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Existence Results to Steklov System Involving the (p, q)-Laplacian

Youness Oubalhaj, Belhadj Karim and Abdellah Zerouali

abstract: In this paper, a quasilinear elliptic system involving a pair of (p,q)-Laplacian operators with
Steklov boundary value conditions is studied. Using the Mountain Pass Geometry, we prove the existence of
at least one weak solution. For the infinitely many weak solutions, we based on Bratsch’s Fountain Theorem
[9].
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1. Introduction

Let Ω be a bounded domain in R
N (N ≥ 2), with a smooth boundary ∂Ω and 1 < p < ∞, 1 < q < ∞.

We consider the system















∆pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν
+ |u|p−2u = ∂F

∂u
(x, u, v) on ∂Ω,

∆qv = 0 in Ω,
|∇v|q−2 ∂v

∂ν
+ |v|q−2v = ∂F

∂v
(x, u, v) on ∂Ω,

(1.1)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, ∂
∂ν

is the outer normal derivative. We denote

p∂ =

{

(N−1)p

N−p
if p < N,

+∞ if p ≥ N.

The function F : ∂Ω × R × R −→ R is assumed to be continuous in x ∈ ∂Ω, of class C1 in u, v ∈ R and
satisfying the following hypotheses:
(H1) F (x, s1, s2) ≤ c1 + c2|s1|p1 + c3|s2|q1 + c4|s1|α|s2|β , ∀(x, s1, s2) ∈ ∂Ω ×R

2, where p1, q1, α, β denote
positive constants such that: p1 < p∂ , q1 < q∂ , α

p
+ β

q
= 1, p1 > p, q1 > q.

(H2) There exist M > 0, η1 > p, η2 > q: for all x ∈ ∂Ω, for all (s1, s2) ∈ R
2 :

|s1|η1 + |s2|η2 ≥ 2M such that : 0 < F (x, s1, s2) ≤
s1

η1

∂F

∂s1
(x, s1, s2) +

s2

η2

∂F

∂s2
(x, s1, s2),

and

F (x, s1, s2) ≥ c5(|s1|η1 + |s2|η2 − 1).

(H3) lim
(s1,s2)→(0,0)

F (x,s1,s2)
|s1|p+|s2|q = 0, uniformly with respect to x ∈ ∂Ω.
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Where ci, i = 1, 2..., denote positive constants. These hypotheses are only needed to insure the Moun-
tain Pass Geometry and the Palais-Smale condition for the Euler-Lagrange functional associated to the
system (1.1).

Many publication has been studying existence results for nonlinear elliptic systems with Dirichlet,
Neumann or Steklov conditions, for example we cite [1,2,11].
The quasilinear elliptic systems involving a general (p,q)-Laplacian operator has been received consider-
able attention in recent years. This is partly due to their frequent appearance in applications such as;
the reaction-diffusion problems, the non-Newtonien fluids, astronomy, etc. (see [4]). Also these problems
are very interesting from a purely mathematical point of view as well.
Various authors discuss this kind of problems such as [5,8,16], existence and nonexistence theorems were
obtained.
In this paper, we will generalize the results of [12] to the (p,q)-Laplacian with Steklov boundary con-
ditions, the first result is based on the Mountain Pass Theorem of Ambrosetti and Rabinowitz which
was proposed in 1973 (see, [3]), it is a result of great intuitive appeal as well as practical importance in
the determination of critical points of functionals, which has became one of the main tools for finding
solutions to elliptic problems of variational type. For the second one we shall give a variant of Bratsch’s
Fountain Theorem [9].

Our main results are the proofs of the following theorems.

Theorem 1.1. If the hypotheses (H1), (H2) and (H3) hold true, then the problem (1.1) has at least one
weak solution.

Theorem 1.2. If the functional F (x, u, v) is even in (u,v) and the hypotheses (H1) and (H2) hold true,
then the problem (1.1) has infinitely many (pairs) weak solutions.

