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1. Introduction

As we have known, one of the most powerful tools in modern analysis used for the existence of
solutions of many nonlinear problems in many branches of physics and engineering sciences is the Banach
fixed point theorem which implies that every contraction mapping on a complete metric space has a
unique fixed point. In general, the theorem is known as the Banach contraction principle. Some authors
generalized the Banach contraction principle [1] in many different directions. Works noted in [2,3,4,5,6,7,
8,9,10,11,12,13,14] are some relevant examples.

In 2006, Bhashkar and Lakshmikantham [3] introduced the concept of a coupled fixed point of a
mapping F : X × X → X and established some coupled fixed point theorems in partially ordered
complete metric spaces. They also discussed an application of their result by investigating the existence
and uniqueness of solution for a periodic boundary value problem. In 2009, Lakshmikantham and Ćirić
[7] gave the notion of a coupled coincidence point and proved coupled coincidence and coupled common
fixed point results for nonlinear mappings F : X × X → X and g : X → X satisfying certain contractive
conditions in partially ordered complete metric spaces. In 2010, Abbas et al. [8] proved coupled coincidence
and coupled common fixed point results in cone metric spaces for w−compatible mappings.

In 2011, Azam et al. [10] introduced complex valued metric spaces as a generalization of metric spaces.
They proved some fixed point theorems for mappings satisfying a rational inequality in complex valued
metric spaces. They also applied these results to the existence and uniqueness for a solution of an
integral equation. After the publication of this work, some important works on fixed point theorems in
this direction have appeared in complex valued metric spaces; for several related examples, see [11,12,15,
16,17,18,19,20].

In 2016, Kumar and Saini [21] defined hyperbolic valued metric space. In[22], we gave some elementary
topological concepts and results on hyperbolic valued metric space and then, we introduced two fixed
point theorems for hyperbolic valued metric spaces by defining hyperbolic contraction mapping.
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Following the same line, as a generalization of fixed point theorems in hyperbolic valued metric spaces
[22], we prove existence of unique common fixed point for a contraction mapping on hyperbolic valued
metric spaces. Then, we introduce some coupled coincidence point results for such spaces, and also
obtain a unique common coupled fixed point of two mappings in such spaces by using the concept of
w−compatible maps. We also furnish some examples which substantiate our obtained results.

2. Preliminaries

Now, let give basic properties of bicomplex numbers and hyperbolic numbers which will be used in
our subsequent discussion. For further details on the following definitions and results, we refer the reader
to [23,24]. Let i and j be independent imaginary units such that i2 = j2 = −1, ij = ji and C (i) be the
set of complex numbers with the imaginary unit i. The set of bicomplex numbers BC is defined by

BC = {z = z1 + jz2 : z1, z2 ∈ C (i)} .

The set BC forms a ring with respect to the addition and multiplication defined as

z + w = (z1 + jz2) + (w1 + jw2) = (z1 + w1) + j (z2 + w2) ,

z.w = (z1 + jz2) . (w1 + jw2) = (z1w1 − z2w2) + j (z1w2 + z2w1) .

The set of hyperbolic numbers D is defined by

D = {x + ky : x, y ∈ R} ,

where k2 = 1 and k = i.j and 0, 1 ∈ D.

The set D is a subring of the set BC, and also D is a ring and a module over itself.
There are three types of conjugates in BC:

z†1 = z1 + jz2,

z†2 = z1 − jz2,

z†3 = z1 − jz2,

where z1, z2 are the complex conjugates of z1, z2 ∈ C (i) . Also, we know three types moduli for any
z ∈ BC:

|z|
2
i = z.z†2 = z2

1 + z2
2 ∈ C (i) ,

|z|
2
j = z.z†1 =

(

|z1|
2

− |z2|
2
)

+ j (2ℜ (z1.z2)) ∈ C (j) ,

|z|2k = z.z†3 =
(

|z1|2 + |z2|2
)

+ k (−ℑ (z1.z2)) ∈ D.

Let z = z1 + jz2 be any bicomplex number in BC. We say that z is invertible if |z|i 6= 0, that is,

z2
1 + z2

2 6= 0 and its inverse is given by z−1 = z†2

|z|2

i

. If, on the other hand, z 6= 0 but |z|i = 0, then z is a

zero divisor.
The ring BC is not a division ring, since one can see that if e1 = 1+ij

2 and e2 = 1−ij
2 , then e1 and e2

are zero divisors. The numbers e1 and e2 form idempotent basis of bicomplex numbers and hence any
bicomplex number z = z1 + jz2 is uniquely written as

z = e1β1 + e2β2 (2.1)

where β1 = z1 − iz2, β2 = z1 + iz2 ∈ C (i) . Formula (2.1) is called the idempotent representation of
z.

Let α = x + ky be any hyperbolic number. Then, we have the equality

α = e1α1 + e2α2,
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where α1 = x + y, α2 = x − y ∈ R. If α1 ≥ 0 and α2 ≥ 0, then α is called a positive hyperbolic number.
Therefore, the set of positive hyperbolic numbers D+ is denoted by

D+ = {α = e1α1 + e2α2 : α1 ≥ 0, α2 ≥ 0} .

For two hyperbolic numbers α and β; if their difference β − α ∈ D+ ( or β − α ∈ D+ − {0}), then we
write α - β ( or α � β ). For α = e1α1 + e2α2, β = β1e1+ β2e2 ∈ D with real numbers α1, α2, β1 and
β2, we have that

α - β if and only if α1 ≤ β1 and α2 ≤ β2,

α � β if and only if α 6= β and α1 ≤ β1 and α2 ≤ β2,

α ≺ β if and only if α1 < β1 and α2 < β2.

