖An‖
∗
E′

q
. Further,

‖An‖∗
E′

q
= sup

x∈SE′

q

∣

∣

∣

∣

∞
∑

k=1

ankxk

∣

∣

∣

∣

≤ sup
x∈SE′

q

∣

∣

∣

∣

∞
∑

k=2

ankxk

∣

∣

∣

∣

+ |an1|

=
∥

∥Ãn

∥

∥

∗

E
+ |an1| .

Since E ∈ {ℓ∞, c, c0}, it is clear that Eβ = ℓ1 and so

∥

∥Ãn

∥

∥

∗

E
=
∥

∥Ãn

∥

∥

Eβ =
∥

∥Ãn

∥

∥

ℓ
=

∞
∑

k=1

|ãnk| .

This gives that ‖LA‖ = sup
n

‖An‖∗
E′

q
≤ sup

n

{

∞
∑

k=1

|ãnk| + |an1|

}

. �

Theorem 3.5. Let p ≥ 1. If A ∈
(

E′
q, ℓp

)

, then LA is a bounded linear operator and

‖LA‖ = ‖A‖(E′

q,ℓp) ≤
∞
∑

n=1

∣

∣

∣

∣

∞
∑

k=1

ãnk

∣

∣

∣

∣

p

+

(

∞
∑

n=1

|an1|p
)1/p

.

Proof: The first part is as in Theorem 3.4. Using the operator norm, by Minkowski inequality and the
equation (3.1), we get

‖A‖(E′

q,ℓp) ≤
∥

∥Ã
∥

∥

(E,ℓp)
+

(

∞
∑

n=1

|an1|
p

)1/p

=

∞
∑

n=1

∣

∣

∣

∣

∣

∞
∑

k=1

ãnk

∣

∣

∣

∣

∣

p

+

(

∞
∑

n=1

|an1|
p

)1/p

.

�

If we take zero of the first term of a sequence x ∈ E′
q, Theorem 3.4 and Theorem 3.5 are reduced to

the following results.

Corollary 3.6. Let Y be any of the spaces ℓ∞, c, c0. If A ∈
(

SE′
q, Y

)

, then LA is a bounded linear
operator and

‖LA‖ = ‖A‖(SE′

q,ℓ∞) = sup
n

∞
∑

k=1

|ãnk| .

Corollary 3.7. Let p ≥ 1. If A ∈
(

SE′
q, ℓp

)

, then LA is a bounded linear operator and

‖LA‖ = ‖A‖(SE′

q,ℓp) =
∞
∑

n=1

∣

∣

∣

∣

∣

∞
∑

k=1

ãnk

∣

∣

∣

∣

∣

p

.

Theorem 3.8. Let q < 1.
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a-) If A ∈
(

E′
q, c0

)

, then

‖LA‖χ ≤ lim sup
n→∞

(

∞
∑

k=1

|ãnk| + |an1|

)

.

If lim sup
n→∞

(

∞
∑

k=1

|ãnk| + |an1|

)

= 0, then LA is compact.

b-) If A ∈
(

E′
q, ℓ∞

)

, then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

(

∞
∑

k=1

|ãnk| + |an1|

)

.

If lim sup
n→∞

(

∞
∑

k=1

|ãnk| + |an1|

)

= 0, then LA is compact.

Proof: a) Let SE′

q
be the unit sphere in the space E′

q. From Lemma 2.3, we write

‖LA‖χ = χ(ASE′

q
). (3.2)

Since A ∈
(

E′
q, c0

)

, it is clear that ASE′

q
∈ Mc0

. So, it follows from Lemma 2.2 that

χ(ASE′

q
) = lim

r→∞







sup
x∈SE′

q

‖(I − Pr) (A(x))‖∞







,

where the operator Pr : c0 → c0 is defined by Pr(x) = (x0, x1, ...xr, ...) for all x ∈ c0 and r ∈ N. It is
obvious that, for all x ∈ E′

q,
‖(I − Pr)(A(x))‖∞ = sup

n>r
|An(x)| ,

which implies

sup
x∈SE′

q

‖(I − Pr)(A(x))‖∞ = sup
n>r

‖An‖
∗
E′

q
≤ sup

n>r

(

∞
∑

k=1

|ãnk| + |an1|

)

.

