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A Generalized Common Fixed Point of Multi-Valued Maps in b-metric Space
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abstract: In this work we are interested to prove a general fixed point theorem for a pair of multi-valued
mappings in b−metric spaces. The results in this paper generalize the results obtained in [19] and to obtain
other particular results.
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1. Introduction

Since the famous Banach fixed point theorem (1922), the study of fixed point theory in metric spaces
has several applications in mathematics, especially in solving differential and functional equations. Many
authors have introduced a new class of generalized metric space, in particular those called b-metric spaces,
and obtained several results in fixed point theory,(see [1,2,3], [5]- [21]).

The one due to I. A. Bakhtin [4] and S. Czerwik [8], [9] who, motivated by the problem of the
convergence of measurable functions with respect to measure, introduced b-metric spaces (a generalization
of metric spaces) and proved the contraction principle in this framework.

Let (X, d) be a b−metric space. A subset A ⊂ X is said to be closed if for every sequence xn ∈ A

such that lim
n→∞

d(x, xn) = 0 (xn −→ x) we have x ∈ A.

A subset A ⊂ X is said to be bounded if sup
x,y∈A

d(x, y) < +∞.

We denote by B(X) the set of nonempty closed bounded subsets of X provided with the Hausdorff-
Pompeiu metric H defined by

H(A, B) = max

(

sup
x∈A

d(x, B), sup
y∈B

d(y, A)

)

,

we define also δ(A, B) by
δ(A, B) = sup{d(a, b), a ∈ A b ∈ B},

it follows immediately from the definition of δ that

δ(A, B) = 0 ⇐⇒ A = B = {.} and δ({.}, B) = H({.}, B) and

d(a, b) ≤ δ(A, B) ∀a ∈ A ∀b ∈ B.

given F, G : X −→ B(X), for c, d ∈ [0, 1] and x, y ∈ X , we shall use the following notation:
Nc,d(x, y) = max{d(x, y), cd(x, Fx), cd(y, Gy), d

2 (d(x, Gy) + d(y, Fx))}
for a sequence (xn), of elements from X , sometimes, for the sake of brevity, we shall use the notation:

dn = d(xn, xn+1), where n ∈ N.
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2. Preliminary

Definition 2.1 ( [9]). Let X be a nonempty set and s ≥ 1 be a given real number. A function d :
X × X −→ R

+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Note that every metric space is a b−metric space with s = 1. But the converse need not be true as is
shown in the following example.

Example 2.2 ( [7]). 1)Let X = lp(R) with 0 < p < 1 and
lp(R) = {{xn} ⊂ R :

∑

n≥1

| xn |p< ∞}.

We define d : X × X −→ R
+ by :

d(x, y) = (
∑

n≥1

| xn − yn |p)
1

p

where x = {xn}, y = {yn}, then (X, d) is a b-metric space of constant s = 2
1

p
−1.

2) let X = Lp[0, 1] is a space of real functions x(t), t ∈ [0, 1] such that:
∫ 1

0 | x(t) |p dt < ∞ with 0 < p < 1. We define d : X × X −→ R
+ by :

d(x, y) = (
∫ 1

0
| x(t) − y(t) |p dt)

1

p .

Then (X, d) is a b-metric space of constant s = 2
1

p
−1.

Definition 2.3 ( [6]). Let (X, d) be a b−metric space, x ∈ X and (xn) be a sequence in X. Then

(i) (xn) converges to x if and only if lim
n→∞

d(x, xn) = 0. We denote this by xn → x (n → ∞) or

lim
n→∞

xn = x.

(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Lemma 2.4 ( [19]). Every sequence (xn) of elements from a b-metric space (X, d) having the property
that there exists γ ∈ [0, 1) such that

d(xn+1, xn) ≤ γd(xn, xn−1),

for every n ∈ N, is Cauchy.