This relation - is reflexive, anti - symmetric, transitive and so defines a partial order on D.

We know that the hyperbolic valued module |z|k of a bicomplex number z = e1β1+ e2β2 is also given
as

|z|k = e1 |β1| + e2 |β2| .

One can easily see that

|z.w|k = |z|k . |w|k ,

|z + w|k - |z|k + |w|k ,
∣

∣

∣

z

w

∣

∣

∣

k
=

|z|k
|w|k

for any z, w ∈ BC.

The following statements are true for α, β, γ ∈ D:
(i) If α - β then α + γ - β + γ.

(ii) If α - β and β ≺ γ, then α ≺ γ.

(iii) If α ≺ β and 0 ≺ γ, then αγ ≺ βγ.

(iv) If α ≺ β and γ ≺ 0, then βγ ≺ αγ.

(v) If α - β and 0 ≺ γ, then αγ - βγ.

(vi) If α - β and γ ≺ 0, then βγ - αγ.

(vii) If α - β and γ - δ, then α + γ - β + δ.

(viii) If α, β ∈ D+, then α - β (or α ≺ β) implies that |α| ≤ |β| (or |α| < |β|) where |·| shows
Euclidean norm in BC (see [23,24]).

(ix) If α ∈ D+, then |α|k = α.

A sequence in BC is a function defined by z : N → BC, n → zn. This sequence converges to a point
z∗ ∈ BC if and only if to each ε > 0 there corresponds an n0 (ε) such that |zn − z∗| < ε for all n ≥ n0 (ε).
It is denoted by zn → z∗ as n → ∞. The sequence z = (zn) is a Cauchy sequence in BC if and only if
to each ε > 0 there corresponds an n0 (ε) such that |zn − zm| < ε for all n, m ≥ n0 (ε) . Also, z = (zn)
converges to a point in BC if and only if it is a Cauchy sequence in BC. On the other hand, for any
sequence (zn) in BC such that z : N → BC, zn = β1ne1+ β2ne2 and for any z∗ = β∗

1e1 + β∗
2e2 ∈ BC, we

have that zn → z∗ as n → ∞ if and only if β1n → β∗
1 and β2n → β∗

2 as n → ∞.

The following popular concept are defined by Kumar and Saini [21].

Definition 2.1. Let X be a nonempty set and dD : X×X → D be a function such that for any x, y, z ∈ X,

the following properties hold:
(i) 0 - dD (x, y) and dD (x, y) = 0 if and only if x = y,

(ii) dD (x, y) = dD (y, x) ,

(iii) dD (x, z) - dD (x, y) + dD (y, z) .

Then dD is called a hyperbolic valued or D -valued metric on X and the pair (X, dD) is called a
hyperbolic valued or D -valued metric space (see [21]).

The following definitions and simple properties are recently introduced by Sager and Sağır [22] and
they will be needed in the sequel.
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Definition 2.2. Let (X, dD) be a hyperbolic valued metric space, (xn) be any sequence in X and x ∈ X.

If for every 0 � ε ∈ D there exists n0 ∈ N depending on ε such that for all n ≥ n0

dD (xn, x) � ε,

then we say that (xn) is convergent with respect to the metric dD. We denote this by limD

n→∞
xn = x or

xn
dD→ x as n → ∞. If for every 0D � ε ∈ D there exists n0 ∈ N depending on ε such that for all n, m ≥ n0

dD (xn, xm) � ε,

then we say that (xn) is a Cauchy sequence with respect to the metric dD. If every Cauchy sequence with
respect to the metric dD is convergent with respect to the metric dD in (X, dD) , then we say that (X, dD)
is a complete hyperbolic valued metric space.

Corollary 2.3. Let (X, dD) be a hyperbolic valued metric space, (xn) be any sequence in X and x ∈
X. Then, the sequence (xn) converges to x with respect to the metric dD if and only if dD (xn, x) =
|dD (xn, x)|k → 0 as n → ∞.

Corollary 2.4. Let (X, dD) be a hyperbolic valued metric space and (xn) be any sequence in X. Then,
the sequence (xn) is a Cauchy sequence with respect to the metric dD if and only if for all m ∈ N,

dD (xn, xn+m) = |dD (xn, xn+m)|k → 0 as n → ∞.

Theorem 2.5. The following statements are true for α ∈ D:
(i) If α ∈ D+, α 6= 1 and 1 − α is invertible, then

1 + α + α2 + ... + αn =
1 − αn+1

1 − α

for all n ∈ N.

(ii) If α ∈ D+ and α ≺ 1, then 0 - αn ≺ 1 for all n ∈ N and αn → 0.

3. Main Results

3.1. Common Fixed Point Results

In this section, we prove existence of unique common fixed point for a contraction mapping on hyper-
bolic valued metric spaces. We also give an example which substantiate our main result.

Theorem 3.1. Let (X, dD) be a complete hyperbolic valued metric space. If S and T are self mappings
defined on X satisfying the condition

dD (Sx, T y) - λdD (x, y) +
µdD (x, Sx) dD (y, T y) + γdD (y, Sx) dD (x, T y)

1 + dD (x, y)

for all x, y ∈ X, where λ, µ, γ are positive hyperbolic numbers with λ + µ + γ ≺ 1. Then, S and T have a
unique common fixed point.

