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ABSTRACT: In this paper, we obtain existence of unique common fixed point for a contraction mapping on
hyperbolic valued metric spaces, and also develop some coupled coincidence point and common coupled fixed
point results for two mappings satisfying various contractive conditions in such spaces. We also give some
illustrative examples to validate our results.
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1. Introduction

As we have known, one of the most powerful tools in modern analysis used for the existence of
solutions of many nonlinear problems in many branches of physics and engineering sciences is the Banach
fixed point theorem which implies that every contraction mapping on a complete metric space has a
unique fixed point. In general, the theorem is known as the Banach contraction principle. Some authors
generalized the Banach contraction principle [1] in many different directions. Works noted in [2,3,4,5,6,7,
8,9,10,11,12,13,14] are some relevant examples.

In 2006, Bhashkar and Lakshmikantham [3] introduced the concept of a coupled fixed point of a
mapping F : X x X — X and established some coupled fixed point theorems in partially ordered
complete metric spaces. They also discussed an application of their result by investigating the existence
and uniqueness of solution for a periodic boundary value problem. In 2009, Lakshmikantham and Ciri¢
[7] gave the notion of a coupled coincidence point and proved coupled coincidence and coupled common
fixed point results for nonlinear mappings F : X x X — X and g : X — X satisfying certain contractive
conditions in partially ordered complete metric spaces. In 2010, Abbas et al. [8] proved coupled coincidence
and coupled common fixed point results in cone metric spaces for w—compatible mappings.

In 2011, Azam et al. [10] introduced complex valued metric spaces as a generalization of metric spaces.
They proved some fixed point theorems for mappings satisfying a rational inequality in complex valued
metric spaces. They also applied these results to the existence and uniqueness for a solution of an
integral equation. After the publication of this work, some important works on fixed point theorems in
this direction have appeared in complex valued metric spaces; for several related examples, see[11,12,15,
16,17,18,19,20].

In 2016, Kumar and Saini[21] defined hyperbolic valued metric space. In[22], we gave some elementary
topological concepts and results on hyperbolic valued metric space and then, we introduced two fixed
point theorems for hyperbolic valued metric spaces by defining hyperbolic contraction mapping.
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Following the same line, as a generalization of fixed point theorems in hyperbolic valued metric spaces
[22], we prove existence of unique common fixed point for a contraction mapping on hyperbolic valued
metric spaces. Then, we introduce some coupled coincidence point results for such spaces, and also
obtain a unique common coupled fixed point of two mappings in such spaces by using the concept of
w—compatible maps. We also furnish some examples which substantiate our obtained results.

2. Preliminaries

Now, let give basic properties of bicomplex numbers and hyperbolic numbers which will be used in
our subsequent discussion. For further details on the following definitions and results, we refer the reader
t0[23,24]. Let i and j be independent imaginary units such that i? = j2 = —1, ij = ji and C (i) be the
set of complex numbers with the imaginary unit . The set of bicomplex numbers BC is defined by

BC={z=2+jz2:21,22 € C(4)}.
The set BC forms a ring with respect to the addition and multiplication defined as

24w = (214 j22)+ (w1 + jwe) = (21 +wy) + J (22 + w2),
zaw = (214 j22). (w1 + jwz) = (2101 — 22w2) + j (21w2 + 22w1) .

The set of hyperbolic numbers D is defined by
D={x+ky:z,yeR},

where k? =1 and k =i.j and 0,1 € D.
The set D is a subring of the set BC, and also D is a ring and a module over itself.
There are three types of conjugates in BC:

M= I+ gm,
22 = 4 — Jza,

where Z7,Z3 are the complex conjugates of z1,2z9 € C(i). Also, we know three types moduli for any
z € BC:

|z|f = z22=22422€C(),
2 = 22l = (| — ) +5 (2R (:1.3)) € C(),
e = 2= (laf + o) + £ (-8 (217)) €D.

Let z = 21 + jzo be any bicomplex number in BC. We say that z is invertible if |z|, # 0, that is,
22 + 22 # 0 and its inverse is given by 27! = % If, on the other hand, z # 0 but |z|, = 0, then z is a
zero divisor. L

The ring BC is not a division ring, since one can see that if e; = 1—211 and ey = 1—;1, then e; and es
are zero divisors. The numbers e; and e; form idempotent basis of bicomplex numbers and hence any
bicomplex number z = z1 4 jzo is uniquely written as

z=e10, + eafs (2.1)

where 8, = z1 — 122,85 = 21 +iz2 € C(i). Formula (2.1) is called the idempotent representation of
z.
Let o = x + ky be any hyperbolic number. Then, we have the equality

a = ejay + e20ua,
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where a; = x +y, a0 =x —y € R. If @y > 0 and as > 0, then « is called a positive hyperbolic number.
Therefore, the set of positive hyperbolic numbers DV is denoted by

Dt = {a =eja1 + €202 : a1 > 0,0z > 0}.

