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On the Maximum Principle for the Discrete p-Laplacian with Sign-changing Weight

Hamza Chehabi, Omar Chakrone and Mohammed Chehabi

ABSTRACT: This work deals with the maximum principle for the discrete Neumann or Dirichlet problem
— A, (Auk — 1)) = Am(k) [u(k)|P~2u(k) + h(k) i [L,n].

We study the existence and nonexistence of positive solution and its uniqueness.
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1. Introduction

This paper is concerned with the Neumann or Dirichlet problem
—Ap,(Au(k - 1)) = Am(k)|u(k)[P~2u(k) + h(k) in [1,n],

where n is an integer greater than or equal to 1, [1,n] is the discrete interval {1,...,n}, Au(k) :=
u(k + 1) — u(k) is the forward difference operator, ¢, (s) = |s|p_2 s, 1 < p < oo, h function defined on
[1,n] and m changes sign in [1,n]. The original form for the maximum principle concerns the continuous

problem
—Apu = dm(z) |u’ ?u+ h(z) in Q, Bu=0on dQ,

where © is a bounded domain in RN, Ayu := div(|Vu[’"> Vu) is the p-Laplacian and Bu = 0
represents either the Dirichlet or the Neumann homogeneous boundary conditions (see [7,1]).
The argument here uses a discrete forme of Picone’s identity (see [5]). Some of our arguments
are inspired by [4,8]. We study the existence and nonexistence of positive solution and its uniqueness
n

depending on the sign of > m(k) and on whether or not A belongs to ]0, u(m)[ in the Neumann case,
k=1

and depending whether or not A belongs to |[A_1(m), A1(m)[ in the Dirichlet case, where pu(m), Ai(m)
and A_j(m) are defined in (2.7) and (3.3).

2. Principal eigenvalues in the Neumann case

Consider the Neumann problem

— A, (Aulk - 1)) = Am(k)|u(k)P~2u(k) + h(k) in [1n] (2.1)
Au(0) = Au(n) = 0. ‘
Suppose that
dkq, ko € [1,71] ) m(kl)m(kg) < 0. (22)
Also, without loss of generality, we can assume that
Im (k)] <1, Vke€][l,n]. (2.3)

2010 Mathematics Subject Classification: 35-XX, 39-XX.
Submitted January 14, 2020. Published October 12, 2020

Typeset by Esﬁstyle.
1 © Soc. Paran. de Mat.


www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.51806

2 H. CHEHABI, O. CHAKRONE AND M. CHEHABI

The class W = {u : [0,n 4+ 1] = R ; Au(0) = Au(n) = 0} is an n-dimensional space under the norm

n 1/p
Jull = (£ ol
Solution of (2.1) (or of (2.6)) are exactly the solutions in the sense: v € W with

n

Z =AY m(k)u(k) P Puk)o(k) + > h(k)o(k), YveW. (2.4)

k=1 k=1

Our purpose in this preliminary section is to collect some results relative to the principal eigenvalues of

A, (Aulk — 1)) = (k) u(k) P 2u(k) i [Ln],
{ £(0) = Au(n) — 0. (2.5)

The fundamental tool is the following form of the maximum principle.

Proposition 2.1. (see [3]) Let u be a solution of

{ —Ap,(Au(k — 1)) + ao(k)u(k)|P~2u(k) = h(k) in [1,n], (2.6)
Au(0) = Au(n) =0, ’

where ag > 0 and h 2 0. Then u > 0 in [1,n].

Proof. Writing u = ut — u~ with «® = max{4u,0} and taking —u~ as testing function in (2.6),

= e (Au(k = 1)Au (k= 1)+ > ag(k)lu (k)P = =>_ h(k)u~
k=1 k=1 k=1

Distinguishing the cases of sign of u(k — 1) and u(k), we prove that

SIAuT (k= 1P <= g, (Aulk —1)Au (k- 1),

k=1
then

S 1Aw (= D + 3 ao()u~ (B < =S h(k)u~ (k) <0
k=1 k=1 k=1

therefore Z [Au=(k — 1)|? = 0 and u~ is constant. If u= # 0, since > h(k)u~ (k) = 0, then h = 0

which is absurd Thus v > 0. !