Proof. Let’ s first prove the existence. Let x0 be any point in X. We define x2k+1 = Sx2k, x2k+2 =
T x2k+1, k = 0, 1, 2, .... Then,

dD (x2k+1, x2k+2) = dD (Sx2k, T x2k+1)

- λdD (x2k, x2k+1) +
µdD (x2k, Sx2k) dD (x2k+1, T x2k+1)

1 + dD (x2k, x2k+1)

+
γdD (x2k+1, Sx2k) dD (x2k, T x2k+1)

1 + dD (x2k, x2k+1)

= λdD (x2k, x2k+1) +
µdD (x2k, x2k+1) dD (x2k+1, x2k+2)

1 + dD (x2k, x2k+1)

≺ λdD (x2k, x2k+1) + µdD (x2k+1, x2k+2) .
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This implies that dD (x2k+1, x2k+2) ≺ λ
1−µ

dD (x2k, x2k+1) . Furthermore,

dD (x2k+2, x2k+3) = dD (T x2k+1, Sx2k+2)

= dD (Sx2k+2, T x2k+1)

- λdD (x2k+2, x2k+1) +
µdD (x2k+2, Sx2k+2) dD (x2k+1, T x2k+1)

1 + dD (x2k+2, x2k+1)

+
γdD (x2k+1, Sx2k+2) dD (x2k+2, T x2k+1)

1 + dD (x2k+2, x2k+1)

= λdD (x2k+2, x2k+1) +
µdD (x2k+2, Sx2k+2) dD (x2k+1, x2k+2)

1 + dD (x2k+2, x2k+1)

≺ λdD (x2k+2, x2k+1) + µdD (x2k+2, Sx2k+2) .

This implies that dD (x2k+2, x2k+3) ≺ λ
1−µ

dD (x2k+2, x2k+1) = λ
1−µ

dD (x2k+1, x2k+2) . By setting h =
λ

1−µ
≺ 1, we derive

dD (xn, xn+1) - hdD (xn−1, xn) - h2dD (xn−2, xn−1) - ... - hndD (x0, x1) .

Then, using Theorem 2.5, for any m > n, we obtain that

dD (xn, xm) - dD (xn, xn+1) + dD (xn+1, xn+2) + ... + dD (xm−1, xm)

- hndD (x0, x1) + hn+1dD (x0, x1) + ... + hm−1dD (x0, x1)

=
[

hn + hn+1 + ... + hm−1
]

dD (x0, x1)

=
hn − hm

1 − h
dD (x0, x1)

-
hn

1 − h
dD (x0, x1) .

and taking the limit as m, n → ∞, we conclude that dD (xn, xm) → 0. Therefore, (xn) is a Cauchy
sequence with respect to the metric dD. Since (X, dD) is a complete hyperbolic valued metric space, there

exists a point x ∈ X such that xn
dD→ x as n → ∞.

Assume that x 6= Sx. Then,

dD (x, Sx) - dD (x, T x2k+1) + dD (T x2k+1, Sx)

= dD (x, T x2k+1) + dD (Sx, T x2k+1)

- dD (x, x2k+2) + λdD (x2k+1, x)

+
µdD (x, Sx) dD (x2k+1, T x2k+1) + γdD (x2k+1, Sx) dD (x, T x2k+1)

1 + dD (x2k+1, x)
.

Taking k → ∞, one gets dD (x, Sx) = 0 which is a contradiction and hence x = Sx. Similarly, we can
show that x = T x. Therefore, x is a common fixed point of S and T.

Finally, we show the uniqueness. Assume that x∗ is another common fixed point of S and T. Then,

dD (x, x∗) = dD (Sx, T x∗)

- λdD (x, x∗) +
µdD (x, Sx) dD (x∗, T x∗) + γdD (x∗, Sx) dD (x, T x∗)

1 + dD (x, x∗)

= λdD (x, x∗) +
γdD (x∗, x) dD (x, x∗)

1 + dD (x, x∗)

≺ (λ + γ) dD (x, x∗) .

But this is impossible. So, dD (x, x∗) = 0, x = x∗ which implies that the fixed point is unique. �
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Corollary 3.2. Let (X, dD) be a complete hyperbolic valued metric space. If T is self mapping defined
on X satisfying the condition

dD (T x, T y) - λdD (x, y) +
µdD (x, T x) dD (y, T y) + γdD (y, T x) dD (x, T y)

1 + dD (x, y)

for all x, y ∈ X, where λ, µ, γ are positive hyperbolic numbers with λ + µ + γ ≺ 1. Then, T has a unique
fixed point.

Proof. By setting S = T in Theorem 3.1, we derive Corollary 3.2. �

Remark 3.3. If we choose λ = 0, µ = 0 or γ = 0 in all possible combinations, we obtain fixed point
theorems on hyperbolic valued metric spaces.

We finish this section with an example which satisfy the requirements of Corollary 3.2 as follows:

Example 3.4. Let

X1 = {γ = γ1e1 + γ2e2 ∈ D : γ1 = γ2, γ1 ≥ 0} ,

X2 = {γ = γ1e1 + γ2e2 ∈ D : γ1 = −γ2, γ1 ≥ 0}

and X = X1 ∪ X2. Define a mapping dD : X × X → D as

dD (α, β) =







































7
6 |α1 − β1| e1 + 9

8 |α1 − β1| e2, α, β ∈ X1

5
6 |α1 − β1| e1 + 7

8 |α1 − β1| e2, α, β ∈ X2

(

7
6 α1 + 5

6 β1

)

e1 +
(

9
8 α1 + 7

8 β1

)

e2, α ∈ X1, β ∈ X2

(

5
6 α1 + 7

6 β1

)

e1 +
(

7
8 α1 + 9

8 β1

)

e2, α ∈ X2, β ∈ X1

,

where α = α1e1 + α2e2, β = β1e1 + β2e2, then (X, dD) is a complete hyperbolic valued metric space.

