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Behavior of the Isothermal Elasticity Operator with Non-linear Friction in a Thin Domain∗

Yasmina Kadri, Hamid Benseridi, Mourad Dilmi and Aissa Benseghir

abstract: This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional
thin domain Ωε with non-linear friction of Coulomb type. We will establish a variational formulation for the
problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior
when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for
the limit problem is also proved.
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1. Introduction

The theory of variational inequalities represents, in very natural generalization of theory of boundary
value problems and allows us to consider new problems arising from many fields of applied Mathematics,
such as Mechanics, Physics, the Theory of convex programming, the control and in engineering science.
In this paper, we study a problem involving boundary conditions describing real phenomena such as
contact and friction. The problem presented in this work is very frequent in applications. For instance
the physical domains are defined such that the height is much smaller than the length. These are the
assumptions of elasticity and Visco-elasticity of a tire. Other applications are related to the mechanism
of ball bearing. Scientific research in mechanics are articulated around two main components: one
devoted to the laws of behavior and the other on boundary conditions imposed on the body. For the
constitutive law, we consider an isothermal elastic body with Coulomb free boundary friction conditions in
the stationary regime occupying a bounded, homogeneous domain Ωε ⊂ R3. As the boundary conditions
reflect the binding of the body with the outside world, the boundary Γε of the domain is assumed to be
Lipschitz continuous so that the unit outward normal n exists almost everywhere on Γε. The boundary
of the domain is assumed to be composed of three portions : ω the bottom of the domain, Γε

1 the upper
surface, and Γε

L the lateral surface. We suppose that the Dirichlet boundary conditions are satisfied

on Γ
ε

1 ∪ Γ
ε

L, for the displacement. On the bottom surface, the normal displacement is null. However,
assuming the friction is sufficiently large, the tangential velocity is unknown and satisfies the Coulomb
boundary condition. This law is one of the most spread laws in mathematics and it is more realistic
than the law of Tresca. Several works have been done on the mechanical contact with the various laws
of behaviour and various friction boundary conditions close to our problem, however these papers were
restricted only to the results of existence and uniqueness of the weak solution under several assumptions.
Let us mention for example the work by [17] in which the authors worked the mathematical model which
describes the quasistatic frictional contact between a pie-zoelectric body and a deformable foundation
with the normal compliance condition and a version of Coulomb’s law of friction. The dynamic evolution
with frictional contact of an elastic body was studied in [16]. They proved the existence of a solution
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in the two-dimensional case and the uniqueness for the one-dimensional shearing problem. An excellent
reference on analysis of contact problems involving elastic materials with or without friction is in [1,9].
Existence, uniqueness and regularity results in the study of a new class of variational inequalities were
proved in [18]. The authors in [2] studied the asymptotic and numerical analysis for a unilateral contact
problem with Coulomb’s friction between an elastic body and a thin elastic soft layer. More recently,
the asymptotic analysis of a dynamical problem of isothermal and non-isothermal elasticity with non
linear friction of Tresca type was studied in [4,17]. Some research papers have been written dealing with
both the asymptotic analysis of an incompressible fluid in a three-dimensional thin domain, when one
dimension of the fluid domain tends to zero can be found in [5,10,11]. The goal of this paper is to study
the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ωε with non

linear friction of Coulomb type. The use of the small change of variable z=
x3

ε
, transforms the initial

problem posed in the domain Ωε into a new problem posed on a fixed domain Ω independent of the
parameter ε. We prove some estimates on the displacement independent of the small parameter. The
passage to the limit on ε, permits us to obtain the existence and uniqueness of the limit of a weak solution
to the problem described in the abstract.

This article is organized as follows. In Section 2 we introduce the notation and we recall the weak
formulation of our problem considered. In section 3 we find some estimates and prove convergence
theorem by using several inequalities. Finally, we obtain all the properties of our original problem.