3. Main results

Theorem 3.1. Let (X, d) be a b-metric space of constant s and F, G : X −→ B(X) having the property
that there exist c, d ∈ [0, 1] and k ∈ [0, 1) such that:

(i) ksd < 1,

(ii) H(Fx, Gy) ≤ kNc,d(x, y) for all x, y ∈ X.

Then, for every x0 ∈ X, there exist γ ∈ [0, 1) and a sequence (xn) of elements from X such that:

(a) x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1 for every n ∈ N,

(b) d(xn+1, xn) ≤ γd(xn, xn−1) for every n ∈ N
∗,

(c) (xn) is Cauchy.
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Proof.

Let us consider β = 1
2 (min(1, 1

ds
) + k) and γ = max{β, dsβ

2−dsβ
} < 1, x0 ∈ X and x1 ∈ Fx0,

then, using (ii), we have

d(x1, Gx1) ≤ H(F x0, Gx1) ≤ kNc,d(x0, x1).

According to the characterization of inf we have for ε = 1
2 (min(1, 1

ds
) − k)Nc,d(x0, x1), there exists

x2 ∈ Gx1 such that

d(x1, x2) ≤ kNc,d(x0, x1) +
1

2
(min(1,

1

ds
) − k)Nc,d(x0, x1)

=
1

2
(min(1,

1

ds
) + k)Nc,d(x0, x1)

= βNc,d(x0, x1)

Since
d(x2, F x2) ≤ H(F x2, Gx1) ≤ kNc,d(x2, x1).

According to the characterization of inf we have for ε = 1
2 (min(1, 1

ds
) − k)Nc,d(x2, x1), there exists

x3 ∈ Fx2 such that

d(x2, x3) ≤ kNc,d(x2, x1) +
1

2
(min(1,

1

ds
) − k)Nc,d(x2, x1)

=
1

2
(min(1,

1

ds
) + k)Nc,d(x2, x1)

= βNc,d(x2, x1)

In the same there exists x4 ∈ Gx3 such that

d(x3, x4) ≤ βNc,d(x2, x3).

By recurrence, we construct a sequence (xn) such that x2n+1 ∈ Fx2n, and x2n ∈ Gx2n−1 which satisfies
:

d(x2n, x2n+1) ≤ βNc,d(x2n, x2n−1) and d(x2n−1, x2n) ≤ βNc,d(x2n−2, x2n−1) n = 1, 2, 3, ... (3.1)

According to (3.1) we have:

d2n ≤ βNc,d(x2n, x2n−1)

= βmax{d(x2n, x2n−1), cd(x2n, Fx2n), cd(x2n−1, Gx2n−1),
d

2
(d(x2n, Gx2n−1) + d(x2n−1, Fx2n)}

≤ βmax{d2n−1, cd2n, cd2n−1,
d

2
d(x2n−1, x2n+1)}

≤ βmax{d2n−1, cd2n, cd2n−1,
ds

2
(d2n−1 + d2n)}

≤ βmax{d2n−1,
ds

2
(d2n−1 + d2n)},

for every n ∈ N
∗, where the justification of the last inequality is as follow :

if max{d2n−1, cd2n, cd2n−1, ds
2 (d2n−1 + d2n)} = cd2n, then we get that d2n ≤ βcd2n ≤ βd2n < d2n,which

is a contradiction.

Consequently, d2n ≤ βd2n−1 or d2n ≤ β ds
2 (d2n−1 + d2n), i.e d2n ≤ βd2n−1 or d2n ≤ dsβ

2−dsβ
d2n−1 for

every n ∈ N
∗, thus d2n ≤ max{β, dsβ

2−dsβ
}d2n−1, i.e

d(x2n+1, x2n) ≤ γd(x2n, x2n−1) ∀n ∈ N
∗. (3.2)
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According to (3.1) in the same way we have:

d2n−1 ≤ βNc,d(x2n−2, x2n−1)

= βmax{d(x2n−2, x2n−1), cd(x2n−2, Fx2n−2), cd(x2n−1, Gx2n−1),
d

2
(d(x2n−2, Gx2n−1)