This paper is organized as follows, section 1 contains an introduction and the main results. In section
2, which has a preliminary character, we will give some assumptions and facts that will be needed in the
paper, in section 3, we will give the proofs of our main results.

2. Preliminaries

In this section, we introduce some notations used below and recall some background facts concerning
the generalized Lebesgue-Sobolev space.
For every 1 < p < ∞ and bounded domain Ω ⊂ R and measurable u : Ω → R we denote the norm of
Lp(Ω) by

‖u‖Lp(Ω) =
(

∫

Ω

|u|pdx
)

1

p

.

The dual space of Lp(Ω) is Lp′

(Ω) where 1
p

+ 1
p′ = 1. Moreover, we have the following Hölder type

inequality:
∣

∣

∣

∫

Ω

uvdx
∣

∣

∣
≤ 2‖u‖Lp(Ω)‖v‖Lp′(Ω). (2.1)

The separable and reflexive Banach space W 1,p(Ω) is endowed with its natural norm

‖u‖1,p =

(
∫

Ω

|u|pdx+

∫

Ω

|∇u|pdx

)
1

p

.

Consider the space W = W1,p(Ω) × W1,q(Ω) equipped with the norm

‖(u, v)‖W = ‖u‖1,p + ‖v‖1,q, for all (u, v) ∈ W.

We introduce the norm ‖.‖p,q which is equivalent to ‖.‖W and will be used later in this paper, where

‖w‖p,q = ‖u‖p + ‖v‖q,
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where

‖u‖p =
(

∫

Ω

|∇u|pdx+

∫

∂Ω

|u|pdσ
)

1

p

,

and

‖v‖q =
(

∫

Ω

|∇v|qdx+

∫

∂Ω

|v|qdσ
)

1

q

.

‖.‖p is also a norm on W1,p(Ω) which is equivalent to ‖u‖1,p, the same for ‖.‖q is a norm on W1,q(Ω).
Then ‖.‖p,q is a norm on W which is equivalent to ‖.‖W (see [Theorem 2.1] [10]).

Definition 2.1. We say that (u, v) is a weak solution of (1.1) if :

∫

Ω

|∇u|p−2∇u∇ϕdx+

∫

∂Ω

|u|p−2uϕdσ =

∫

∂Ω

∂F

∂u
(x, u, v)ϕdσ,

and
∫

Ω

|∇v|q−2∇v∇ψdx+

∫

∂Ω

|v|q−2vψdσ =

∫

∂Ω

∂F

∂v
(x, u, v)ψdσ,

for every (u, v) and (ϕ, ψ) ∈ W = W 1,p(Ω) ×W 1,q(Ω).

Let

F(u, v) =

∫

∂Ω

F (x, u, v)dσ, (2.2)

then

F
′(u, v)(ϕ, ψ) = Fu(u, v)(ϕ) + Fv(u, v)(ψ),

where

Fu(u, v)ϕ =

∫

∂Ω

∂F

∂u
(x, u, v)ϕdσ and Fv(u, v)ψ =

∫

∂Ω

∂F

∂v
(x, u, v)ψdσ.

The Euler-Lagrange functional associated to (1.1) is given by

Φ(u, v) =
1

p
‖u‖p

p +
1

q
‖v‖q

q − F(u, v), (2.3)

it is clear that Φ ∈ C1(W,R) and

(Φ′(u, v)(ϕ, ψ)) = (Φu(u, v)(ϕ)) + (Φv(u, v)(ψ)),

where

(Φu(u, v)(ϕ)) =

∫

Ω

|∇u|p−2∇u∇ϕdx+

∫

∂Ω

|u|p−2uϕdσ − Fu(u, v)ϕ

and

(Φv(u, v)(ψ)) =

∫

Ω

|∇v|q−2∇v∇ψdx+

∫

∂Ω

|v|q−2vψdσ − Fv(u, v)ψ.