2. The model and variational problem

We consider a mathematical problem governed to the stationary equations for elasticity system in a
three dimensional bounded domain Ωε ⊂ R3 with boundary Γε. We denote by S3 the space of second order
symmetric tensor on R3, and |.| the inner product and the Euclidean norm on R3 and S3, respectively.
Thus, for every u, v ∈ R3, u.v = ui.vi, |v| = (v.v)

1

2 and for everywhere σ, τ ∈ S3, σ.τ = σijτ ij , |τ | =

(τ .τ)
1

2 for 1 ≤ i, j ≤ 3. Let ω be a fixed bounded domain of R3 of equation x3 = 0. We suppose that ω

has a Lipschitz continuous boundary and is the bottom of the domain. The upper surface Γ
ε

1 is defined
by x3 = εh(x) = εh(x1, x2). We introduce a small parameter ε, that will tend to zero, and a function h

on the closure of ω such that 0 < h∗ ≤ h(x) ≤ h∗, for all (x, 0) in ω. The domain Ωε is defined by

Ωε =
{

(x, x3) ∈ R
3 : (x, 0) ∈ ω, 0 < x3 < εh(x)

}
.

Also, we use the following notations

H1(Ωε)3 =

{
v ∈

(
L2 (Ωε)

)3
:

∂vi

∂xj

∈ L2 (Ωε) , ∀i, j = 1, 2, 3

}
,

V ε =
{

v ∈ H1(Ωε)3 : v = 0 on Γε
L ∪ Γε

1, v.n = 0 on ω
}

,

H(Ωε) =
{

σ = (σij) : σij = σji ∈ L2(Ωε)
}

,

H1
Γε

L
∪Γε

1

(Ωε) =
{

ϕ ∈ H1 (Ωε) : ϕ = 0 on Γε
L ∪ Γε

1

}
.

The spaces H1(Ωε)3, V ε, H(Ωε) and H1
Γε

L
∪Γε

1

(Ωε) are a real Hilbert spaces endowed with their natural

norms ‖.‖1,Ωε and scalar product (., .)1,Ωε .
Let Q the real Hilbert space

Q =
{

τ = (τ ij) : τ ij = τ ji ∈ L2(Ωε), ∀i, j = 1, 2, 3
}

,

with the canonical inner product

(σ, τ )Q =

∫

Ωε

σijτ ijdx =

∫

Ωε

σ.τdx,

where

(u, v)1,Ωε = (ǫ(u), ǫ(v))Q ∀u, v ∈ V (Ωε).
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Here ǫ denotes the deformation operator ǫ : H1(Ωε)3 −→ Q defined by

ǫ(u) = (ǫij(u)) , ǫij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

Let Q∞ be the space of forth order fields given by (see [18], page 97)

Q∞ = {E = (eijpq) : eijpq = ejipq = epqij ∈ L∞(Ωε), 1 ≤ i, j, p, q ≤ 3},

witch is a real Banach space with the norm

‖E‖Q∞
= max

0≤i,j,p,q≤3
‖eijpq‖L∞(Ωε)

and moreover
‖Eτ‖Q ≤ 3‖E‖Q∞

‖τ‖Q ∀E ∈ Q∞, τ ∈ Q.

Let us introduce a vector function g = (gi)1≤i≤3, such that

∫

Γε

L

g.ndσ = 0 . (*)

We assume that g is in H
1

2 (∂Ωε)3, the space of traces of functions from H1(Ωε)3 in ∂Ωε. Due to (*)
there exists a function Gε such that

Gε ∈ H1(Ωε)3 with Gε = g on ∂Ωε.

For every element u ∈ H1(Ωε)3 we denote by uε
n and uε

τ the normal and the tangential components of u

on the boundary ω given by
uε

n = uε.n, uε
τi

= uε
i − uε

n.ni.

Also, for a regular function σε, we define its normal and tangential components by

σε
n = (σε.ni) .nj , σε

τi
= σε

ij .nj − (σε
n) .ni.

We denote by uε = (uε
i )1≤i≤3, the displacement vectors, by σε = (σij)1≤i,j≤3, the stress tensor and ǫ(uε)

the linearized strain tensors. We model the materials with elastic constructive law

σ
ε = Eǫ(uε),

where E is given linear constitutive functions satisfy





(a) E : Ωε × S3 → S3,

(b) There exists LE > 0 such that
|E(x, ǫ1) − E(x, ǫ2)| ≤ LE |ǫ1 − ǫ2|

∀ ǫ1, ǫ2 ∈ S3, a.e. x ∈ Ωε,

(c) There exists mE > 0 such that
(E(x, ǫ1) − E(x, ǫ2)).(ǫ1 − ǫ2) ≥ mE|ǫ1 − ǫ2|2

∀ ǫ1, ǫ2 ∈ S3, a.e. x ∈ Ωε,

(d) The map x 7−→ E(x, 0) is Lebesgue measurable on Ωε

for any ǫ ∈ S3,

(e) The map x 7−→ E(x, 0) ∈ H(Ωε).