+d(x2n−1, Fx2n−2)}

≤ βmax{d2n−2, cd2n−2, cd2n−1,
d

2
d(x2n−2, x2n)}

≤ βmax{d2n−2, cd2n−2, cd2n−1,
ds

2
(d2n−2 + d2n−1)}

≤ βmax{d2n−2,
ds

2
(d2n−2 + d2n−1)},

for every n ∈ N
∗, where the justification of the last inequality is as follow :

if, max{d2n−2, cd2n−2, cd2n−1, ds
2 (d2n−2 + d2n−1)} = cd2n−1, then we get that d2n−1 ≤ βcd2n−1 ≤

βd2n−1 < d2n−1,which is a contradiction.

Consequently, d2n−1 ≤ βd2n−2 or d2n−1 ≤ β ds
2 (d2n−2 + d2n−1),

i.e d2n−1 ≤ βd2n−2 or d2n−1 ≤ dsβ
2−dsβ

d2n−2 for every n ∈ N
∗, thus d2n−1 ≤ max{β, dsβ

2−dsβ
}d2n−2, i.e

d(x2n, x2n−1) ≤ γd(x2n−2, x2n−1) ∀n ∈ N
∗. (3.3)

According to (3.2) and (3.3) we have for every n ∈ N
∗ d(xn+1, xn) ≤ γd(xn, xn−1).

Hence the sequence (xn) satisfies (a) and (b). From Lemma 2.4 we deduce that (c) this also satisfied.

Definition 3.2. A function F : X −→ B(X), where (X, d) is a b-metric space, is called closed if for
all sequences (xn) and (yn) of elements from X and x, y ∈ X such that lim

n→∞
xn = x, lim

n→∞
yn = y and

yn ∈ F (xn) for every n ∈ N, we have y ∈ F (x).

Theorem 3.3. Let (X, d) be a complete b−metric space with constant s ≥ 1 and F, G : X −→ B(X),
satisfying the following conditions:

(i) F and G are closed,

(ii) there exist c, d ∈ [0, 1] and k ∈ [0, 1) such that
H(Fx, Gy) ≤ kNc,d(x, y) for all x, y ∈ X,

(iii) ksd < 1.

Then F and G have a common fixed point x ∈ X.
Moreover, if x is absolutely fixed for F or G (which means that F (x) = {x} or G(x) = {x}), then the
fixed point is unique.

proof.

Existence.

Based on (ii) and (iii), according to Theorem 3.1, there exists a Cauchy sequence (xn) of elements of X

such that:

x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1 for every n ∈ N. (3.4)

As the b-metric space (X, d) is complete, there exists x ∈ X such that lim
n→∞

xn = x. We combine (i) with

(3.4) to see that x ∈ Fx and x ∈ Gx, i.e F and G have a common fixed point x ∈ X .
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Unicity.

Suppose that F (x) = {x} and y ∈ X is another common fixed point of F and G, then by (ii) we have

d(x, y) ≤ H(Fx, Gy) ≤ kNc,d(x, y)

= k max{d(x, y), cd(x, Fx), cd(y, Gy),
d

2
(d(x, Gy) + d(y, Fx))}

= k max{d(x, y),
d

2
(d(x, Gy) + d(y, Fx))}

≤ k max{d(x, y),
d

2
(s(d(x, y) + d(y, Gy)) + s(d(y, x) + d(x, Fx)))}

≤ k max{d(x, y), ds d(x, y)} < d(x, y), because (kds < 1).

which is a contradiction. Hence d(x, y) = 0 then x = y.
So x is the unique common fixed point of F and G.

Remark 3.4. In Theorem 3.3, if we replace H(Fx, Gy) by δ(Fx, Gy), then F and G have a unique
common fixed point because H(Fx, Gy) ≤ δ(Fx, Gy), then by Theorem 3.3 F and G have a common fixed
point. On the other hand the unicity becomes from the fact that

d(a, b) ≤ δ(Fx, Gy) ∀a ∈ Fx ∀b ∈ Gy.