Hence it is easy to see that the critical points of Φ are weak solutions to problem (1.1) and we use this
fact in the search concerning weak solutions from the next sections.
Let W ∗ is the dual space of W endowed with the norm ‖.‖W ∗ , therefore

‖Φ′(u, v)‖W ∗ = ‖Φu(u, v)‖W ∗,p + ‖Φv(u, v)‖W ∗,q,

where ‖.‖W ∗,p (respectively ‖.‖W ∗,q) is the norm of the dual space of W 1,p(Ω) (respectively W 1,q(Ω)).
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3. Proof of main results

3.1. The existence result

To prove our Theorem 1.1, we shall give a variant of the Mountain Pass Theorem of Ambrosetti and
Rabinowitz (see [14,17]) as follows.

Theorem 3.1. Let X be a Banach space endowed with the norm ‖.‖X. Assume that I ∈ C1(X,R)
satisfies the Palais-Smale condition, also I has a Mountain Pass Geometry, that is,
1) Any sequence (un)n ⊂ X such that (I(un))n is bounded and I ′(un) → 0 in X as n → ∞, contains a
subsequence converging to a critical point of I.
2) There exist r, c′ > 0 such that I(u) ≥ c′ if ‖u‖X = r.
3) There exist ǔ ∈ X such that ‖ǔ‖ > r and I(ǔ) < c′.
Then I has a nontrivial critical point u0 ∈ X \ {0, ǔ} with critical value

I(u0) = inf
γ∈Γ

sup
u∈γ

I(u) ≥ c′ > 0,

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = ǔ}.

To this aim, we prove three auxiliary lemmas.
We give the first one.

Lemma 3.2. Assume (H1) and (H2) hold true, then the functional Φ introduced by (2.3) satisfies the
Palais-Smale condition.

Proof. Let (un, vn) a Palais-Smale sequence for the functional Φ, then there exist c > 0 such that
Φ(un, vn) ≤ c and ‖Φ′(un, vn)‖W ∗ → 0 as n → +∞.
We first show that (un, vn) is bounded. To do so, we argue by contradiction and we assume that, up to
a subsequence (un, vn) is not bounded.

We have Φ(un, vn) = 1
p
‖un‖p

p + 1
q
‖vn‖q

q − F(un, vn). From (H2), we have

Φ(un, vn) ≥
1

p
‖un‖p

p +
1

q
‖vn‖q

q −

∫

∂Ω

un

η1

∂F

∂un

(x, un, vn)dσ −

∫

∂Ω

vn

η2

∂F

∂vn

(x, un, vn)dσ

≥ (
1

p
−

1

η1

)‖un‖p
p + (

1

q
−

1

η2

)‖vn‖q
q +

1

η1

(

‖un‖p
p −

∫

∂Ω

un

∂F

∂un

(x, un, vn)dσ
)

+
1

η2

(

‖vn|qq −

∫

∂Ω

vn

∂F

∂un

(x, un, vn)dσ
)

,

it follows

Φ(un, vn) ≥ (
1

p
−

1

η1

)‖un‖p
p + (

1

q
−

1

η2

)‖vn‖q
q −

1

η1

‖Φu(un, vn)‖W ∗,p‖un‖p −
1

η2

‖Φv(un, vn)‖W ∗,q‖vn‖q.

Without loss of generality we may take ‖un‖p ≥ ‖vn‖q and for η1 ≤ η2, we obtain

Φ(un, vn) ≥ (
1

p
−

1

η1

)‖un‖p
p + (

1

q
−

1

η2

)‖vn‖q
q −

1

η1

(‖Φu(un, vn)‖W ∗,p + ‖Φv(un, vn)‖W ∗,q)‖un‖p,

Φ(un, vn) ≥ (
1

p
−

1

η1

)‖un‖p
p + (

1

q
−

1

η2

)‖vn‖q
q −

1

η1

‖Φ′(un, vn)‖W ∗‖un‖p.