For two hyperbolic numbers o and 3; if their difference 3 —a € DT (or f —a € DT — {0}), then we
write o T B (or a 3 ). For a = e1a1 + exaz, f = fre1+ Byez € D with real numbers g, az, 3, and
B4, we have that

a = pifand only if oy < 5, and ag < S,
a 3 pBifandonly if a # B and a1 < 3, and ay < f,
<

Q@ B if and only if oy < 8, and as < B,.

This relation = is reflexive, anti - symmetric, transitive and so defines a partial order on D.
We know that the hyperbolic valued module |z, of a bicomplex number z = e; 5,4+ e[, is also given
as

|Z|k = e1|B1| +e2 Byl -

One can easily see that

lzwl, = |zl Jwly,
2wl 3 lzle + lwly,
‘3‘ _ 2l

for any z,w € BC.
The following statements are true for «, 3, € D:
() Ifazpfthena+y 3 6+7.
(ii) If « X fand B < 7, then a < 7.
(iii) If @« < 8 and 0 < ~, then ay < 57.
(iv) If @ < B and v < 0, then 8y < a.
(v) If « 3 8 and 0 < 7, then ay =X 5.
(vi) If &« 3 B and v < 0, then Sy 3 ay.
(vil) f « S fand v 2§, then a+~v 2 8+ 0.
(viii) If a, 8 € DT, then o = B (or a < B) implies that |a| < |B] (or |a] < |3]) where |-| shows
Euclidean norm in BC (see [23,24]).
(ix) If « € DT, then |af, = a.
A sequence in BC is a function defined by z : N — BC,n — z,. This sequence converges to a point
z* € BC if and only if to each € > 0 there corresponds an ng (¢) such that |z, — z*| < e for all n > ng (g).
It is denoted by z, — 2* as n — oo. The sequence z = (z,) is a Cauchy sequence in BC if and only if
to each € > 0 there corresponds an ng (¢) such that |z, — 2| < € for all n,m > ng (). Also, z = (2,)
converges to a point in BC if and only if it is a Cauchy sequence in BC. On the other hand, for any
sequence (z,) in BC such that z : N — BC, z,, = 8y,e1+ Ba,e2 and for any z* = fie; + S5e2 € BC, we
have that z, — z* as n — oo if and only if 8,,, — 87 and 8,,, — 55 as n — .
The following popular concept are defined by Kumar and Saini [21].

Definition 2.1. Let X be a nonempty set and dp : X x X — D be a function such that for any z,y, z € X,
the following properties hold:

(i) 0 2 dp (x,y) and dp (z,y) = 0 if and only if x =y,

(i) dp (z,y) = dp (y, ),

(iii) dp (%, 2) 3 dp (z,y) + dp (y, 2) .

Then dp is called a hyperbolic valued or D -valued metric on X and the pair (X,dp) is called a
hyperbolic valued or D -valued metric space (see [21]).

The following definitions and simple properties are recently introduced by Sager and Sagir [22] and
they will be needed in the sequel.
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Definition 2.2. Let (X, dp) be a hyperbolic valued metric space, (x,) be any sequence in X and x € X.
If for every 0 3 e € D there exists ng € N depending on € such that for all n > ng

dp (n, ) J e,
then we say that (x,) is convergent with respect to the metric dp. We denote this by limpx, = z or

n—oo

T, B 2 asn — . If for every Op 3 € € D there exists ng € N depending on € such that for all n,m > ng
dID) (xna xm) ;ﬁ g,

then we say that () is a Cauchy sequence with respect to the metric dp. If every Cauchy sequence with
respect to the metric dp is convergent with respect to the metric dp in (X, dp), then we say that (X, dp)
is a complete hyperbolic valued metric space.

Corollary 2.3. Let (X,dp) be a hyperbolic valued metric space, (x,) be any sequence in X and x €
X. Then, the sequence (x,) converges to x with respect to the metric dp if and only if dp (v,,x) =
|dp (zy, 2)], = 0 as n — oo.

Corollary 2.4. Let (X,dp) be a hyperbolic valued metric space and (x,,) be any sequence in X. Then,
the sequence (x,,) is a Cauchy sequence with respect to the metric dp if and only if for all m € N,
dp (Tns Tngpm) = |dp (T, Tngm)|, = 0 as n — oo.

Theorem 2.5. The following statements are true for o € D:
(i) Ifa € DT, a # 1 and 1 — « is invertible, then
1— an—i—l
l+a+a*+..+a" =
11—«
for alln € N.
(ii) If « € DT and o < 1, then 0 3 a"™ <1 for alln € N and o™ — 0.