On the other hand, if u(ko) = 0 for some kg € [1,n], then Au(ky) = u(ko + 1) > 0 and Au(ko — 1)
—u(ko — 1) <0, so ¢,(Au(ko)) > 0 and ¢,(Au(ko — 1)) < 0. As —p,(Au(ko)) + ¢, (Au(ko — 1))
ao(ko)(u(ko))?~! = h(ko) > 0, then 0 < ¢, (Au(ko)) < ¢,(Au(ky — 1)) < 0, from where u(ko + 1)
u(kp — 1) = 0 and so on, we prove u = 0, which contradicts h # 0.

o+ 1

Corollary 2.2. (see [3]) If u 2 0 is a solution of (2.1) with h > 0, then u > 0.

The following expression will play a central role in our approach:

:inf{zn:Mu(k—l)V’: uweW and Zm )|P—1} (2.7)
k=1

k=1
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Proposition 2.3. (see [3]) (i) Suppose that Y m(k) < 0. Then u(m) > 0, every eigenfunction with
k=1

w(m) of (2.5) does not change sign in [1,n] and does not vanish in [1,n|, and p(m) is the unique nonzero
principal eigenvalue of (2.5); moreover, the interval 10, u(m)[ does not contain any eigenvalue of (2.5).
(ii) Suppose that > m(k) > 0. Then p(m) = 0; moreover, if > m(k) = 0, then 0 is the unique
k=1

k=1
principal eigenvalue of (2.5).

Remark 2.4. If > m(k) > 0, we apply the Propoition 2.3 to the weight (—m), then —u(—m) is the
k=1

unique nonzero principal eigenvalue of (2.5).

Lemma 2.5. Assume that Y m(k) < 0. Then there exists a constant ¢ > 0 such that Y [Au(k—1)[P >
=1

k=1
n

¢S [ulR)P for all u e W with S m(E)u(k)P > 0.
k=1

k=1

Proof. Assume by contradiction that for each j = 1,2, ..., there exists u; € W with Y m(k)|u,; (k)" >0
k=1

and ) |Auj(k — 1P < 7 > |u;(E)|P, then u; # 0. One considers the normalisation v; = HZ—]H,
k=1 k=1 J
for a subsequence v; — v in W, |jv]| = 1 and ) |Av(k — 1)]? = 0, then v nontrivial constant and
=1
> m(k)|v(k)|? > 0, which contradicts Y m(k) < 0. O
k=1 k=1

n
Proposition 2.6. Suppose that > m(k) < 0. The principal eigenvalues 0 and p(m) are simple.
k=1

Proof. If u is an eigenfunction associated to A = 0 of (2.5), then ) |Au(k — 1)[” = 0 and u is nonzero
k=1

constant. Now if u and v are two eigenfunctions associated to p(m) > 0, then, using Proposition 2.3, by
replacing if necessary u or v by —u or —v, we can assume that v > 0 and v > 0. Applying Lemma 2.8
below with ¢ = v,

n n

plm) S mk) (k)P < 3 Av(k ~ 1P, (28)
k= k=1

1

In fact, equality holds in (2.8) since v is an eigenfunction associated to p(m). Consequently, by Lemma
2.8 below, v is multiple of w. O

Proposition 2.7. (see [3]) Suppose that > m(k) < 0. If X € [0, u(m)], then problem (2.1) with h > 0
k=1
has no solution u z 0.

Lemma 2.8. (see [3]) Let (A, u) be a solution of (2.1) with arbitrary h and w > 0 in [1,n]. Then for
any ¢ € W, one has

Ay mblehr + 3 I < 3 Al - P (29)
k=1 k=1 k=1

Moreover, equality holds in (2.9) if and only if |p| is a multiple of u.

Proposition 2.9. Suppose that Y m(k) < 0. Then problem (2.1) with h 2 0 does not admit any
=1

solution if A =0 or A = u(m). It admits a unique solution if 0 < A\ < u(m) and the latter is strictly
positive in [1,n].
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Proof. If X = 0, by taking ¢ = 1 as testing function in (2.1), we get > h(k) = 0, which contradicts
k=1

h z 0. Reasoning by contradiction, suppose that (2.1) with A = p(m) has a solution u, we get v > 0 in
[1,n]. Indeed, if u~ # 0, then taking —u~ as testing function in (2.1) and as h = 0,

é Au (k=1 < =3 o (Aulk - 1))Au*(ls _)