Since Φ(un, vn) ≤ c and ‖Φ′(un, vn)‖W ∗ → 0 as n → +∞, therefore

(
1

p
−

1

η1

)‖un‖p
p + (

1

q
−

1

η2

)‖vn‖q
q ≤ c.
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Since η1 > p and η2 > q, this can not hold true. Hence (un, vn) is bounded.
Taking into account the fact that W is a reflexive Banach space we infer that, up to a subsequence,
(un, vn) ⇀ (u, v) weakly in W.
Moreover, |(Φ′(un, vn), (un −u, vn −v))| ≤ ‖Φ′(un, vn)‖W ∗‖(un −u, vn −v)‖p,q. Since ‖Φ′(un, vn)‖W ∗ → 0
as n → +∞. It follows that (Φ′(un, vn), (un −u, vn −v)) → 0 as n → +∞. It means that (Φu(un, vn)(un −
u)) + (Φv(un, vn)(vn − v)) → 0 as n → +∞.

So we have
∫

Ω
|∇un|p−2∇un(∇un − ∇u)dx+

∫

∂Ω
|un|p−2un(un − u)dσ − Fu(un, vn)(un − u) → 0 as n → +∞,

and
∫

Ω
|∇vn|q−2∇vn(∇vn − ∇v)dx +

∫

∂Ω
|vn|q−2vn(vn − v)dσ − Fv(un, vn)(vn − v) → 0 as n → +∞.

By Hölder type inequality (2.1), we have
∣

∣

∣

∫

∂Ω |un|p−2un(un − u)
∣

∣

∣
≤ 2‖|un|p−2u‖Lp′(∂Ω)‖un − u‖Lp(∂Ω),

∣

∣

∣
Fu(un, vn)(un − u)

∣

∣

∣
≤ 2‖ ∂F

∂u
(x, un, vn)‖Lp′(∂Ω)‖un − u‖Lp(∂Ω).

Now we use the compact embedding W 1,p(Ω) →֒ Lp(∂Ω), we obtain that un → u strongly in Lp(∂Ω).
Therefor we deduce that

∫

Ω
|∇un|p−2∇un(∇un − ∇u)dx → 0 as n → +∞.

Using S+ property, we conclude that un → u strongly in W 1,p(Ω). Similarly we show that vn → v

strongly in W 1,q(Ω), so we have (un, vn) → (u, v) strongly in W and the proof of this lemma is complete.
�

We carry on to the next lemma.

Lemma 3.3. If (H1) and (H3) hold true, then there exist r > 0 and c′ > 0 such that Φ(u, v) ≥ c′ for
every (u, v) ∈ W satisfying ‖(u, v)‖p,q = r.

Proof. We have Φ(u, v) = 1
p
‖u‖p

p + 1
q
‖v‖q

q − F(u, v). Using (H1), (H3) and (2.2), we obtain

Φ(u, v) ≥
1

p
‖u‖p

p +
1

q
‖v‖q

q −

∫

∂Ω

(

o(|u|p + |v|q) + c2|u|p1 + c3|v|q1 + c4|u|α|v|βdσ
)

,

≥
1

p
‖u‖p

p +
1

q
‖v‖q

q − o(‖u‖p

Lp(∂Ω) + ‖v‖q

Lp(∂Ω)) − c2‖u‖p1

Lp1(∂Ω) − c3‖v‖q1

Lq1 (∂Ω) − c4

∫

∂Ω

|u|α|v|βdσ.

Using young inequality and α
p

+ β
q

= 1, and the continuous embedding

W 1,p(Ω) →֒ Lp(∂Ω),

W 1,p(Ω) →֒ Lp1(∂Ω),

W 1,q(Ω) →֒ Lq(∂Ω),

W 1,q(Ω) →֒ Lq1(∂Ω).

We conclude that
Φ(u, v) ≥ 1

p
‖u‖p

p + 1
q
‖v‖q

q − o(cp
1‖u‖p

p + c
q
1‖v‖q

q) − c′
2‖u‖p1

p − c′
3‖v‖q1

q − (cp
4‖u‖p

p + c
q
4‖v‖q

q).