Consider a mapping T on X with γ = γ1e1 + γ2e2 as

T γ =







γ1e1 − γ1e2, γ ∈ X1

γ
1

2 e1 + γ
1

2 e2, γ ∈ X2
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and let S = T. So, we have

dD (Sα, T β) = dD (T α, T β)

=







































5
6 |α1 − β1| e1 + 7

8 |α1 − β1| e2, α, β ∈ X1

7
12 |α1 − β1| e1 + 9

16 |α1 − β1| e2, α, β ∈ X2

(

5
6 α1 + 7

12 β1

)

e1 +
(

7
8 α1 + 9

16 β1

)

e2, α ∈ X1, β ∈ X2

(

7
12 α1 + 5

6 β1

)

e1 +
(

9
16 α1 + 7

8 β1

)

e2, α ∈ X2, β ∈ X1

-







































|α1 − β1| e1 + |α1 − β1| e2, α, β ∈ X1

5
7 |α1 − β1| e1 + 7

9 |α1 − β1| e2, α, β ∈ X2

(

α1 + 5
7 β1

)

e1 +
(

α1 + 7
9 β1

)

e2, α ∈ X1, β ∈ X2

(

5
7 α1 + β1

)

e1 +
(

7
9 α1 + β1

)

e2, α ∈ X2, β ∈ X1

=

(

6

7
e1 +

8

9
e2

)







































7
6 |α1 − β1| e1 + 9

8 |α1 − β1| e2, α, β ∈ X1

5
6 |α1 − β1| e1 + 7

8 |α1 − β1| e2, α, β ∈ X2

(

7
6 α1 + 5

6 β1

)

e1 +
(

9
8 α1 + 7

8 β1

)

e2, α ∈ X1, β ∈ X2

(

5
6 α1 + 7

6 β1

)

e1 +
(

7
8 α1 + 9

8 β1

)

e2, α ∈ X2, β ∈ X1

=

(

6

7
e1 +

8

9
e2

)

dD (α, β)

-

(

6

7
e1 +

8

9
e2

)

dD (α, β)

+

(

3
56 e1 + 1

20 e2

)

dD (x, Sx) dD (y, T y) +
(

3
56 e1 + 1

20 e2

)

dD (y, Sx) dD (x, T y)

1 + dD (x, y)

where λ = 6
7 e1 + 8

9 e2, µ = γ = 3
56 e1 + 1

20 e2. Note that 6
7 e1 + 8

9 e2 + 2.
(

3
56 e1 + 1

20 e2

)

= 27
28 e1 + 89

90 e2 ≺ 1.

Thus, the conditions of Corollary 3.2 are satisfied. Then, T has a unique fixed point in X. This fixed
point is (0, 0) .

3.2. Coupled Coincidence Point Results

In this section, we introduce some coupled coincidence point theorems for hyperbolic valued metric
spaces which give us a sufficient condition for the existence of coupled coincidence points for two mappings.
We also present an example in order to deduce results about coupled coincidence points.

Definition 3.5. An element (x, y) ∈ X × X is called a coupled fixed point of mapping F : X × X → X

if x = F (x, y) and y = F (y, x) (see [3]).

Definition 3.6. An element (x, y) ∈ X × X is called

(i) a coupled coincidence point of mappings F : X × X → X and g : X → X if g (x) = F (x, y)
and g (y) = F (y, x) and (gx, gy) is called coupled point of coincidence (see [7]),

(ii) a common coupled fixed point of mappings F : X × X → X and g : X → X if x = g (x) =
F (x, y) and y = g (y) = F (y, x) (see [8]).
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Theorem 3.7. Let (X, dD) be a hyperbolic valued metric space, F : X × X → X and g : X → X be two

mappings and there exist positive hyperbolic numbers λi, i = 1, 2, 3, 4, 5, 6 with
6

∑

i=1

λi ≺ 1 such that the

following contractive condition holds for all x, y, u, v ∈ X:

dD (F (x, y) , F (u, v)) - λ1dD (gx, gu) + λ2dD (gy, gv)

+
λ3dD (F (x, y) , gx) + λ4dD (F (x, y) , gu)

1 + dD (u, v)
(3.1)

+
λ5dD (F (u, v) , gu) + λ6dD (F (u, v) , gx)

1 + dD (x, y)
.

If F (X × X) ⊂ g (X) and g (X) is a complete subspace of X, then F and g have a coupled coincidence
point in X.