IN
=
=
NE
L
=
=

[
=
=

so u~ is a minimizer in the definition of p(m) and > h(k)u~ (k) = 0. Then by Lagrange multiplies, u~
k=1

solves (2.1), and consequently by Corollary 2.2, v~ > 0 in [1,n], which contradicts Y h(k)u~ (k) = 0.
k=1

Thus, u 0. Applying once more Corollary 2.2, one gets u > 0 in [1,n]. By Lemma 2.8, we have for a
positive eigenfunction ¢ associated to p(m) of (2.5),

S mib) () + 32 I <

k=1

|Ap(k
1

n
k=

h(k) (k)P
we deduce kzl W

Suppose that A €]0, pu(m)[, then by Proposition 2.3, >~ m(k) < 0. To prove the existence of a solution

< 0, which is impossible since ¢ > 0 in [1,n] and h 2 0.

k=1
of (2.1), we consider the functional
1 n A n n
o(u) == [Au(k = DI = =3 m(k)|u(k)” = h(k)u(k).
Pz Pi3 k=1

We distinguish two cases. If u € W and > m(k)|u(k)[? > 0, by definition of p(m) and Lemma 2.5,
k=1

o(u) > 1(1—4)imu(k—l)w—éh(/ﬂ)u(m

p wm) ) =1

o 3 [ulB)P = 3 hlk)uk),
k=1 k=1

Y

for some constant ¢; > 0. If w € W and > m(k)|u(k)|? < 0, one has, using A > 0 and Lemma 2.10
k=1

u) > cp Y |u(k)P = h(k)u(k)
k=1 k=1

for some constant co > 0. So ¢ is coercive on W and has a mininum, thus there exists a solution u of
(2.1). Taking —u~ as testing function,

below,

S Au (k=D < =3 g (Aulk—1)Au(k—1)

k=1 kn:1 n
= A3 B~ 35 hE (b,

wn
19
M=

m(k)|u™ (k)P > 0, and

b
Il
—
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m(k)u~ (k)P.

IN
E
z
M=

If u~ #£ 0, then u™ is an eigenfunction associated to pu(m), consequently u~ > 0 and Z h(k)u~ (k) =

0, which contradicts & 2 0, then v > 0 and applying Corollary 2.2, one gets u > 0 in [1, n] We will now
prove unicity, suppose that v is a solution of (2.1). Applying Lemma 2.8 with ¢ = v > 0,

@ﬁwww+iﬂﬂgg,imm—w
k=1 =1 (u(k)) k=1 n (2.10)
SO

n v(k)\"!
one gets, kgl h(k)v(k) (1 - (m) ) > 0.

n p—1
Interchanging u and v, we get E h(k)u(k) (1 - <m> ) > 0, and adding, we obtain

(Y (1 (22)
S o (1 (38 ) (- () 2o
P 1 p—1
Let A(k) = v(k) <1 <u ) +u(k (1 - (%) ) for k € [1,n], we get
_ (k)" v(k)\" (o)
AW = G l(( w) ) (1 (i) )] = 0
which implies that equality holds in (2.11). It follows that equality also holds in (2.10). Lemma 2.8 gives

that v = cu, for some constant ¢. Replacing in (2.1) and using the fact that h # 0, we get ¢ = 1 and
v =u. (]

Lemma 2.10. Assume that Y, m(k) # 0 and let X > 0. Then there exists a constant ¢ > 0 such that
k=1

Do 1Aulk =P =AY m(k)u(k)]P =) fu(k)],
k=1

for allu e W and > m(k)|u(k)|P <0.
k=1

Proof. Assume by contradiction that for each j = 1,2, ..., there exists u; € W such that > m(k)|u; (k)P <
k=1
n n 1 n
O0and ) |[Auj(k—=1)P =X > m(k)|u; (k)P < = > |uj(k)[P, then u; # 0. Considering v; =
k=1 k=1 J k=1

has

&, one
|

S 1Av (k= D < 37 18w (k = D = XS m(k)o; (B — 0.

k=1 k=1

k=1

n
It follows that for a subsequence, vy, converges in W to a nonzero function v such that > |Av(k—1)P =0,

k=1
n

then v is a nonzero constant and —X\ Y m(k)|v(k)[P = 0. This contradicts Y m(k) # 0. O
k=1 k=1
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3. Principal eigenvalues in the Dirichlet case
Consider the Dirichlet problem