Set o(max{cp
1, c

q
1}) ≤ 1

2 min{ 1
p
, 1

q
}, max{cp

4, c
q
4} ≤ − 1

2 min{ 1
p
, 1

q
} and C ≤ max{c′

2, c
′
3}. Then

Φ(u, v) ≥
1

p
‖u‖p

p +
1

q
‖v‖q

q − C(‖u‖p1

p + ‖v‖q1

q ). (3.1)

Since p1 > p and q1 > q, then there exist c′ > 0 such that Φ(u, v) ≥ c′ > 0 for ‖(u, v)‖p,q = r, where r is
chosen sufficiently small, thus the proof is complete. �
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Finally we give the third lemma.

Lemma 3.4. If (H2) hold true, then there exist (ǔ, v̌) ∈ W and t > 1 with ‖(ǔ, v̌)‖p,q > r such that
Φ(tǔ, tv̌) < c′.

Proof. Let (ǔ, v̌) ∈ W and t > 1, we have

Φ(tǔ, tv̌) =
1

p
‖tǔ‖p

p +
1

q
‖tv̌‖q

q − F(tǔ, tv̌)

=
tp

p
‖ǔ‖p

p +
tq

q
‖v̌‖q

q −

∫

∂Ω

F (x, tǔ, tv̌)dσ.

From (H2), we have F (x, s1, s2) ≥ c5(|s1|η1 + |s2|η2 − 1), ∀(x, s1, s2) ∈ ∂Ω × R
2,

then

Φ(tǔ, tv̌) ≤
tp

p
‖ǔ‖p

p +
tq

q
‖v̌‖q

q − c5

∫

∂Ω

|tǔ|η1dσ − c5

∫

∂Ω

|tv̌|η2dσ − c5|∂Ω|

≤
tp

p
‖ǔ‖p

p +
tq

q
‖v̌‖q

q − c5t
η

1

∫

∂Ω

|ǔ|η1dσ − c5t
η

2

∫

∂Ω

|v̌|η2dσ − c5|∂Ω|,

where |∂Ω| is s the Lebesgue measure of ∂Ω.
Due to the fact that η1 > p and η2 > q, we arrive at

lim
t→+∞

Φ(tǔ, tv̌) = −∞.

�

Now we can give the proof of our Theorem1.1.

Proof of Theorem 1.1. From lemma 3.2, 3.3 and 3.4, we can apply the Mountain Pass Theorem 3.1,
we deduce that there exist a nontrivial critical point for the the Euler-Largange functional Φ, thus the
problem (1.1) has at least one nontrivial weak solution (u0, v0) with

Φ(u0, v0) = inf
γ∈Γ

sup
(u,v)∈γ

Φ(u, v) ≥ c′ > 0.

�

3.2. The multiplicity results

In this subsection we prove under some conditions on the function F that the problem (1.1) possesses
infinitely many nontrivial weak solutions. The proof is based on Bartsch’s Fountain Theorem [9]. Before
giving the statement of this theorem, we introduce the general context. Since W 1,p(Ω) and W 1,q(Ω) are
reflexive and separable Banach space (and their dual), then W and W ∗ are too.
It was proved (see [21]) that for a reflexive and separable Banach space there exist (en)n∈N ⊂ W and
(fn)n∈N ⊂ W ∗ such that

fn(em) = δn,m =

{

1 if n = m,

0 if n 6= m,

and W = span{en : n = 1, 2...} and W ∗ = span{fn : n = 1, 2...}.

For i = 1, 2... we define Xi = span{ei}, Yi =
⊕i

j=1 Xj Zi =
⊕∞

j=i Xj .
Let us recall the version of the Fountain Theorem which will be used in the sequel.