Proof. Choose x0, y0 ∈ X. Then, since F (X × X) ⊂ g (X), there exist x1, y1 ∈ X such that gx1 =
F (x0, y0) and gy1 = F (y0, x0) . Continuing in this way, we construct two sequences (xn) and (yn) in X,

such that g (xn+1) = F (xn, yn) and g (yn+1) = F (yn, xn) . Then, we have

dD (gxn, gxn+1) = dD (F (xn−1, yn−1) , F (xn, yn))

- λ1dD (gxn−1, gxn) + λ2dD (gyn−1, gyn)

+
λ3dD (F (xn−1, yn−1) , gxn−1) + λ4dD (F (xn−1, yn−1) , gxn)

1 + dD (xn, yn)

+
λ5dD (F (xn, yn) , gxn) + λ6dD (F (xn, yn) , gxn−1)

1 + dD (xn−1, yn−1)

= λ1dD (gxn−1, gxn) + λ2dD (gyn−1, gyn)

+
λ3dD (gxn, gxn−1) + λ4dD (gxn, gxn)

1 + dD (xn, yn)

+
λ5dD (gxn+1, gxn) + λ6dD (gxn+1, gxn−1)

1 + dD (xn−1, yn−1)

= λ1dD (gxn−1, gxn) + λ2dD (gyn−1, gyn) +
λ3dD (gxn, gxn−1)

1 + dD (xn, yn)

+
λ5dD (gxn+1, gxn) + λ6dD (gxn+1, gxn−1)

1 + dD (xn−1, yn−1)

- λ1dD (gxn−1, gxn) + λ2dD (gyn−1, gyn) + λ3dD (gxn, gxn−1)

+λ5dD (gxn+1, gxn) + λ6dD (gxn+1, gxn−1)

- λ1dD (gxn−1, gxn) + λ2dD (gyn−1, gyn) + λ3dD (gxn, gxn−1)

+λ5dD (gxn+1, gxn) + λ6dD (gxn+1, gxn) + λ6dD (gxn, gxn−1)

= (λ1 + λ3 + λ6) dD (gxn−1, gxn) + (λ5 + λ6) dD (gxn+1, gxn)

+λ2dD (gyn−1, gyn) .

Hence,

(1 − λ5 − λ6) dD (gxn+1, gxn) - (λ1 + λ3 + λ6) dD (gxn−1, gxn) + λ2dD (gyn−1, gyn) . (3.2)

Similarly, one can prove that

(1 − λ5 − λ6) dD (gyn+1, gyn) - (λ1 + λ3 + λ6) dD (gyn−1, gyn) + λ2dD (gxn−1, gxn) . (3.3)
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On the other hand, we have

dD (gxn+1, gxn) = dD (F (xn, yn) , F (xn−1, yn−1))

- λ1dD (gxn, gxn−1) + λ2dD (gyn, gyn−1)

+
λ3dD (F (xn, yn) , gxn) + λ4dD (F (xn, yn) , gxn−1)

1 + dD (xn−1, yn−1)

+
λ5dD (F (xn−1, yn−1) , gxn−1) + λ6dD (F (xn−1, yn−1) , gxn)

1 + dD (xn, yn)

= λ1dD (gxn, gxn−1) + λ2dD (gyn, gyn−1)

+
λ3dD (gxn+1, gxn) + λ4dD (gxn+1, gxn−1)

1 + dD (xn−1, yn−1)

+
λ5dD (gxn, gxn−1) + λ6dD (gxn, gxn)

1 + dD (xn, yn)

- λ1dD (gxn, gxn−1) + λ2dD (gyn, gyn−1) + λ3dD (gxn+1, gxn)

+λ4dD (gxn+1, gxn) + λ4dD (gxn, gxn−1) + λ5dD (gxn, gxn−1)

= (λ1 + λ4 + λ5) dD (gxn, gxn−1) + (λ3 + λ4) dD (gxn+1, gxn)

+λ2dD (gyn, gyn−1) .

Hence,

(1 − λ3 − λ4) dD (gxn+1, gxn) - (λ1 + λ4 + λ5) dD (gxn−1, gxn) + λ2dD (gyn, gyn−1) . (3.4)

and similarly,

(1 − λ3 − λ4) dD (gyn+1, gyn) - (λ1 + λ4 + λ5) dD (gyn−1, gyn) + λ2dD (gxn−1, gxn) . (3.5)

Put δn = dD (gxn+1, gxn) + dD (gyn+1, gyn) . Adding inequalities (3.2) and (3.3), we get

(1 − λ5 − λ6) δn - (λ1 + λ2 + λ3 + λ6) δn−1 (3.6)

and adding inequalities (3.4) and (3.5), we get

(1 − λ3 − λ4) δn - (λ1 + λ2 + λ4 + λ5) δn−1. (3.7)

From (3.6) and (3.7), we have

(2 − λ3 − λ4 − λ5 − λ6) δn - (2λ1 + 2λ2 + λ3 + λ4 + λ5 + λ6) δn−1

and so, δn - ηδn−1 where η = 2λ1+2λ2+λ3+λ4+λ5+λ6

2−λ3−λ4−λ5−λ6

≺ 1. Consequently, we get

0 - δn - ηδn−1 - ... - ηnδ0. (3.8)

If m > n, we have

dD (gxn, gxm) - dD (gxn, gxn+1) + dD (gxn+1, gxn+2) + ... + dD (gxm−1, gxm) (3.9)

and
dD (gyn, gym) - dD (gyn, gyn+1) + dD (gyn+1, gyn+2) + ... + dD (gym−1, gym) . (3.10)

Now, (3.8), (3.9), (3.10) and Theorem 2.5 (i) imply that

dD (gxn, gxm) + dD (gyn, gym) - dD (gxn, gxn+1) + dD (gyn, gyn+1) + dD (gxn+1, gxn+2)

+dD (gyn+1, gyn+2) + ... + dD (gxm−1, gxm) + dD (gym−1, gym)

= δn + δn+1 + δn+2 + ... + δm−1

-
(

ηn + ηn+1 + ηn+2 + ... + ηm−1
)

δ0

= ηn
(

1 + η + ... + ηm−n−1
)

δ0

= ηn 1 − ηm−n

1 − η
δ0

-
ηn

1 − η
δ0.
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Since ηn

1−η
δ0 → 0 as n → ∞ by Theorem 2.5 (ii), we obtain that dD (gxn, gxm) → 0 and dD (gyn, gym) → 0

as m, n → ∞. In this case, (gxn) and (gyn) are Cauchy sequences in g (X) . Since g (X) is complete,
there exist x∗ and y∗ such that gxn → gx∗ and gyn → gy∗ as n → ∞.