(2.0)

For given body forces fε the problem is described by:
• The stationary elasticity system of equations:

−div (σε) = fε in Ωε.
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◮ The upper surface Γε, being assumed to be fixed so :

uε = 0, on Γε
1.

◮ On Γε
L, the displacement is known and parallel to the w-plane:

uε = g with g3 = 0.

• Now, we describe the conditions on the surface ω. We assume that the contact is bilateral, i.e.,

uε.n = 0.

• The tangential displacement on ω is unknown and satisfies the Coulomb friction law.

|σε
τ | < F

ε|σε
n| =⇒ uε

τ = s,

|σε
τ | = Fε|σε

n| =⇒ ∃β ≥ 0 such that uε
τ = s − βσε

τ .

}

In this law, the tangential stress can reach the border F
ε|σε

n| which is called friction threshold, where
Fε ≥ 0 is the coefficient of friction.
To simplify the notation, we do not indicate explicitly the dependence of various functions on the variables
x ∈ Ωε ∪ Γε. Then, the classical formulation of the mechanical problem of a frictional bilateral contact
with wear may be stated as follows.
Problem Pε. Find a displacement field uε = ((uε

i ))1≤i≤3 : Ωε → R3 such that

Divσε + fε = 0, in Ωε, (2.1)

σε = Eǫ(uε), in Ωε, (2.2)

uε = 0, on Γε
1, (2.3)

uε = g, with g3 = 0, on Γε
L, (2.4)

uε.n, on ω, (2.5)

|σε
τ | < Fε|σε

n| =⇒ uε
τ = s

|σε
τ | = Fε|σε

n| =⇒ ∃β ≥ 0 such that uε
τ = s − βσε

τ

}
, on ω, (2.6)

Remark 2.1. If we have only uε ∈ V ε and σε
n is defined by duality as an element of H− 1

2 (ω), has non
sense then the integral Jε(v) has no meaning. From the mathematical point of view it is necessary that
R(σε

η) = |σε
n| with R is a regularization operator (cf. [12,13]) from H

1

2 (ω) into L2(ω) defined by

∀τ ∈ H− 1

2 (ω), R(τ) ∈ L2(ω), R(τ )(x) = 〈τ , φ(x − t)〉
H

−
1

2 (ω),H
1

2

00
(ω)

∀x ∈ ω,

where φ is a given positive function of class C∞ with compact support in ω and H− 1

2 (ω) is the dual
space to

H
1

2

00 = {v|ω
: v ∈ H1(Ω), v = 0 on Γ1 ∪ ΓL}.

Theorem 2.1. Let uε be a solution of Problem Pε, with a sufficient regularity, then it satisfies the
following variational problem:
Problem Pε

v. Find uε ∈ V ε such that

a (uε, v − uε) + Jε(v) − Jε(uε) ≥

∫

Ωε

fε(v − uε)dxdx3, ∀v ∈ V ε, (2.7)

where

a (uε, v − uε) =

∫

Ωε

σε(ǫ(v) − ǫ(uε))dxdx3 =

∫

Ωε

E(ǫ(v) − ǫ(uε))dxdx3,

(fε, v) =

∫

Ωε

fividxdx3, ∀v ∈ H1 (Ωε)
3

,

Jε(v) =

∫

ω

F
ε|R(σε

η)||v − s|dx.
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Proof. Multiplying equation (2.1) by (ϕ − uε), where ϕ ∈ V ε, and we use Green’s formula, we get
∫

Ωε

σε(ǫ(v) − ǫ(uε))dxdx3 −

∫

Γε

σε
ijnj (ϕi − uε

i ) dσ =

∫

Ωε

fε
i (ϕi − uε

i ) dxdx3. (2.8)

According to the boundary conditions (2.3)-(2.5), we find
∫

Γε

σε
ijnj (ϕi − uε

i ) dσ =

∫

ω

σε
τ i

(ϕi − uε
i ) dx.