Theorem 3.5. Fountain Theorem (see [19]). Let I ∈ C1(X,R) be an even functional, where (X, ‖.‖)
is a separable and reflexive Banach space, assume that for each i = 1, 2... there exist ρi > γi > 0 such
that
(i) inf

u∈Zi,‖u‖=γi

I(u) → +∞ as i → +∞.
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(ii) max
u∈Yi,‖u‖=ρi

I(u) ≤ 0.

(iii) I satisfies the (PS)c condition for every c > 0, that is, any sequence (un)n ∈ X such that I(un) ≤ c

and ‖I ′(un)‖X∗ → 0 as n → +∞ contains a subsequence converging to a critical point of I.
Then I has an unbounded sequence of critical points.

For W = W 1,p(Ω) ×W 1,q(Ω) which is a separable and reflexive Banach space and for Xi, Yi, Zi define
as above and for Φ given by (2.3) we can use the previous theorem to prove the result of Theorem 1.2.
It is clear that the idea is to show that Φ satisfies hypotheses (i)-(iii) of Theorem 3.5. By Lemma 3.2 the
hypothesis (iii) is fulfilled, since Lemma 3.4 takes place and we get from above that

lim
t→+∞

Φ(tǔ, tv̌) = −∞,

this implies that max
(u,v)∈Yi,‖(u,v)‖=ρi

Φ(u, v) ≤ 0. for every ρi large enough.

So we only focus on (i).
For every θ > 1, u ∈ Lθ(∂Ω) and v ∈ Lθ(∂Ω), we define |(u, v)|θ = max{‖u‖Lθ(∂Ω), ‖v‖Lθ(∂Ω)}. Set

θ = max
x∈Ω

{α, β, p1, q1} and θ′ = inf
x∈Ω

{α, β, p1, q1}.

An important result for the proof is represented by the next proposition.

Proposition 3.6. ( [12], Lemma 7) Define

δi = sup{|(u, v)|θ : ‖(u, v)‖p,q = 1, (u, v) ∈ Zi}, then lim
i→+∞

δi = 0. (3.2)

We present the lemma corresponding to hypothesis (i).

Lemma 3.7. Assume (H1) hold true, then for every i = 1, 2... there exist γi > 0 such that

inf
(u,v)∈Zi,‖(u,v)‖=γi

Φ((u, v)) → +∞ as i → +∞.

Proof. By (3.1), (3.2) and (H1), we have

Φ(u, v) ≥min{
1

p
,

1

q
}‖(u, v)‖min(p,q) − C(δi‖(u, v)‖)p1 − C(δi‖(u, v)‖)q1 ,

≥min{
1

p
,

1

q
}‖(u, v)‖min(p,q) − Cδθ′

i ‖(u, v)‖θ,

where θ, θ′ are defined as above. Choosing γi =
(

min{ 1
p
, 1

q
} 1

2Cδθ′

i

)
1

θ−min{p,q}

→ +∞ as i → +∞.

Consequently, for ‖(u, v)‖ = γi, then Φ(u, v) ≥ 1
2 min{ 1

p
, 1

q
}‖(u, v)‖min(p,q). Then the proof is complete.

�

Proof of Theorem 1.2. From lemma 3.7 and applying the Fountain Theorem 3.5, we achieve the proof.
�

Remark 3.8. consider the following system














−div(|∇u|p−2∇u) + |u|p−2u = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= ∂F

∂u
(x, u, v) on ∂Ω,

−div(|∇v|q−2∇v) + |v|q−2v = 0 in Ω,
|∇v|q−2 ∂v

∂ν
= ∂F

∂v
(x, u, v) on ∂Ω.

(3.3)

The same results will be obtained, using the norm

‖(u, v)‖W = ‖u‖1,p + ‖v‖1,q, for all (u, v) ∈ W,

where

‖u‖1,p =
(

∫

Ω

|∇u|pdx+

∫

Ω

|u|pdσ
)

1

p

,

and

‖v‖1,q =
(

∫

Ω

|∇v|qdx+

∫

Ω

|v|qdσ
)

1

q

.
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