The last inequality and (3.2) yield

‖LA‖χ ≤ lim
r→∞

sup
n>r

(

∞
∑

k=1

|ãnk| + |an1|

)

.

Finally, the compactness of A is immediately obtained by Lemma 2.3, which completes the proof of (a).
Now, consider the mapping Pr on ℓ∞ and let Q ∈ Mℓ∞

. Then, the elementary properties of the
function χ,

AQ ⊂ Pr(AQ) + (I − Pr)(AQ)

implies that
0 ≤ χ(AQ) ≤ χ((I − Pr)(AQ)). (3.3)

After pointing out the inequality (3.3), to avoid repetition we leave the proof of the other part of the
theorem to the reader. �

Lemma 3.9. [26] Let X ⊃ φ be a BK-space with AK or X = ℓ∞. If A ∈ (X, c), then we have

lim
n→∞

ank = αk exists for all k,

α = (αk) ∈ Xβ,

sup
n

‖An − α‖∗
X < ∞,

lim
n→∞

An(x) =

∞
∑

k=0

αkxk for every x = (xk) ∈ X.
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Theorem 3.10. Let q ≤ 1.

a-) If A ∈
(

SE′
q, ℓ∞

)

, then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

(

∞
∑

k

|ãnk|

)

.

If lim sup
n→∞

(

∞
∑

k

|ãnk|

)

= 0, then LA is compact.

b-) If A ∈
(

SE′
q, c0

)

, then

‖LA‖χ = lim sup
n→∞

(

∞
∑

k

|ãnk|

)

.

LA is compact if and only if lim sup
n→∞

(

∞
∑

k

|ãnk|

)

= 0.

c-) If A ∈
(

SE′
q, ℓp

)

, p ≥ 1, then

‖LA‖χ = lim
r→∞

∑

n

∣

∣

∣

∣

∣

∑

k

a
(r)
nk

∣

∣

∣

∣

∣

p

,

where the matrix A(r) =
(

a
(r)
nk

)

is defined by

a
(r)
nk =

{

ãnk, n > r
0, n ≤ r.

LA is compact if and only if lim
r→∞

∑

n

∣

∣

∣

∣

∑

k

a
(r)
nk

∣

∣

∣

∣

p

= 0.

d-) If A ∈
(

SE′
q, c
)

, then

1

2
lim sup

n→∞

(

∞
∑

k

|ãnk − α̃k|

)

≤ ‖LA‖χ ≤ lim sup
n→∞

(

∞
∑

k

|ãnk − α̃k|

)

,

where α̃ = (α̃k) with α̃k = lim
n→∞

ãnk for all k ∈ N.

LA is compact if and only if lim sup
n→∞

(

∞
∑

k

|ãnk − α̃k|

)

= 0.

Proof: The proofs of (a) and (b) are simple, and so they are omitted. We begin with the proof of
the part (c). Assume that SSE′

q
is the unit sphere in the space SE′

q. To determine Hausdorff measure
of noncompactness of LA, consider SE′

q
∼= E. Using Lemma 2.3, Lemma 2.2 and Lemma 1.1, we get

immediately that

‖LA‖χ = χ(ASSE′

q
) = χ(Ã∆qSSE′

q
)

= lim
r→∞

sup
y∈∆qSSE′

q

∥

∥(I − Pr) (Ã(y))
∥

∥

ℓp

= lim
r→∞

∥

∥A(r)
∥

∥

(E,ℓp)

= lim
r→∞

∞
∑

n=1

∣

∣

∣

∣

∞
∑

k=1

a
(r)
nk

∣

∣

∣

∣

p

.

d-) To estimate Hausdorff measure of noncompactness of LA, take ASSE′

q
∈ Mc. Then, it is written

from Lemma 2.3 that
‖LA‖χ = χ(ASSE′

q
).
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On the other hand, since SE′
q

∼= E, it follows that A ∈ (SE′
q, c) iff Ã ∈ (E, c), and also

‖LA‖χ = χ(ASSE′

q
) = χ(Ã∆qSSE′

q
).