Now, we shall show that gx∗ = F (x∗, y∗) and gy∗ = F (y∗, x∗) . For that, we have

dD (F (x∗, y∗) , gx∗) - dD (F (x∗, y∗) , gxn+1) + dD (gxn+1, gx∗)

= dD (F (x∗, y∗) , F (xn, yn)) + dD (gxn+1, gx∗)

- λ1dD (gx∗, gxn) + λ2dD (gy∗, gyn)

+
λ3dD (F (x∗, y∗) , gx∗) + λ4dD (F (x∗, y∗) , gxn)

1 + dD (xn, yn)

+
λ5dD (F (xn, yn) , gxn) + λ6dD (F (xn, yn) , gx∗)

1 + dD (x∗, y∗)
+ dD (gxn+1, gx∗)

- λ1dD (gx∗, gxn) + λ2dD (gy∗, gyn)

+
λ3dD (F (x∗, y∗) , gx∗) + λ4 [dD (F (x∗, y∗) , gx∗) + dD (gx∗, gxn)]

1 + dD (xn, yn)

+
λ5 [dD (gxn+1, gx∗) + dD (gx∗, gxn)] + λ6dD (gxn+1, gx∗)

1 + dD (x∗, y∗)

+dD (gxn+1, gx∗)

- λ1dD (gx∗, gxn) + λ2dD (gy∗, gyn) + λ3dD (F (x∗, y∗) , gx∗)

+λ4dD (F (x∗, y∗) , gx∗) + λ4dD (gx∗, gxn) + λ5dD (gxn+1, gx∗)

+λ5dD (gx∗, gxn) + λ6dD (gxn+1, gx∗) + dD (gxn+1, gx∗) .

This implies that

(1 − λ3 − λ4) dD (F (x∗, y∗) , gx∗) - (λ1 + λ4 + λ5) dD (gxn, gx∗) + (λ5 + λ6) dD (gxn+1, gx∗)

+λ2dD (gyn, gy∗)

and so,

dD (F (x∗, y∗) , gx∗) -
λ1 + λ4 + λ5

1 − λ3 − λ4
dD (gxn, gx∗) +

λ5 + λ6

1 − λ3 − λ4
dD (gxn+1, gx∗)

+
λ2

1 − λ3 − λ4
dD (gyn, gy∗) .

Letting n → ∞ we get dD (F (x∗, y∗) , gx∗) = 0 and hence F (x∗, y∗) = gx∗. By similar way, we obtain
F (y∗, x∗) = gy∗. Therefore, (x∗, y∗) is a coupled coincidence of F and g. �

By setting g = IX where IX is the identity mapping on X in Theorem 3.7, we deduce the following
coupled fixed point theorem.

Corollary 3.8. Let (X, dD) be a hyperbolic valued metric space and F : X × X → X. Suppose that there

exist positive hyperbolic numbers λi, i = 1, 2, 3, 4, 5, 6 with
6

∑

i=1

λi ≺ 1 such that the following contractive

condition holds for all x, y, u, v ∈ X:

dD (F (x, y) , F (u, v)) - λ1dD (x, u) + λ2dD (y, v)

+
λ3dD (F (x, y) , x) + λ4dD (F (x, y) , u)

1 + dD (u, v)

+
λ5dD (F (u, v) , u) + λ6dD (F (u, v) , x)

1 + dD (x, y)
.

Then F has a coupled fixed point in X.
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By setting λ = λ1 = λ2, µ = λ3 = λ4 and γ = λ5 = λ6 in Theorem 3.7, we get the following corollary.

Corollary 3.9. Let (X, dD) be a hyperbolic valued metric space, F : X × X → X and g : X → X.

Suppose that there exist positive hyperbolic numbers λ, µ, γ with λ + µ + γ ≺ 1
2 such that the following

contractive condition holds for all x, y, u, v ∈ X:

dD (F (x, y) , F (u, v)) - λ [dD (gx, gu) + dD (gy, gv)]

+µ
dD (F (x, y) , gx) + dD (F (x, y) , gu)

1 + dD (u, v)

+γ
dD (F (u, v) , gu) + dD (F (u, v) , gx)

1 + dD (x, y)
.

If F (X × X) ⊂ g (X) and g (X) is a complete subspace of X, then F and g have a coupled coincidence
point in X.

Remark 3.10. If we take λi = 0, i = 1, 2, 3, 4, 5, 6 in all possible combinations, we obtain coupled
coincidence point theorems on hyperbolic valued metric spaces.

The following example illustrate Theorem 3.7. In this example, we will use definition and some
properties of |·|k which are given in the preliminaries.

Example 3.11. Let dD : BC × BC → D, dD (x, y) = |x − y|k . Then, (BC, dD) is a hyperbolic valued
metric space. Define mappings F : BC × BC → BC and g : BC → BC as

F (x, y) =
x + ij

9j
+ iy, g (x) = 4 (2i + j) x.