3. Main Results
3.1. Common Fixed Point Results

In this section, we prove existence of unique common fixed point for a contraction mapping on hyper-
bolic valued metric spaces. We also give an example which substantiate our main result.

Theorem 3.1. Let (X,dp) be a complete hyperbolic valued metric space. If S and T are self mappings
defined on X satisfying the condition

pdp (z, Sx) dp (y, Ty) + vdp (y, Sz) dp (x, Ty)

Ty) <
dp (Sz,Ty) 3 Adp (z,y) + 1+ dp (z,y)

for all x,y € X, where A\, u,~y are positive hyperbolic numbers with A+ p+ v < 1. Then, S and T have a
unique common fixed point.

Proof. Let’ s first prove the existence. Let xg be any point in X. We define zop11 = Sxog, Topio =
Txoi+1, k=0,1,2,.... Then,

dp (T2g+1,T2kv2) = dp (Swak, Tok41)

pdp (T2r, Sxor) dp (Tory1, Trox11)
1 +dp (w2r, Top41)

vdp (T2r+1, STor) dp (Tor, TTopy1)
1+ dp (zor, Tar41)

pdp (Tor, Tagt1) dp (Tors1, Targ2)
1 +dp (w2x, Tog41)

< Mdp (w2r, Tags1) + pdp (Tapg1, Toapy2) -

A

Mp (Tok, Tak41) +

= Adp (zak, Topt1) +
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This implies that dp (zok+1, Togr2) < ﬁd@ (22K, Top41) - Furthermore,

dp (Tort2, Tory3) = dp (Tropi1, STopyo)
= dp (Swopq2, Trop41)
pdp (ax12, STarr2) dp (Tory1, Tror11)
1+ dp (Tor+2, Tor+1)
vdp (T2k+1, STaky2) dp (Tori2, TTory1)
1+ dp (Tak+2, Tak+1)
pdp (2x12, STarr2) dp (Takt1, Tart2)
1+ dp (Tak+2, Takt1)
< Adp (@2p42, Tors1) + pdp (T2p42, STartz) -

A

Adp (Top42, Takt1) +

= Adp (22k+2, Topt1) +

This implies that dp (x2k+2,x2k+3) < ﬁd]@ (x2k+2,x2k+1) = ﬁd]@ ($2k+1,$2k+2)- By setting h =
ﬁ < 1, we derive

dp (Zp, Tnt1) 3 hdp (Tn-1,2) 3 h2dp (Tn—2,Tn-1) 3 ... 3 h"dp (20, 71).
Then, using Theorem 2.5, for any m > n, we obtain that

dp (T, Tnt1) + dp (Tng1, Tng2) + o+ dp (Tm—1, Tm)

R"dp (zo, 1) + R dp (20, 1) + ... + h™ Ndp (20, 21)

[h" + A 4+ hmfl] dp (zo, 1)

h™ — h™
1—-h
hn

1—h

d]D) (xnv xm)

Il eA 2A

dp (zo, 1)

=3 dp (zo,21) .

and taking the limit as m,n — oo, we conclude that dp (zy,2n) — 0. Therefore, (z,) is a Cauchy
sequence with respect to the metric dp. Since (X, dp) is a complete hyperbolic valued metric space, there

exists a point x € X such that z,, @ﬁ T asn — o0o.
Assume that  # Sx. Then,

dp (z,Sz) = dp(z,Txop+1) + dp (T'wo11, Sx)
= dp (z,Txoks1) + dp (Sz, TxoK+1)
dp (z, Zak42) + Adp (Top11, )
+udm (z,Sz) dp (zor41, Tx2r41) + vdp (T2rg1, Sz) dp (2, Txop41)
1 +dp (v2%11,2)

A

Taking k — oo, one gets dp (x, Sz) = 0 which is a contradiction and hence x = Sz. Similarly, we can
show that z = T'x. Therefore, x is a common fixed point of S and 7.
Finally, we show the uniqueness. Assume that x* is another common fixed point of S and 7. Then,

dp (z,z™)

dp (Sz, Tx™)
pdp (x, Sx) dp (2, Tx*) + vdp (z*, Sz) dp (x, Tx*)
1 +dp (z,2%)
~vdp (z*, z) dp (z, x*)
1 +dp (z,2*%)
< (A+v)dp(z,x%).

2 Adp (x,z") +

= Adp(z,2") +

But this is impossible. So, dp (z,2*) =0, = 2™ which implies that the fixed point is unique. O
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Corollary 3.2. Let (X,dp) be a complete hyperbolic valued metric space. If T is self mapping defined

on X satisfying the condition

pdp (z, ) dp (y, Ty) + vdp (y, Tx) dp (x, Ty)

Tz, Ty) <
dp (Tz, Ty) 2 Adp (2,y) + 1+ dp (z,y)

for all x,y € X, where A\, u,y are positive hyperbolic numbers with A\ + p+~v < 1. Then, T has a unique

fized point.