Since every z = (zn) ∈ c has a unique representation z = z̄e +
∞
∑

n=0
(zn − z̄)e(n), we have that, for all r ∈ N

and z ∈ c,

(I − Pr)(z) =
∞
∑

n=r+1

(zn − z̄)e(n)

where Pr is the projector on c and z̄ = lim
n→∞

zn. Thus, for all z ∈ c,

‖(I − Pr)(z)‖∞ = sup
n>r

|zn − z̄| .

which gives ‖(I − Pr)(z)‖∞ ≤ 2 ‖z‖∞ , i.e., ‖(I − Pr)‖∞ ≤ 2. Moreover, for the sequence z(r) = (z
(r)
n ) ∈ c

given by

z(r)
n =

{

−1, n = r + 1
1, n 6= r + 1,

‖(I − Pr)‖∞ ≥
∥

∥(I − Pr)(z(r))
∥

∥

∞
= 2 and so we get ‖I − Pr‖ = 2.

Further, since Ã ∈ (E, c), it follows from Lemma 3.9 that α̃k = lim
n→∞

ãnk exists for all k ∈ N , and for

every y ∈ E

lim
n→∞

Ãn(y) =

∞
∑

k=0

ᾱkyk.

So,
sup

x∈SSE′

q

‖(I − Pr)(A(x))‖∞ = sup
y∈Sc

∥

∥(I − Pr)(Ã(y))
∥

∥

∞

= sup
y∈Sc

sup
n>r

∣

∣

∣

∣

Ãn(y) −
∞
∑

k=0

ᾱkyk

∣

∣

∣

∣

= sup
y∈Sc

sup
n>r

∣

∣

∣

∣

∞
∑

k=0

(ãnk − ᾱk) yk

∣

∣

∣

∣

= sup
n>r

∥

∥Ãn − α̃
∥

∥

∗

c

= sup
n>r

∥

∥Ãn − α̃
∥

∥

ℓ
.

This completes the proof of (d) with together Lemma 2.1. �

If we take the matrices L1 = (l1
nk) and L2 = (l2

nk) as

l1
nk =

{

1, 0 ≤ k ≤ n
0, k > n

and

l2
nk =







1, n = k
−1, n = k + 1
0, otherwise,

we have bs = {ℓ∞}L1
, cs = {c}L1

and bvp = {lp}L2

. Hence, the following result is deduced from Theorem
3.4, Theorem 3.5 and Lemma 1.2.

Corollary 3.11. For an infinite matrix A,

a) if A ∈
(

E′
q, bs

)

or A ∈
(

E′
q, cs

)

, then

‖LA‖ ≤ sup
n

{

∞
∑

k=1

|ãnk| + |an1|

}

,
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b) if A ∈
(

E′
q, bvp

)

, 1 ≤ p < ∞, then

‖LA‖ ≤

∞
∑

n=1

∣

∣

∣

∣

∣

∞
∑

k=1

ãnk

∣

∣

∣

∣

∣

p

+

(

∞
∑

n=1

|an1|
p

)1/p

.

Also, the choice of the matrix C = T.A leads us the following result on the Hausdorff measures of
noncompactness, where

cnk =

n
∑

v=0

tnvavk, n, k ∈ N.

Corollary 3.12. Let A be an infinite matrix and T be a triangle. If A ∈
(

E′
q, (ℓ∞)T

)

or A ∈
(

E′
q, (c0)T

)

,
then

‖LA‖χ ≤ lim sup
n→∞

(

∞
∑

k=1

|c̃nk| + |an1|

)

.

Also, A is a compact if lim sup
n→∞

(

∞
∑

k=1

|c̃nk| + |an1|

)

= 0.
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Funct. Anal. Optim. 40 (9), 1039-1052, (2019).
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15. Kirişçi, M., Başar, F., Some new sequence spaces derived by the domain of generalized difference matrix, Comput.
Math. Appl. 60(5), 1299-1309, (2010).

16. Kızmaz, H., On certain sequence spaces, Canad. Math. Bull. 24(2), 169-176, (1981).

17. Knopp, K., Theory and Application of Infinite Series, Blackie, 1944.

18. Kuratowsky, K., Sur les espaces complets. Fundam. Math. 15, 301-309, (1930).



12 F. Gökçe
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