Therefore
∫

Ωε

σε(ǫ(v) − ǫ(uε))dxdx3 −

∫

ω

σε
τ i

(ϕi − uε
i ) dx =

∫

Ωε

fε
i (ϕi − uε

i ) dxdx3, ∀ϕ ∈ V ε. (2.9)

In (2.8) adding and subtract the term
∫

ω
Fε|R(σε

n)| (|ϕ − s| − |uε
τ − s|) dx, we obtain

∫

Ωε

σε(ǫ(v) − ǫ(uε))dxdx3 −

∫

ω

σε
τ i

(ϕi − uε
i ) dx +

∫

ω

F|R(σε
n)| (|ϕ − s| − |uε

τ − s|) dx

−

∫

ω

F|R(σε
n)| (|ϕ − s| − |uε

τ − s|) dx =

∫

Ωǫ

fε
i (ϕi − uε

i ) dxdx3.

As the Coulomb friction (2.6) is equivalent to ([12]):

(uε
τ − s) σε

τ + F
ε|R(σε

n)||uε
τ − s| = 0 on ω,

we deduce directly the variational inequality (2.7). �

Theorem 2.2. Assume fε ∈ L2(Ωε)3 and the friction coefficient Fε is a non negative function in
∈ L∞(ω), then there exists uε ∈ V ε solution to the problem P ε. Moreover, for small Fε this solution is
unique.
Proof. The proof is similar to that given in [2]. Indeed, for the existence of solution uε we apply
Tichonov’s fixed point theorem. Then to proved the uniqueness of uε we used the same technicals as in
[2] and ( [18], Theorem 2.1).

3. The problem in a fixed domain

This section is devoted to the study of a priori estimates on the displacement uε solution of our
variational problem. For the asymptotic analysis of problem (2.1) − (2.6), we use the approach which
consist in transposing the problem initially posed in the domain Ωε which depend on a small parameter ε

in an equivalent problem posed in the fixed domain Ω which is independent of ε. For that, we introduce

a small change of the variable z=
x3

ε
, so for (x, x3) in Ωε we have (x, z) in

Ω =
{

(x, z) ∈ R
3, (x, 0) ∈ ω and 0 < z < h (x)

}
,

and we denote by Γ = ω̄ ∪ ΓL ∪ Γ1 its boundary, then we define the following functions in Ω

ûε
3 (x, z) = ε−1uε

3 (x, x3) and ûε
i (x, z) = uε

i (x, x3) , i = 1, 2. (3.1)

For the data of problem (2.1) − (2.6), we suppose that they depend of ε in the following manner





f̂ (x, z) = ε2fε(x, x3),

F̂ = ε−1
F

ε,

ĝ(x, z) = gε(x, x3),

(3.2)

with f̂ , ̥̂ and ĝ independent of ε.
The vector Gε introduced in section 2 will be defined as follows

{
Ĝi(x, z) = Gε

i (x, x3), i = 1, 2,

Ĝ3 (x, z) = ε−1Gε
3(x, x3).

(3.3)
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Now we introduce the functional framework on Ω. For this, we note:

V =
{

v̂ ∈ H1(Ω)3 : v̂ = 0 on ΓL ∪ Γ1 and v̂.n = 0 on ω
}

,

Π (V ) =
{

v̂ ∈ H1(Ω)2 : v̂ = (v̂1, v̂2) , v̂i = 0 on Γ1 ∪ ΓL , i = 1, 2
}

,

Vz =

{
v̂ = (v̂1, v̂2) ∈ L2(Ω)2 :

∂v̂i

∂z
∈ L2(Ω), i = 1, 2; and v̂ = 0 on Γ1

}
.

Assuming (3.1) − (3.3), then problem (2.7) leads to the following form:

Problem P̂
ε. Find ûε ∈ V such that

â (û, v̂ − û) + Ĵ(v̂) − Ĵ(û) ≥

2∑

i=1

(
f̂i, v̂i − ûi

)
+ ε

(
f̂3, v̂3 − û3

)
, ∀v̂ ∈ V, (3.4)

where

Ĵ(v̂) =

∫

ω

F̂
∣∣R(σε

η)
∣∣ |v̂τ − s|dx,

â (û, v̂ − û) = ε2
2∑

i=1

∫

Ωε

σε(ǫ(v̂i) − ǫ(ûε
i ))dxdx3 + ε

∫

Ωε

σε(ǫ(v̂3) − ǫ(ûε
3))dxdx3.