Then, F (BC × BC) ⊂ BC =g (BC) and g (BC) is a complete subspace of BC. Now we get

dD (F (x, y) , F (u, v)) = dD

(

x + ij

9j
+ iy,

u + ij

9j
+ iv

)

=

∣

∣

∣

∣

x − u

9j
+ i (y − v)

∣

∣

∣

∣

k

-

∣

∣

∣

∣

x − u

9j

∣

∣

∣

∣

k

+ |i (y − v)|k

=
|x − u|k

|9j|k
+ |y − v|k

=
|x − u|k

9
+ |y − v|k

=

(

1

9
e1 +

1

9
e2

)

|x − u|k + |y − v|k

- (2e1 + 4e2) |x − u|k +

(

4

3
e1 + 3e2

)

|y − v|k

=

(

1

2
e1 +

1

3
e2

)

4 (e1 + 3e2) |x − u|k +

(

1

3
e1 +

1

4
e2

)

4 (e1 + 3e2) |y − v|k

=

(

1

2
e1 +

1

3
e2

)

dD (gx, gu) +

(

1

3
e1 +

1

4
e2

)

dD (gy, gv)

-

(

1

2
e1 +

1

3
e2

)

dD (gx, gu) +

(

1

3
e1 +

1

4
e2

)

dD (gy, gv)

+

(

1
30 e1 + 1

12 e2

)

dD (F (x, y) , gx) +
(

1
30 e1 + 1

12 e2

)

dD (F (x, y) , gu)

1 + dD (u, v)

+

(

1
30 e1 + 1

12 e2

)

dD (F (u, v) , gu) +
(

1
30 e1 + 1

12 e2

)

dD (F (u, v) , gx)

1 + dD (x, y)
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where λ1 = 1
2 e1 + 1

3 e2, λ2 = 1
3 e1 + 1

4 e2, λ3 = λ4 = λ5 = λ6 = 1
30 e1 + 1

12 e2. Note that
(

1
2 e1 + 1

3 e2

)

+
(

1
3 e1 + 1

4 e2

)

+ 4.
(

1
30 e1 + 1

12 e2

)

= 29
30 e1 + 11

12 e2 ≺ 1. Thus, the conditions of Theorem 3.7 are satisfied.
Then, F and g have a coupled coincidence point in BC. This coupled coincidence point is (0, 0) .

3.3. Common Coupled Fixed Point Results

In this section, we obtain a unique common coupled fixed point of two mappings in hyperbolic valued
metric spaces by using the concept of w−compatibility. As an application of our main result in this
section, we discuss a problem for the existence and uniqueness of coupled coincidence points for two
mappings.

Definition 3.12. The mappings F : X×X → X and g : X → X are called w−compatible if g (F (x, y)) =
F (gx, gy) whenever gx = F (x, y) and gy = F (y, x) (see [8]).

Theorem 3.13. In addition to hypotheses of Theorem 3.7, if the mappings F : X × X → X and
g : X → X are w−compatible, then F and g have a unique common coupled fixed point. Also, common
fixed point of F and g is of the form (u, u) for some u ∈ X.

Proof. Theorem 3.7 implies that there exists a coupled coincidence point (x∗, y∗) of F and g. First, we
will show that the coupled point of coincidence is unique. Suppose that there exists another coupled
point of coincidence such that gx′ = F (x′, y′) and gy′ = F (y′, x′) where (x′, y′) ∈ X × X. Using (3.1),
we get

dD (gx∗, gx′) = dD (F (x∗, y∗) , F (x′, y′))

- λ1dD (gx∗, gx′) + λ2dD (gy∗, gy′)

+
λ3dD (F (x∗, y∗) , gx∗) + λ4dD (F (x∗, y∗) , gx′)

1 + dD (x′, y′)

+
λ5dD (F (x′, y′) , gx′) + λ6dD (F (x′, y′) , gx∗)

1 + dD (x∗, y∗)

= λ1dD (gx∗, gx′) + λ2dD (gy∗, gy′) +
λ4dD (gx∗, gx′)

1 + dD (x′, y′)
+

λ6dD (gx′, gx∗)

1 + dD (x∗, y∗)

- λ1dD (gx∗, gx′) + λ2dD (gy∗, gy′) + λ4dD (gx∗, gx′) + λ6dD (gx′, gx∗) .

Hence
dD (gx∗, gx′) - (λ1 + λ4 + λ6) dD (gx∗, gx′) + λ2dD (gy∗, gy′) . (3.11)

By a similar way, we can prove that

dD (gy∗, gy′) - (λ1 + λ4 + λ6) dD (gy∗, gy′) + λ2dD (gx∗, gx′) . (3.12)

By adding inequalities (3.11) and (3.12), we get

dD (gx∗, gx′) + dD (gy∗, gy′) - (λ1 + λ2 + λ4 + λ6) [dD (gx∗, gx′) + dD (gy∗, gy′)] .

Since λ1+λ2+λ4+λ6 ≺ 1, we have dD (gx∗, gx′)+dD (gy∗, gy′) = 0 and so dD (gx∗, gx′) = dD (gy∗, gy′) = 0.

In this case, we obtain that gx∗ = gx′ and gy∗ = gy′. Therefore, the unique coupled point of coincidence
of F and g is (gx∗, gy∗) . On the other hand, similarly, we can show that gx∗ = gy′ and gy∗ = gx′. Thus,
we get gx∗ = gy∗.

Let u = gx∗ = F (x∗, y∗). Using condition of w−compatible of F and g, we get

gu = g (gx∗) = g (F (x∗, y∗)) = F (gx∗, gy∗) = F (gx∗, gx∗) = F (u, u) .