{ —Ap, (Au(k — 1)) = Am(k)|u(k)[P~2u(k) + h(k) in [1,n],

u(0) = u(n+1) =0, (3.1)

m and h are as before with (2.2) and (2.3). There are two principal eigenvalues : A1(m) > 0 and
A_1(m) = —A1(—m) of the problem

—Ap,(Au(k — 1)) = Am(k)|u(k)Pu(k) in [1,n],
{ u(of: u(n+1) =0, (3.2)
where "
M(m) = inf {Z Bu(k =D s we Wo, S mlE)u(b]? = 1} , (33)
k=1 k=1

and Wy ={u:[0,n+ 1] = R ; u(0) = u(n+1) = 0} is an n-dimensional Banach space under the norm

n+1 %
Jul = <Z |Au(k — 1)|p> -
k=1

These eigenvalues are simple and the corresponding eigenfunctions can be taken strictly positive in [1,n]
(see [2] ).

1
n+1 P n 1/p
Remark 3.1. The norms (Z |[Au(k — 1)|p) and (Z |u(k)|p> are equivalent in Wy, so there
k=1 k=1

n+1 n
exists a constant ¢ > 0 such that Yy, [Au(k —1)|P > ¢ > |u(k)|P for all u € Wy.
k=1 k=1

Proposition 3.2. Let u be a solution of

—Ap,(Au(k — 1)) + ao(k)u(k)|P~2u(k) = h(k) in [1,n], (3.4)

u(0) =u(n+1) =0, '
where ag > 0 and h £ 0. Then u > 0 in [1,n].

Proof. As in the proposition 2.1, writing © = u™ — «~ and taking —u™ as testing function in (3.4), we

obtain
n+1 n+1 n+1

S IAu (k=P + > ao(k)u (k)P < =" h(k)u~ (k) <0,
k=1 k=1 k=1

n+1
therefore > |Au~(k—1)? =0 and v~ = 0, thus u > 0.
k=1
On the other hand, if u(kg) = 0 for some kg € [1, n], then as in Proposition 2.1, we obtain u(ko+1) =
u(kop — 1) = 0 and so on, we prove u = 0, which contradicts h # 0. O
Remark 3.3. The corollary 2.2 and Lemma 2.8 remain true in the Dirichlet case.
Proposition 3.4. If A ¢ [A_1(m), A1 (m)], then problem (3.1) with h > 0 has no solution u Z 0.

Proof. As in Proposition 2.7, assume that there exists a solution u 2 0 of (3.1) for some A € R and some
h > 0. We get

n+1 n+1
Ay mB)ek)P <> [Av(k - 1)P,
k=1 k=1
for all v € Wy with v > 0. This implies A < Aj(m), as well as =\ < Aj(—m) = —A_1(m), thus

AE [A,l(m),)\l(m)] O
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Proposition 3.5. Problem (3.1) with h 2 0 does not have any solution if A = A_1(m) or A = i(m). It
admits a unique solution if, A_1(m) < X < A1(m) and the latter is strictly positive in [1,n].

Proof. The proof of this proposition follows almost the same lines as that of Proposition 2.9. Reasoning
by contradiction, suppose that (3.1) with A = A;(m) has a solution u, we get u > 0 in [1,n]. By Lemma
2.8, we have for an eigenfunction ¢ associated to A1(m) of (3.2), ¢ > 0 (see [2] ),

n+1 n+1 P n+1
M) Y m(b) (o) + Y- DL <3 g - v,
k=1 k=1 k=1

" h(E) (k)P
we deduce kgl (k)

Suppose that A € [0, \1(m)[, we consider the functional

< 0, which is impossible since h 2 0.

n+1 n n
o(u) = ! Do 1Ak =D = =3 mk)|uk)[” = > h(k)u(k)
P4 Ly k=1
By definition of A\;(m) and Remark 3.1,
1 )\ n+1 b n "
o) > 2 ,(f T )_ [Buh =1 = 35 bRyl

\%
o
N
=
=
=
|
\g
=
=
=
=

for some constant ¢ > 0 and for all w € Wy. Then ¢ is coercive on Wy, so it has a mininum, thus there
exists a solution u of (3.1). One gets u > 0 in [1,n]. The unicity is proved as in Proposition 2.9. The
cases A = A_1(m) or A € [A_1(m),0[ can be treated in the same way with the weight (-m). O
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