In the next, we will obtain estimates on ûε. These estimates will be useful in order to prove the conver-
gence of ûε toward the expected function.

Theorem 3.1. Assuming that f ∈
(
L2 (Ω)

)3
and the friction coefficient F̂ > 0 in L∞ (ω) then there

exists positive constant C independent of ε, such that the following estimate holds

ε2
∑

1≤i,j≤2

∥∥∥∥
∂ûε

i

∂xj

∥∥∥∥
2

L2(Ω)

+ ε2

∥∥∥∥
∂ûε

3

∂z

∥∥∥∥
2

L2(Ω)

+
∑

1≤i≤2

∥∥∥∥
∂ûε

i

∂z

∥∥∥∥
2

L2(Ω)

+ ε4

∥∥∥∥
∂ûε

3

∂xi

∥∥∥∥
2

L2(Ω)

≤ C. (3.5)

Proof. Let uε be a solution to problem Pε, we have

a (uε, v − uε) + Jε(v) − Jε(uε) ≥

∫

Ωε

fε(v − uε)dxdx3, ∀v ∈ V ε. (3.6)

As Jε(uε) is positive, then

a (uε, uε) ≤ a (uε, v) + Jε(v) +

∫

Ωε

fεuεdxdx3 −

∫

Ωε

fεvdxdx3, ∀v ∈ V ε. (3.7)

By Korn’s inequality, there exists a constant Ck > 0 independent of ε, such that

a (uε, uε) ≥ CK‖∇uε‖2
0,Ωε . (3.8)

On the other hand we have

a (uε, vε) ≤

∫

Ωε

‖E(ǫ(v) − ǫ(uε)‖2
S3

dxdx3 ≤

∫

Ωε

LE‖ǫ(v) − ǫ(uε)‖2
L(Ωε)dxdx3.

We use the fact that
∑2

i,j=1 |ǫ(uε)|2 ≤ |∇uε|2, then

a (uε, vε) ≤ LE

(
‖∇v‖2

0,Ωε + ‖∇uε‖2
0,Ωε

)
.

Using Poincaré’s inequality to obtain

‖uε‖0,Ωε ≤ εh⋆‖∇uε‖0,Ωε ,
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then, similar to (3.8), we have
∣∣∣∣
∫

Ωε

fεuεdxdx3

∣∣∣∣ ≤
CK

2
‖∇uε‖2

0,Ωε +
(εh⋆)2

2CK

‖∇fε‖2
0,Ωε , (3.9)

∣∣∣∣
∫

Ωε

fεvεdxdx3

∣∣∣∣ ≤
CK

2
‖∇vε‖2

0,Ωε +
(εh⋆)2

2CK

‖∇fε‖2
0,Ωε . (3.10)

Using (3.8) − (3.10) and choosing v = Gε, the variational inequality (3.7) becomes

CK‖∇uε‖0,Ωε ≤ a (uε, uε) ≤ LE

(
‖∇Gε‖2

0,Ωε + ‖∇u‖2
0,Ωε

)

+
CK

2
‖∇uε‖2

0,Ωε +
(εh⋆)2

2CK

‖∇fε‖2
0,Ωε

+
CK

2
‖∇Gε‖2

0,Ωε +
(εh⋆)2

2CK

‖∇fε‖2
0,Ωε .

Assume that LE <
CK

2
, then

(
CK

2
− LE

)
‖∇uε‖0,Ωε ≤

(εh⋆)2

CK

‖∇fε‖2
0,Ωε +

(
LE +

CK

2

)
‖∇Gε‖2

0,Ωε . (3.11)

Multiplying (3.11) by ε (0 < ε < 1), we have

ε

(
CK

2
− LE

)
‖∇uε‖0,Ωε

≤
(εh⋆)2

CK

‖∇f̂‖2
0,Ω +

(
LE +

CK

2

)
‖(∇Ĝ‖2

0,Ω.