Then, (gu, gu) is a coupled point of coincidence of F and g and so gu = gx∗. Thus, u = gu = F (u, u).
This statement implies that (u, u) is the unique common coupled fixed point of F and g. �

Corollary 3.14. In addition to hypotheses of Corollary 3.9, if the mappings F : X × X → X and
g : X → X are w−compatible, then F and g have a unique common coupled fixed point.
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Proof. Taking λ = λ1 = λ2, µ = λ3 = λ4 and γ = λ5 = λ6 in Theorem 3.13, we get Corollary 3.14. �

Remark 3.15. If we take λi = 0, i = 1, 2, 3, 4, 5, 6 in all possible combinations, we obtain common
coupled fixed point theorems on hyperbolic valued metric spaces.

We give an example which supports Theorem 3.13.

Example 3.16. Let X and dD be as in Example 3.4. Then, (X, dD) is a complete hyperbolic valued metric
space. Now, we define mappings F : X × X → X and g : X → X as

F (α, β) =
α1

3
e1 +

α2

3
e2, g (γ) =







γ1e1 − γ1e2, γ ∈ X1

γ1e1 + γ1e2, γ ∈ X2

where α = α1e1 + α2e2, β = β1e1 + β2e2, γ = γ1e1 + γ2e2.Then, F (X × X) ⊂ X=g (X) and g (X) is a
complete subspace of X. Also, it is easy to show that the mappings F : X × X → X and g : X → X are
w−compatible. On the other hand, we obtain that

dD (F (α, β) , F (u, v)) =dD

(α1

3
e1 +

α2

3
e2,

u1

3
e1 +

u2

3
e2

)

=







































7
18 |α1 − u1| e1 + 3

8 |α1 − u1| e2, F (α, β) , F (u, v) ∈ X1

5
18 |α1 − u1| e1 + 7

24 |α1 − u1| e2, F (α, β) , F (u, v) ∈ X2

(

7
18 α1 + 5

18 β1

)

e1 +
(

3
8 α1 + 7

24 β1

)

e2, F (α, β) ∈ X1, F (u, v) ∈ X2

(

5
18 α1 + 7

18 β1

)

e1 +
(

7
24 α1 + 3

8 β1

)

e2, F (α, β) ∈ X2, F (u, v) ∈ X1

-







































5
12 |α1 − u1| e1 + 7

12 |α1 − u1| e2, F (α, β) , F (u, v) ∈ X1

7
12 |α1 − u1| e1 + 3

4 |α1 − u1| e2, F (α, β) , F (u, v) ∈ X2

(

5
12 α1 + 7

12 β1

)

e1 +
(

7
12 α1 + 3

4 β1

)

e2, F (α, β) ∈ X1, F (u, v) ∈ X2

(

7
12 α1 + 5

12 β1

)

e1 +
(

3
4 α1 + 7

12 β1

)

e2, F (α, β) ∈ X2, F (u, v) ∈ X1

=

(

1

2
e1 +

2

3
e2

)







































5
6 |α1 − u1| e1 + 7

8 |α1 − u1| e2, α, u ∈ X1

7
6 |α1 − u1| e1 + 9

8 |α1 − u1| e2, α, u ∈ X2

(

5
6 α1 + 7

6 u1

)

e1 +
(

7
8 α1 + 9

8 u1

)

e2, α ∈ X1, u ∈ X2

(

7
6 α1 + 5

6 u1

)

e1 +
(

9
8 α1 + 7

8 u1

)

e2, α ∈ X2, u ∈ X1

=

(

1

2
e1 +

2

3
e2

)

dD (gα, gu)
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-

(

1

2
e1 +

2

3
e2

)

dD (gα, gu) +

(

2

21
e1 +

3

47
e2

)

dD (gβ, gv) +

(

2
21 e1 + 3

47 e2

)

dD (F (α, β) , gα) +
(

2
21 e1 + 3

47 e2

)

dD (F (α, β) , gu)

1 + dD (u, v)
+

(

2
21 e1 + 3

47 e2

)

dD (F (u, v) , gu) +
(

2
21 e1 + 3

47 e2

)

dD (F (u, v) , gα)

1 + dD (α, β)

where λ1 = 1
2 e1+ 2

3 e2, λ2 = λ3 = λ4 = λ5 = λ6 = 2
21 e1+ 3

47 e2. Note that
(

1
2 e1 + 2

3 e2

)

+5.
(

2
21 e1 + 3

47 e2

)

=
41
42 e1+ 139

141 e2 ≺ 1. Therefore, all the conditions of Theorem 3.13 hold. Then F and g have a unique common
coupled fixed point and this common fixed point of F and g is (0, 0) .

4. Conclusion

In this work, we have proved the existence of unique common fixed point for contraction mappings
and a coupled coincidence and unique common coupled fixed point for two mappings on hyperbolic valued
metric spaces. We also have discussed some illustrative examples which substantiate the authenticity of
our newly proved results and distinguish them from existing ones. We hope that the results will help the
researchers in the literature of fixed point theory.
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22. N. Sager, B. Sağır, Fixed points of hyperbolic contraction mappings on hyperbolic valued metric spaces, Sarajevo Journal
of Mathematics(in review) (2020).

23. D. Alpay, M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa, Basics of functional analysis with bicomplex scalars,
and bicomplex Schur analysis, Springer Science & Business Media, (2014).

24. M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holomorphic functions: The algebra, geometry
and analysis of bicomplex numbers, Birkhäuser, (2015).
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