Proof. By setting S =T in Theorem 3.1, we derive Corollary 3.2.

Remark 3.3. If we choose A =0, p =0 or v = 0 in all possible combinations, we obtain fized point

theorems on hyperbolic valued metric spaces.

We finish this section with an example which satisfy the requirements of Corollary 3.2 as follows:

Example 3.4. Let

X1 = {vy=me1+7e €Dy =7y,7, >0},
Xy = {y=mer+tre €Dy, =—7y,,7 >0}

and X = X1 U Xs. Define a mapping dp : X x X — D as

Lo —Byler+ 2 lon — Byl ea, o, B € Xy

3lar = Biler + Lo = Byles, a,f € Xo

d a, = )
D( ﬁ) 7 5 9 7

(Gal + Gﬁl) €1 + (Sal + 8ﬁ1) €2, o € Xlaﬁ € X2

(2or 4+ 2B1) er+ (far + 2B;) e2, a € Xo,8 € X3

where o = qye1 + asges, B = Bre1 + Byea, then (X, dp) is a complete hyperbolic valued metric space.

Consider a mapping T on X with v = v,e1 + yq€2 as

Y11 — v1€2, ¥ € X1

0l 0l
Se1+ e, v E Xo
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and let S =T. So, we have

d[D) (SO&,TB) = d[D) (TO[,TB)

Slan — Byler+ Llon — Byle2, o, B € Xy
%|a1_ﬁ1|el+%|0‘1—61|62a a, B € X
(201 4+ 5B1) er+ (Rar + 2B;) e2, € X1,8 € Xo

(1—72a1 + %,81) er + (%Oll + %,81) e, a € Xo9,0 € X1
lon — Bl er + a1 — Bylez, o, B € Xy

%|0¢1—51|€1+%|041 —Bilez, a,B € Xo

A

(a1 +381) e1 + (a1 + 5B1) e2, @ € X1, B € X

(%Otl +/81) e + (gal +61) €2, a € Xo,0 € Xy
%|0‘1_51|61+%|a1_51|€27 a, B e Xy

] %|041_/81|€1+%|041—61|e27 a, B € X
= (—€1+—€2)

(Zon+2B)) e+ (2a1+ ZBy) e2, a € X1,8 € X,

(3on 4+ 2B1) er+ (Zar+ 28) €2, a € X2, € Xy

= (gel + geg> dp (o, B)

A

<§61 + §€2> dp (o, B)

7
(Ze1+ 55€2) dp (w,52) dp (y, Ty) + (Ze1 + 55€2) dp (y, Sz) dp (2, Ty)

* 1+d]D)(x7y)

where A\ = %el + %eg, w=ry= %el + %62. Note that %el + %62 + 2. (%el + %62) = %el + %eg < 1.

Thus, the conditions of Corollary 3.2 are satisfied. Then, T has a unique fized point in X. This fized
point is (0,0).

3.2. Coupled Coincidence Point Results

In this section, we introduce some coupled coincidence point theorems for hyperbolic valued metric
spaces which give us a sufficient condition for the existence of coupled coincidence points for two mappings.
We also present an example in order to deduce results about coupled coincidence points.

Definition 3.5. An element (z,y) € X x X s called a coupled fized point of mapping F': X x X — X
ifv="F(v,y) andy = F (y,z) (see[3]).

Definition 3.6. An element (x,y) € X x X is called

(i) a coupled coincidence point of mappings F: X x X - X and g: X — X if g(x) = F (x,y)
and g (y) = F (y,z) and (gx,gy) is called coupled point of coincidence (see[7]),

(ii) a common coupled fixed point of mappings F : X x X - X andg: X —» X if v =g (z) =
F(z,y) andy = g(y) = F (y,z) (see[S]).
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Theorem 3.7. Let (X,dp) be a hyperbolic valued metric space, F: X x X — X and g: X — X be two

6
mappings and there exist positive hyperbolic numbers \;, i = 1,2,3,4,5,6 with > \; < 1 such that the

=1

following contractive condition holds for all z,y,u,v € X:

dp (F'(z,y), F (u,v)) 2 Aidp (g2, gu) + Aadp (9y, gv)

Asdp (F (2, y) , g7) + Madp (F (2, y) , gu)
_|_
1+ dp (u,v)
Asdp (F (u,v), gu) + Aedp (F' (u,v) , gx)
+ .
1+ dD (.’E, y)

(3.1)

If F(X xX) Cg(X) and g(X) is a complete subspace of X, then F and g have a coupled coincidence

point in X.