Definition 3.5. Given a b-metric space (X, d), the b-metric d is called ∗-continnuous if for every A ∈
B(X), every x ∈ X and every sequence (xn) of elements from X such that lim

n→∞
xn = x, we have

lim
n→∞

d(xn, A) = d(x, A).

Theorem 3.6. Let (X, d) be a complete b−metric space with constant s ≥ 1 and F, G : X −→ B(X),
satisfying the following conditions:

(i) d is ∗-continuous,

(ii) there exist c, d ∈ [0, 1] and k ∈ [0, 1) such that
H(Fx, Gy) ≤ kNc,d(x, y) for all x, y ∈ X,

(iii) ksd < 1.

Then F and G have a common fixed point x ∈ X.
Moreover, if x is absolutely fixed for F or G (which means that F (x) = {x} or G(x) = {x}), then the
fixed point is unique.

proof.

Existence.

Based on (ii) and (iii), according to Theorem 3.1, there exists a Cauchy sequence (xn) of elements of X

such that:

x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1 for every n ∈ N. (3.5)

As the b-metric space (X, d) is complete, there exists x ∈ X such that lim
n→∞

xn = x.

Then, using (ii) and (3.5), with the notation d(xn, x) = δn, we have

d(x2n+1, Gx) ≤ H(Fx2n, Gx) ≤ kNc,d(x2n, x)

= k max{δ2n, cd(x2n, Fx2n), cd(x, Gx),
d

2
(d(x2n, Gx) + d(x, Fx2n))}

≤ k max{δ2n, cd2n, cd(x, Gx),
d

2
(s(δ2n + d(x, Gx) + δ2n+1 + d(x2n+1, Fx2n)))},

= k max{δ2n, cd2n, cd(x, Gx),
d

2
(s(δ2n + d(x, Gx) + δ2n+1))}, (3.6)
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for every n ∈ N.

Since lim
n→∞

δ2n+1 = lim
n→∞

δ2n = lim
n→∞

d2n = 0 and lim
n→∞

d(x2n+1, Gx) = d(x, Gx)

( as d is ∗-continuous and d2n ≤ s(δ2n + δ2n+1) and lim
n→∞

xn = x), letting n −→ ∞ in (3.6), we get

d(x, Gx) = 0, because if d(x, Gx) > 0, then

d(x, Gx) ≤ k max{cd(x, Gx),
d

2
sd(x, Gx)}

≤ max{kc,
kds

2
}d(x, Gx)

< d(x, Gx) because max{kc,
kds

2
} < 1,

which is a contradiction, hence x ∈ Gx and G has a fixed point.
In the same way we have:

d(x2n, Fx) ≤ H(Fx, Gx2n−1) ≤ kNc,d(x, x2n−1)

≤ k max{δ2n−1, cd(x, Fx), cd2n−1,
d

2
(s(δ2n + δ2n−1 + d(x, Fx)))}, (3.7)

when n −→ ∞ in (3.7), we get d(x, Fx) = 0, because if d(x, Fx) > 0, then

d(x, Fx) ≤ k max{cd(x, Fx),
d

2
sd(x, Fx)}

≤ max{kc,
kds

2
}d(x, Fx)

< d(x, Fx) because max{kc,
kds

2
} < 1.

which is a contradiction, hence x ∈ Fx and consequently F and G have a common fixed point x ∈ X .
Unicity.

Suppose that F (x) = {x} and y ∈ X is another common fixed point of F and G, then by (ii) we have

d(x, y) ≤ H(Fx, Gy) ≤ kNc,d(x, y)

≤ k max{d(x, y), ds d(x, y)} < d(x, y), because (kds < 1).

which is a contradiction. Hence d(x, y) = 0 then x = y.
So x is the unique common fixed point of F and G.