Thus ε‖∇uε‖2
0,Ωε ≤ C, where

C=

(
h⋆2

CK

∥∥∥∇f̂
∥∥∥

2

L2(Ωε)
+

(
CK

2
+ LE

)∥∥∥∇Ĝ
∥∥∥

2

L2(Ωε)

)(
CK

2
− LE

)−1

ε‖∇uε‖2
0,Ωε = ε2

∑

1≤i,j≤2

∥∥∥∥
∂ûε

i

∂xj

∥∥∥∥
2

L2(Ω)

+ ε2

∥∥∥∥
∂ûε

3

∂z

∥∥∥∥
2

L2(Ω)

+
∑

1≤i≤2

∥∥∥∥
∂ûε

i

∂z

∥∥∥∥
2

L2(Ω)

+ ε4

∥∥∥∥
∂ûε

3

∂xi

∥∥∥∥
2

L2(Ω)

.

Which completes the proof. �

Theorem 3.2. Under the same assumptions of Theorem 3.1 and the inequality (3.5) hold, then there
exists û∗ = (û∗

i ) , i = 1, 2 in Vz, such that

ûε
i ⇀ û∗

i i = 1, 2 weakly in Vz , (3.12)

ε
∂ûε

i

∂xj

⇀ 0 i, j = 1, 2 weakly in L2 (Ω) , (3.13)

ε2 ∂ûε
3

∂xi

⇀ 0 i = 1, 2 weakly in L2 (Ω) , (3.14)

ε
∂ûε

3

∂z
⇀ 0 weakly in L2 (Ω) , (3.15)

εûε
3 ⇀ 0 weakly in L2 (Ω) . (3.16)

Proof. The convergences of (3.12) − (3.16) are a direct result of inequalities (3.5).

To be able to pass to the limit in the Problem P̂ε, we must prove the convergence of the integral term
defined on ω. The following lemma is adapted for this case.
Lemma 3.1 ([2]). There exists a subsequence of R(σε

η(ûε)) converging strongly towards R(σε
η(û∗)) in

L2 (ω).
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4. Main results and limit problem

Theorem 4.1. With the same assumptions of Theorem 3.2, the solution û∗ satisfy

ûε
i ⇀ û∗

i for i = 1, 2 strongly in Vz , (4.1)

−λ
∂2û⋆

i

∂z2
= f̂i for i = 1, 2, in L2(Ω)2, λ ∈ R (4.2)

1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

i

∂z

)
∂

∂z
(v̂i − û⋆

i )dxdz +

∫

ω

F̂
∣∣R(σ∗

η(û∗))
∣∣ (|v̂ − s| − |û∗ − s|)dx

≥

2∑

i=1

∫

Ω

f̂i(v̂i − û⋆
i )dxdz , ∀v̂ ∈ Π (V ) . (4.3)

Proof. The proof of the strong convergence of (ûε
1, ûε

2) to (û∗
1, û∗

2) in Vz using the same techniques
from ( [7], Proof of Theorem 4.2). By the convergence of Theorem 3.2 and as J is convex and lower
semi-continus, the inequality (3.4) became

1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

i

∂z

)
∂

∂z
(v̂i − û⋆

i )dxdz +

∫

ω

F̂
∣∣R(σ∗

η(û∗))
∣∣ (|v̂ − s| − |û∗ − s|)dx

≥

2∑

i=1

(
f̂i, v̂i − ûi

)
. (4.4)

From ( [6]; Lemma 5.3), we can choose v̂i in (4.4) such that

v̂i = û⋆
i ± ϕi, ϕi ∈ H1

0 (Ω) i = 1, 2

we get

1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

i

∂z

)
∂ϕi

∂z
dxdz =

2∑

i=1

∫

Ω

f̂iϕidxdz.

Now, by the Green formula, we deduce

−
1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

i

∂z

)
ϕidxdz =

2∑

i=1

∫

Ω

f̂iϕidxdz.

Using the fact that E is linear, then there exists a real λ such that

−λ
∂2û⋆

i

∂z2
= f̂i in H−1 (Ω) .