Proof. Choose zg,yo € X. Then, since F' (X x X) C g (X), there exist z1,y1 € X such that gz, =
F (x0,y0) and gy1 = F (yo,x0) . Continuing in this way, we construct two sequences (x,,) and (y,) in X,
such that g (z,4+1) = F (2, yn) and g (Ynt1) = F (Yn, ) . Then, we have

dp (9%n, gTny1)

Hence,

(1= X5 = X6) dp (9Tn+1,97n) T (A1 + A3+ A6) dp (9Zn—1, 9Tn) + A2dp (9Yn—1,9Yn) -

&N

&N

[N

Similarly, one can prove that

(1= X5 = X6) dp (9Yn+1,9Yn) T (A1 + A3 + X6) dp (9Yn—1,9Yn) + A2dp (9Tn—1,97n) -

d]D) (F (mn—lv yn—l) 9 F (mnv yn))
AMdp (9Tn—1, 97n) + A2dp (9Yn—1, 9Yn)
A3dp (F (Zn—1,Yn—1),9%n—1) + Mdp (F (Tpn_1,Yn-1) ,9%n)
+
1 + dlD) (xnv yn)
+)\5d]D) (F (xn; yn) 793711) + /\6dD (F (J)n, yn) 793711—1)
1 + dID) (xnflv ynfl)
Adp (9Tn—1, 9Tn) + Aodp (9Yn—1, 9Yn)
)\BdlD) (gxna gwnfl) + )\4dD (gxnv gxn)
+
1 + d]D) (l‘n, yn)
Asdp (9Zn+1, 9Tn) + Xedp (9n41, 9Tn—1)
+
1 + dD (xn—la yn—l)

A3dp (gTn, 9Tn—1)
1 + dID) (xnv yn)

/\1d]D (gmn—la gxn) + )\QdD (gyn—la gyn) +

Asdp (9Znt1, 9%n) + A6dp (9Tn41, gTn—1)

14+dp (Tn—1,Yn—1)
Adp (92n—1, 92n) + A2dp (9Yn—1, 9Yn) + A3dp (90, gTn—1)
+A5dp (9Tn11, 9Tn) + A6dp (92Znt1, 9Trn—1)
AMdp (9Zn-1, 92n) + A2dp (9Yn—1, 9¥n) + A3dp (9Zn, 9Tn—1)
+A5dp (9Tn+1, 9Tn) + A6dp (9Tn+1, 97n) + Aedp (9Tn, 9Tn—1)
(A1 + A3+ X6) dp (9Tn—1,9Tn) + (A5 + X6) dp (9Tn+1, 92n)
+X2dp (9Yn—1, 9Yn) -

+




CoMMON FIXED, COUPLED COINCIDENCE AND COMMON COUPLED FIXED POINT ... 9

On the other hand, we have

dp (9Tn41,9%n) dp (F (Zn,Yn) , F (Tn-1,Yn-1))

3 Adp (920, 9Tn—1) + A2dp (9Yn, 9Yn—1)
)\3dlD) (F (xna yn) vgxn) + )\4dID) (F (xnv yn) agxnfl)
+
1 + d]D (xn—la yn—l)
Asdp (F (Zn—1,Yn—1),9Zn—1) + Aedp (F (Tn_1,Yn-1),9%n)
_|_
1 + dID) (xna yn)
= Midp (9Zn, 9Tn—1) + X2dp (9Yn, 9Yn—1)
Asdp (g$n+1v gmn) + Aadp (g$n+1a gxn—l)
_|_
1 + dID) (xnflv ynfl)
)\5dlD) (gxnv gxnfl) + )\Gdﬂ) (gxna gwn)
+
1 + d]D) (xna yn)
3 Adp (9%n, 9Tn—1) + A2dp (9Yns 9Yn—1) + Asdp (9Tn+1, 9Tn)
+Mdp (9%n11, 97n) + Aadp (92n, 9Tn—1) + Asdp (920, gTn—1)
= (M 4+ M+ A5)dp (920, 9Zn—1) + (A3 + A1) dp (9Znt1, 9Tn)
+A2dp (9Yns GYn—1) -
Hence,
(1= A3 = A1) dp (9Tn+1,97n) T (A1 + A1+ As5) dp (9Tn—1, 97n) + A2dp (9Yn, 9Yn—1) - (3.4)
and similarly,
(1 =23 = A1) dp (9Ynt1,9Yn) 2 (A1 + As 4+ Xs) dp (9Yn—1, 9Yn) + Xodp (9Tn—1,9%x) - (3.5)
Put 6, = dp (9Zn+1,92n) + dp (9Yn+1, 9Yn) - Adding inequalities (3.2) and (3.3), we get
(T=X5—=X6)In S (A1 + A2+ A3+ Xg) 0n—1 (3.6)
and adding inequalities (3.4) and (3.5), we get
(IT=XA3=2)dn M+ A2+ A+ X5) 01 (3.7)