Example 3.7. .
Let (X = [0, 1], d) be a complete b−metric space with constant s = 2, d(x, y) = |x − y|2. We define

F, G : X −→ B(X), by Fx =
[

0, x
4

]

, Gx =
[

0, x
8

]

and
d(x, Fx) = |x − x

4 |2 d(y, Gy) = |y − y
8 |2 H(Fx, Gy) = | x

4 − y
8 |2.

(i) It is easy to see that F and G are closed.
(ii) We prove that F and G check

H(Fx, Gy) ≤
1

8
max

{

d(x, y), d(x, Fx), d(y, Gy),
1

2
(d(x, Gy) + d(y, Fx))

}

.

≤
1

8
N1,1(x, y).

Indeed, we have the following situations:
1) If x ≤ y

2 , then
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|
x

4
−

y

8
| =

y

8
−

x

4
=

1

4
(
y

2
− x)

≤
1

4
|y − x|,

from where

|
x

4
−

y

8
|2 ≤

1

16
d(x, y) ≤

1

8
max

{

d(x, y), d(x, Fx), d(y, Gy),
1

2
(d(x, Gy) + d(y, Fx))

}

.

2) If x ≥ y
2 , we have d(x, Gy) = |x − y

8 |2. Then

|
x

4
−

y

8
| =

x

4
−

y

8
=

1

4
(x −

y

2
)

≤
1

4
|x −

y

8
|,

from where

|
x

4
−

y

8
|2 ≤

1

16
d(x, Gy) ≤

1

8
(
1

2
(d(x, Gy) + d(y, Fx)))

≤
1

8
max

{

d(x, y), d(x, Fx), d(y, Gy),
1

2
(d(x, Gy) + d(y, Fx))

}

.

This implies

H(Fx, Gy) ≤
1

8
max

{

d(x, y), d(x, Fx), d(y, Gy),
1

2
(d(x, Gy) + d(y, Fx))

}

,

≤
1

8
N1,1(x, y) for all x, y ∈ X.

(iii) We have ksd = 2
8 < 1.

So all the conditions of Theorem 3.3 are satisfied, then 0 is the unique common absolutely fixed point
of F and G.

4. Consequences of the main result

As a consequence of Theorem 3.1, if F = G = T , then we obtain the following corollary

Corollary 4.1 (Theorem 2.1 [19]). Let (X, d) be a b-metric space of constant s and T : X −→ B(X)
having the property that there exist c, d ∈ [0, 1] with k ∈ [0, 1) such that:

(i) ksd < 1,

(ii) H(T x, T y) ≤ kNc,d(x, y) for all x, y ∈ X.

Then, for every x0 ∈ X, there exist γ ∈ [0, 1) and a sequence (xn) of elements from X such that:
(a) xn+1 ∈ T xn for every n ∈ N,
(b) d(xn+1, xn) ≤ γd(xn, xn−1) for every n ∈ N

∗,

(c) (xn) is Cauchy.

From Theorem 3.3 and F = G = T we obtain the following corollary

Corollary 4.2 (Theorem 3.1 [19]). Let (X, d) be a complete b−metric space with constant s ≥ 1 and
T : X −→ B(X), satisfying the following conditions:

(i) T is closed,
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(ii) there exist c, d ∈ [0, 1]and k ∈ [0, 1) such that
H(T x, T y) ≤ kNc,d(x, y) for all x, y ∈ X,

(iii) ksd < 1.

Then T has a fixed point x ∈ X. Moreover, if x is absolutely fixed, then it is unique.

From Theorem 3.6 and F = G = T a we obtain corollary

Corollary 4.3 (Theorem 3.2 [19]). Let (X, d) be a complete b−metric space with constant s ≥ 1 and
T : X −→ B(X), satisfying the following conditions:

(i) d is ∗-continuous,

(ii) there exist c, d ∈ [0, 1]and k ∈ [0, 1) such that
H(T x, T y) ≤ kNc,d(x, y) for all x, y ∈ X,

(iii) ksd < 1.

Then T has a fixed point x ∈ X. Moreover, if x is absolutely fixed, then it is unique.
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