We know that f̂i ∈ L2(Ω), then (4.2) is true in L2(Ω). �

Theorem 4.2. Under the assumptions of the previous Theorem 4.1, we have

∫

ω

F̂
∣∣R(σ∗

η(s∗))
∣∣ |(|ϕ + s∗ − s| − |s∗ − s|)dx − λ

∫

ω

τ∗ϕdx ≥ 0, ∀ϕ ∈ L2(ω)2 (4.5)

{
λ|τ∗| < F̂

∣∣R(σ∗
η(s∗))

∣∣ ⇒ s∗ = s,

λ|τ∗| = F̂
∣∣R(σ∗

η(s∗))
∣∣ ⇒ ∃β ≥ 0, such that s∗ = s + βλτ∗,

on ω, (4.6)

where

s⋆ = û⋆(x, 0), τ∗ =
∂û⋆

∂z
(x, 0).
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Also the limit function û⋆ satisfies the weak generalized equation

∫

ω

(
F̃ + λ

∫ h

0

û⋆(x, z)dz

)
∇ϕ(x)dx = 0, ∀ϕ ∈ H1(ω) (4.7)

where

F̃ (x) =

∫ h

0

F (x, z)dz − hF (x, h) and F (x, z) =

∫ z

0

∫ s

0

f̂i(x, θ)dθds.

Proof. The inequality (3.4) can be written as

2∑

i,j=1

∫

Ω

E

(
1

2

(
∂ûε

i

∂xj

+
∂ûε

j

∂xi

)
∂

∂xj

(vi − ûε
i ) dxdz

)

+

2∑

i=1

∫

Ω

E

(
1

2

(
∂ûε

i

∂z
+ ε2 ∂ûε

3

∂xi

)[
∂

∂z
(vi − ûε

i ) + ε2 ∂

∂xi

(v3 − ûε
3)

]
dxdz

)
(4.8)

+ ε2

∫

Ω

E
∂ûε

3

∂z

∂

∂z
(v3 − ûε

3) dxdz +

∫

ω

F̂
∣∣R(σ∗

η(s∗))
∣∣ |(|ϕ + s∗ − s| − |s∗ − s|)dx − λ

∫

ω

τ∗ϕdx

≥

2∑

i=1

(
f̂i, v̂i − ûi

)
+ ε

(
f̂3, v̂3 − û3

)
.

Passing to the limit, then using the Green formula and we choose in the variational formulation (4.8),
v̂i = û⋆

i + ϕi, where ϕi ∈ H1
Γ1∪ΓL

(Ω), i = 1, 2 , with

H1
Γ1∪ΓL

(Ω) = {v ∈ H1(Ω) : v = 0 on Γ1 ∪ ΓL},

we obtain

− λ

2∑

i=1

∫

Ω

∂2û⋆
i

∂z2
ϕidxdz +

∫

ω

F̂
∣∣R(σ∗

η(s∗))
∣∣ |(|ϕ + s∗ − s| − |s∗ − s|)dx − λ

∫

ω

τ∗ϕdx

≥

2∑

i=1

∫

Ω

f̂iϕidxdz.

On the other hand, from (4.2) we deduce that for ϕ = (ϕ1, ϕ2) ∈ H1
Γ1∪ΓL

(Ω)2

∫

ω

F̂
∣∣R(σ∗

η(s∗))
∣∣ |(|ϕ + s∗ − s| − |s∗ − s|)dx − λ

∫

ω

τ∗ϕdx ≥ 0. (4.9)

Inequality (4.9) holds also for all ϕ ∈ D(ω)2 and by the fact that D(ω) is dens in L(ω) we find (4.5). The
proof of (4.6) is similar to those given in case of the problem of fluid-solid with Coulomb law ( [7]. For
the rest of proof, we integrate twice (4.2) between 0 and z, we obtain

z∫

0

ξ∫

0

f̂i (x, α) dαdξ = −λ

z∫

0

ξ∫

0

∂2û⋆
i

∂z2
(x, α) dαdξ

= −λ

z∫

0

[
∂û⋆

i

∂ξ
(x, ξ) −

∂û⋆
i

∂ξ
(x, 0)