From (3.6) and (3.7), we have
(2—/\3 _)\4_/\5_)\6)511 ,j (2)\1+2/\2+)\3+/\4+)\5+/\6)5n—1

and so, &, 2 16,_1 where n = 2A1ﬁ§\23t))‘\it))‘\45t§\g+)‘6 < 1. Consequently, we get
0238, 2101 3o 21"%00. (3.8)
If m > n, we have
dp (92, gTm) 3 dp (970, 9Tn+1) + dp (§Tn+1, gTn+2) + o + dp (9Tm—1, 9Tm) (3.9)
and
dp (9Yn: 9Ym) 3 dp (9Yn: 9Yn+1) + dp (9Yn+1, 9Yn+2) + - + dp (9Ym—1, 9Ym) - (3.10)

Now, (3.8), (3.9), (3.10) and Theorem 2.5 (i) imply that

dp (9%, 9Tm) + dp (9Yns 9Ym) 3 dp (9Zn, 9Zni1) + dp (9Yn, 9Yn+1) + dp (9Zn i1, 9Tny2)
+dp (9Yn+1, 9Yn+2) + - + dp (9Tm—1, 9Zm) + dp (9Ym—1, 9Ym)
On +0nt1 +60nt2+ o +0m—1

j (nn+nn+1+nn+2+“.+nm—l) 50
= 7" (1—|—n—|—...—|—7]m_"_1) 0o
nl_nm_n
= =L
L—=n
< 5.
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Since %50 — 0 asn — oo by Theorem 2.5 (ii), we obtain that dp (g, gzm) — 0 and dp (9yn, gYm) — 0
as m,n — oo. In this case, (gx,) and (gy,) are Cauchy sequences in ¢g (X). Since ¢g (X) is complete,
there exist z* and y* such that gx,, — gz* and gy, — gy* as n — oc.

Now, we shall show that gz* = F' (z*,y*) and gy* = F (y*,2*) . For that, we have

dp (F (x*vy*) 7933*) 2 dp (F (x*ay*) ,g$n+1) +dp (g$n+1,9$*)
= dp (F(z*,y"), F (xn,yn)) + dp (9Tnt1, 92")

3 Midp (977, g70) + A2dp (997, 9Yn)
Asdp (F' (2%, y"), gz*) + Aadp (F (z*,y") , 974)
+
1+ dp (Tn, Yn)

+)\5dD (F (20, yn) ig_le?m';xi‘?jﬂj)(l? (Tn,yn), gT") +dp (9ni1, g*)
< Aidp (927, g2n) + A2dp (9Y7, 9Yn)

+/\3dD (F (@, y%) 92") + A [dp (F (2", y7) , gz*) + db (927, gzn)]

1+dp (Tn,yn)
L [dp (92n+1, g2*) + dp (92*, gzn)] + Aedp (92041, 92*)
1+ dp (z*,y*)

+dp (9znt1, gx™)

3 Midp (977, gxn) + Aadp (97, gyn) + Asdp (F (27, y7) , gz™)

+A\adp (F (2%, y") , g2") + Aadp (g%, gz) + Asdp (9Tn+1, 97")
+Asdp (927, gTn) + A6dp (9Tnt1,92") + dp (9Tni1,97") .

This implies that

(I=X3—X)dp (F(z",y"),92") = (M +A+As5)dp (g2, 927) + (A5 + X6) dp (9Znt1, 92")
+A2dp (9Yn, 9y")

and so,
A+ A+ A5 As + g
dp (F(z",y"),92") 3 ——— b (92n,92") + ———dp (97n+1, 92"
p (F(z",y"),92") 3 v o (92 gw)+1_A3_A4D(gx +1,927)
A2
—d s 9Y°) -
T o D (9Yn> 9Y")

Letting n — oo we get dp (F (z*,y*),g92*) = 0 and hence F (z*,y*) = ga*. By similar way, we obtain
F (y*,x*) = gy*. Therefore, (z*,y*) is a coupled coincidence of F' and g. O

By setting ¢ = Ix where Ix is the identity mapping on X in Theorem 3.7, we deduce the following
coupled fixed point theorem.

Corollary 3.8. Let (X,dp) be a hyperbolic valued metric space and F': X x X — X. Suppose that there

6
exist positive hyperbolic numbers \;, i = 1,2,3,4,5,6 with > \; < 1 such that the following contractive
i=1
condition holds for all x,y,u,v € X:

dp (F (z,y),F (u,v)) 3 Aidp (z,u) + Aadp (y,v)
+)\3dm (F (z,y),x) + M\dp (F (z,9) ,u)
1+ dp (u,v)
+)\5dD (F (u,v),u) + Xedp (F (u,v), x)
1+dp (z,y) '

Then F has a coupled fixed point in X.
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By setting A = A1 = Ao, = A3 = A\qy and 7 = A5 = A\g in Theorem 3.7, we get the following corollary.

Corollary 3.9. Let (X,dp) be a hyperbolic valued metric space, F : X x X — X and g : X — X.
Suppose that there exist positive hyperbolic numbers X\, p, ~v with A+ p+ v < % such that the following
contractive condition holds for all x,y,u,v € X:

dp (F (z,y), F (uw,v)) 3 Aldp (92, gu) + db (9y. gv)]
dp (F (33‘, y) ,gm) +dp (F (Z‘, y) 7gu)

o 1+ dp (u,v)
o (F (u,v), gu) +dp (F (u,v) , gz)

If F(X xX) Cg(X) and g(X) is a complete subspace of X, then F and g have a coupled coincidence
point in X.

Remark 3.10. If we take \; = 0, i = 1,2,3,4,5,6 in all possible combinations, we obtain coupled
coincidence point theorems on hyperbolic valued metric spaces.

The following example illustrate Theorem 3.7. In this example, we will use definition and some
properties of |-|, which are given in the preliminaries.

Example 3.11. Let dp : BC x BC — D, dp(z,y) = |z —vy|,. Then, (BC,dp) is a hyperbolic valued
metric space. Define mappings F : BC x BC — BC and g : BC — BC as

Fla) = 5 +iy. g(@) = 4@i+i)

Then, F (BC x BC) C BC =¢ (BC) and g (BC) is a complete subspace of BC. Now we get

dp (F (z,y),F (u,v)) = dp <x;” + 1y, u{—;m —|—iv>
= xg_juﬂ(y—v)k
3 x;j“kﬂz'(y—vm
= g,
= By,

e+ —e X wl,. + v
9 1 9 2 k Y k

4
3 (2e1 +4e2) |z —ul, + (gel + 362) ly — v,
1 1 1 1
561 + 562 4 (e1 + 3e2) | — ul, + 561 + 162 4 (e1 + 3e2) |y — |,
1 1 1
= —61 + geg dp (g, gu) + gel + e dp (gy, gv)
+

2° 37071
(z5€1 + 75¢2) dp (F (2,), 92) + (z5€1 + 15¢2) do (F (z,y) , gu)
1+ dp (u,v)
4 (z5¢1 + 15¢2) do (F (u,0) , gu) + (z5¢€1 + 15¢2) dp (F (u,v) , g)
1+dp (z,y)

1 1 1
1+ —€2> dp (gz, gu) + (—61 + —€2> dp (9y, gv)
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where A\ = %el + %62, Aoy = %el + i@g, A3 =X = X5 = X\g = 3—1061 + %62. Note that (%61 + %62) +
(%61 + i@g) + 4. (%el + %62) = %61 + %62 < 1. Thus, the conditions of Theorem 3.7 are satisfied.
Then, F' and g have a coupled coincidence point in BC. This coupled coincidence point is (0,0).

3.3. Common Coupled Fixed Point Results

In this section, we obtain a unique common coupled fixed point of two mappings in hyperbolic valued
metric spaces by using the concept of w—compatibility. As an application of our main result in this
section, we discuss a problem for the existence and uniqueness of coupled coincidence points for two
mappings.

Definition 3.12. The mappings F : XxX — X andg: X — X are called w—compatible if g (F (z,y)) =
F (gz, gy) whenever gx = F (x,y) and gy = F (y,x) (see [8]).

Theorem 3.13. In addition to hypotheses of Theorem 3.7, if the mappings F : X x X — X and
g: X — X are w—compatible, then F and g have a unique common coupled fized point. Also, common
fized point of F' and g is of the form (u,u) for some u € X.

Proof. Theorem 3.7 implies that there exists a coupled coincidence point (z*,y*) of F and g. First, we
will show that the coupled point of coincidence is unique. Suppose that there exists another coupled
point of coincidence such that g’ = F (2/,y') and gy’ = F (y/,2") where (2/,y’) € X x X. Using (3.1),
we get

dp (gz*,g2') = dp (F(z",y"),F(2',y))
Mdp (gz*, g') + Xadp (9y™, 9y')
Asdp (F (z*,y*), gz*) + \adp (F (z*,y*) , g2’)
+
1+dp (2, y')
4 s (F(«',y'),92") + Xedp (F (',y) , gz*)
1 + dD (ZC*, y*)

&N

Adp (gz*,g2") | Nedp (97, gr*)
1+dp (2/,y) 1+ dp (z*,y*)
3 Aidp (927, g2") + Xadp (9y*, 9y') + Aadp (927, g2') + Xedp (g2, gz™) .