]
dξ

= −λ (û⋆
i (x, z) − û⋆

i (x, 0) − zτ⋆) ,

then

û⋆
i (x, z) = s⋆ (x, 0) + zτ⋆ −

1

λ

z∫

0

ξ∫

0

f̂i (x, α) dαdξ. (4.10)
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As û⋆
i (x, h (x)) = 0, we have

s⋆ (x, 0) + hτ⋆ =
1

λ

h∫

0

ξ∫

0

f̂i (x, α) dαdξ. (4.11)

Integrating (4.10) between 0 and h give

h∫

0

û⋆
i (x, z) dz =

h∫

0

s⋆ (x, 0) dz +

h∫

0

zτ⋆dz −
1

λ

h∫

0

z∫

0

ξ∫

0

f̂i (x, α) dαdξdz,

h∫

0

û⋆
i (x, z) dz = hs⋆ (x, 0) +

1

2
h2τ⋆ −

1

λ

h∫

0

z∫

0

ξ∫

0

f̂i (x, α) dαdξdz,

we deduce that
h∫

0

û⋆
i (x, z) dz +

∼

F (x) −
1

2
h2τ⋆ = 0,

so, we give (4.7). �

Theorem 4.3. Under the assumptions of Theorem 4.1, there exists a positive constant F∗ (sufficiently

small), such that for
∥∥∥F̂
∥∥∥

L∞(ω)
≤ F∗ then the solution of the limit problem (4.2) is unique in Vz .

Proof. Let û⋆
1 and û⋆

2 be two solutions of the problem (4.2). For any v̂i ∈ Π (V ), we have

1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

1i

∂z

)
∂

∂z
(v̂i − û⋆

1i)dxdz +

∫

ω

F̂
∣∣R(σ∗

η(û⋆
1))
∣∣ |(|v̂ − s| − |û⋆

1 − s|)dx

≥

2∑

i=1

∫

Ω

f̂i(v̂i − û⋆
1i)dxdz

1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

2i

∂z

)
∂

∂z
(v̂i − û⋆

2i)dxdz +

∫

ω

F̂
∣∣R(σ∗

η(û⋆
2))
∣∣ |(|v̂ − s| − |û⋆

2 − s|)dx

≥
2∑

i=1

∫

Ω

f̂i(v̂i − û⋆
2i)dxdz

Taking v̂i = û⋆
2i in the first and v̂i = û⋆

1i in the second equation then summing the two inequalities above
taking in mind that E is linear, we get :

1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

1i

∂z

)
∂

∂z
(û⋆

2i − û⋆
1i)dxdz +

1

2

2∑

i=1

∫

Ω

E

(
∂û⋆

2i

∂z

)
∂

∂z
(û⋆

1i − û⋆
2i)dxdz

+

∫

ω

F̂
(∣∣R(σ∗

η(û⋆
2))
∣∣−
∣∣R(σ∗

η(û⋆
1))
∣∣) (|û⋆

1 − s| − |û⋆
2 − s|) dx

≥ 0,

then

1

2

2∑

i=1

∫

Ω

E

∣∣∣∣
∂

∂z
(û⋆

1i − û⋆
2i)

∣∣∣∣
2

dxdz ≤

∫

ω

F̂
(∣∣R(σ∗

η(û⋆
2))
∣∣−
∣∣R(σ∗

η(û⋆
1))
∣∣) |û⋆

1 − û⋆
2|dx,
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this implies

‖E‖Q∞

∥∥∥∥
∂

∂z
(û⋆

1 − û⋆
2)

∥∥∥∥
2

0,Ω

≤

∫

ω

F̂
(∣∣R(σ∗

η(û⋆
2))
∣∣−
∣∣R(σ∗

η(û⋆
1))
∣∣) |û⋆

1 − û⋆
2|dx.

By Poincaré’s inequality, we find

‖E‖Q∞

∥∥∥∥
∂

∂z
(û⋆

1 − û⋆
2)

∥∥∥∥
2

0,Ω

≤ (h∗)
2
∥∥∥F̂
∥∥∥

L∞(ω)

(∫

ω

∣∣R(σ∗
η(û⋆

2)) − R(σ∗
η(û⋆

1))
∣∣2 dx

) 1

2

‖û⋆
1 − û⋆

2‖0,ω .

As
∥∥∥F̂
∥∥∥

L∞(ω)
≤ F∗, then we have ‖û⋆

1 − û⋆
2‖Vz

= 0. �
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