= Audp (gz*, g2) + Xodp (9y", gy') +

Hence

dp (gz*, gx") Z (A1 4+ Aa + Xe) dp (927, 92”) + Aadp (9y™, 9y') - (3.11)
By a similar way, we can prove that

dp (9y™,9y") 3 (A1 + A+ X6) dp (997, 9y') + Aedp (927, g2') . (3.12)

By adding inequalities (3.11) and (3.12), we get
dp (92", ga') + dp (95", 9y') T (M1 + A2 + M+ Ae) [dp (927, 927) + dp (95", 99/")] -

Since A1 +A2+Ag+Xg < 1, we have dp (ga*, g2’)+dp (9y*, gy’) = 0 and so dp (gx*, gx’) = dp (gy*, g9y’) = 0.
In this case, we obtain that gz* = g2’ and gy* = gy’. Therefore, the unique coupled point of coincidence
of Fand g is (gz*, gy*) . On the other hand, similarly, we can show that gz* = gy’ and gy* = ga’. Thus,
we get gx* = gy*.

Let u = gz* = F(z*,y*). Using condition of w—compatible of F' and g, we get

gu=g(gx*) = g(F(z",y")) = F (92", 9y") = F (92", g2") = F (u,u).

Then, (gu, gu) is a coupled point of coincidence of F' and g and so gu = gz*. Thus, u = gu = F(u,u).
This statement implies that (u,u) is the unique common coupled fixed point of F' and g. O

Corollary 3.14. In addition to hypotheses of Corollary 3.9, if the mappings F : X x X — X and
g: X — X are w—compatible, then F and g have a unique common coupled fized point.
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Proof. Taking A = A1 = o, = A3 = A\g and v = A5 = g in Theorem 3.13, we get Corollary 3.14. [

Remark 3.15. If we take \; = 0, i = 1,2,3,4,5,6 in all possible combinations, we obtain common
coupled fized point theorems on hyperbolic valued metric spaces.

We give an example which supports Theorem 3.13.

Example 3.16. Let X and dp be as in Example 3.4. Then, (X,dp) is a complete hyperbolic valued metric
space. Now, we define mappings F': X x X - X and g: X — X as

«a as Y€1 — Y1€2, ¥ € X1

Fo,8)= Ser + Loy, g(7) =
Y1€1 +Y1€2, YV € Xo

where o = ey + agea, B = Bie1 + a2,y = v1e1 + yqe2. Then, F (X x X) C X=¢(X) and g (X) is a
complete subspace of X. Also, it is easy to show that the mappings F': X x X — X and g: X — X are
w—compatible. On the other hand, we obtain that

« o U U
o ) = (s + B B 20

= lon —uiler + £ Joy —ulea, F (o, B),F (u,v) € Xy
2 lar —urler + o |on —wi|ez, F (o, B),F (u,0) € Xo
(%041 + %/371) e1+ (%051 + %/31) ez, F(a,p) € X1, F(u,v) € Xo

(Zar+ LB1)er+ (Hoa + 2B8)) e2, F (o, ) € Xa, F (u,v) € X3

Zlon —uiler + 5 lar —uil ez, F(a,B),F (u,v) € X3

Llon —uiler + 2 Jon —ur] ez, F(a,B),F (u,v) € Xy

~<
(Zo1+ 1581) e1+ (5a1 + 361) ea, Fa,B) € X1, F (u,0) € X
(1_720[1 + %/81) e1+ (%051 + 1_72ﬁ1) €2, F(O[,ﬁ) € XQ,F(U,’U) S Xl
%|061—U1|61+%|041—u1|€2, a,u € Xy
1 9 %|061—U1|61+%|041—u1|€2, a,u € X
(e
(%oq + %ul) el + (%ozl + %ul) es, a € Xq1,u € Xo
(%041 + %ul) el + (%ozl + %ul) es, a € Xo,u € Xy

1 2
= <561 + §€2> dp (g, gu)
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1 2 2 3
3 <§€1 + 562> dp (9o, gu) + <ﬁ€1 + 4—762) dp (98, gv) +
(22_161 + 41762) dD (F (Oé, ﬁ) ,gOé) + (%61 + %762) d]D) (F (avﬁ) 7gu)+
1+ dp (u,v)
2 3 2 3
(Fe1+ 1xe2) dp (F (u,v), gu) + (Fe1 + s=e2) dp (F (u,v), ga)
1+ dID) (0[7 B)

where Ay = %el—l—%eg, A= A3=XM=X5=Xg = %el—l—%eg. Note that (%el + %62)+5. (22—161 + 4%62) =
%614-%62 < 1. Therefore, all the conditions of Theorem 3.13 hold. Then F and g have a unique common

coupled fized point and this common fized point of F and g is (0,0).

4. Conclusion

In this work, we have proved the existence of unique common fixed point for contraction mappings
and a coupled coincidence and unique common coupled fixed point for two mappings on hyperbolic valued
metric spaces. We also have discussed some illustrative examples which substantiate the authenticity of
our newly proved results and distinguish them from existing ones. We hope that the results will help the
researchers in the literature of fixed point theory.
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