A New Class of Higher-order Hypergeometric Bernoulli Polynomials Associated with Hermite Polynomials

Waseem A. Khan

Abstract: In this paper, we introduce a new class of higher-order hypergeometric Hermite-Bernoulli numbers and polynomials. We shall provide several properties of higher-order hypergeometric Hermite-Bernoulli polynomials including summation formulae, sums of product identity, recurrence relations.

Key Words: Hermite polynomials, Higher-order hypergeometric Bernoulli polynomials, Higher-order hypergeometric Hermite-Bernoulli polynomials, Recurrence relations.

Contents

1 Introduction

2 Multiple hypergeometric Hermite-Bernoulli numbers and polynomials

3 Summation formulae for higher-order hypergeometric Hermite-Bernoulli polynomials

1. Introduction

The Bernoulli polynomials $B_n(x)$ are defined by the following generating function

$$\left(\frac{t}{e^t - 1} \right) e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!},$$

and $B_n = B_n(0)$ are named Bernoulli numbers. These numbers and polynomials have a long history, which arise from Bernoulli’s calculations of power sums in 1713, that is,

$$\sum_{j=1}^{m} j^n = \frac{B_{n+1}(m+1) - B_{n+1}}{n+1},$$

(see [19], p.5, (2.2)). They have many applications in modern number theory, such as modular forms [11] and Iwasawa theory [9]. A recent book by Arakawa, Ibukiyama and Kaneko [1] give a nice introduction of Bernoulli numbers and polynomials including their connections with zeta functions.

In 1924, Nörlund [14] introduced and studied the generalized higher order Bernoulli polynomials defined by means of the following generating function

$$\left(\frac{t}{e^t - 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} B_n^{(\alpha)}(x) \frac{t^n}{n!},$$

(1.2)

We also have a similar expression of multiple power sums

$$\sum_{l_1, \ldots, l_n=0}^{m-1} (t + l_1 + \cdots + l_n)^k,$$

in terms of higher order Bernoulli polynomials, (see ([12], Lemma 2.1)).

2010 Mathematics Subject Classification: Primary: 11M35, Secondary: 11B68, 33C45.

Howard ([5], [6]) gave a generalization of Bernoulli polynomials by considering the following generating function

$$\frac{t^2 e^{xt} / 2}{e^t - 1 - t} = \sum_{n=0}^{\infty} A_n^{(a)}(x) \frac{t^n}{n!},$$ \hspace{1cm} (1.3)

and more generally, for all positive integer N

$$\frac{t^N}{e^t - T_{N-1}(t)} e^{xt} = \sum_{n=0}^{\infty} B_{N,n}(x) \frac{t^n}{n!},$$ \hspace{1cm} (1.4)

where $T_{N-1}(t)$ is the Taylor polynomial of order $N - 1$ for the exponential function. For the case $N = 1$ and $N = 2$, (1.4) reduces to (1.1) and (1.3), respectively. We see that the polynomials $B_{N,n}(x)$ have rational coefficients.

The polynomials $B_{N,n}(x)$ are named hypergeometric Bernoulli polynomials, while the numbers $B_{N,n} = B_{N,n}(0)$ are named hypergeometric Bernoulli numbers since the generating function $f(t) = \frac{e^{xt} - T_{N-1}(t)}{e^t}$ can be expressed as $_1F_1(1; N + 1; t)$, where the confluent hypergeometric function $_1F_1(a; b; t)$ is defined by

$$_1F_1(a; b; t) = \sum_{n=0}^{\infty} \frac{(a)_n}{(b)_n} \frac{t^n}{n!},$$ \hspace{1cm} (1.5)

and $(a)_n$ is the Pochhammer symbol, (see [20])

$$(a)_0 := 1, \ (a)_n = a(a + 1) \cdots (a + n - 1), (n \in \mathbb{N} := \{1, 2, 3, \cdots \}).$$

For $N, r \in \mathbb{N}$, the higher-order hypergeometric Bernoulli polynomials $B_{N,n}^{(r)}(x)$ are defined by means of the generating function, (see [2], [7], [10])

$$\left(\frac{t^N}{e^t - T_{N-1}(t)}\right)^r e^{xt} = \sum_{n=0}^{\infty} B_{N,n}^{(r)}(x) \frac{t^n}{n!}. \hspace{1cm} (1.6)$$

For $x = 0$ in (1.6), $B_{N,n}^{(r)} = B_{N,n}^{(r)}(0)$ are called the higher order hypergeometric Bernoulli numbers, (see [10], [13]). Again, on taking $r = 1$ in (1.6), $B_{N,n}^{(1)}(x) = B_{N,n}(x)$ are called the hypergeometric Bernoulli polynomials and if we put $x = 0$ in (1.6), $B_{N,n}^{(1)}(0) = B_{N,n}$ are called the hypergeometric Bernoulli numbers.

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) $H_n(x, y)$ ([3], [4]) are defined as

$$H_n(x, y) = n! \sum_{r=0}^{\left[\frac{n}{2}\right]} \frac{y^r x^{n-2r}}{r!(n-2r)!}. \hspace{1cm} (1.7)$$

It is easily seen that

$$H_n(2x, -1) = H_n(x), H_n(x, -\frac{1}{2}) = He_n(x),$$

where $H_n(x)$ and $He_n(x)$ are called the ordinary Hermite polynomials. Also

$$H_n(x, 0) = x^n.$$

The generating function for Hermite polynomial $H_n(x, y)$ ([16]-[18]) are given by

$$e^{xt + yt^2} = \sum_{n=0}^{\infty} H_n(x, y) \frac{t^n}{n!}. \hspace{1cm} (1.8)$$
The object of this paper is to present a systematic account of these families in a unified and generalized form. We develop some elementary properties and derive the implicit summation formulae for the higher-order hypergeometric Hermite-Bernoulli polynomials by using different analytical means on their respective generating functions. The approach given in recent papers of Pathan and Khan ([16]-[18]) has indeed allowed the derivation of implicit summation formulae in the two-variable higher-order hypergeometric Hermite-Bernoulli polynomials. In addition to this, some relevant connections between Hermite and higher-order hypergeometric Bernoulli polynomials and recurrence relations are given.

2. Multiple hypergeometric Hermite-Bernoulli numbers and polynomials

For every positive integer \(N \) and \(r \), the higher-order hypergeometric Hermite-Bernoulli numbers and polynomials \(H^{(r)}_{N,n}(x,y) \) are defined by means of the following generating function defined in a suitable neighborhood of \(t = 0 \):

\[
F_{r,N}(x,y,t) = \frac{1}{1F_1(1;N+1;t)} e^{xt+yt^2} = \left(\frac{t^N}{N!} \right)^r e^{xt} - \sum_{n=0}^{N-1} \frac{t^n}{n!},
\]

(2.1)

For \(x = y = 0 \), \(B^{(r)}_{N,n} = H^{(r)}_{N,n}(0,0) \) are called the higher-order hypergeometric Bernoulli numbers, (see [10, 13]). When \(r = 1 \), we obtain the hypergeometric Hermite-Bernoulli polynomials \(H^{(1)}_{N,n}(x,y) = H^{(1)}_{N,n}(0,0) \) is the hypergeometric Bernoulli numbers, (see [8, 15]). If we put \(N = 1 \), the result reduces to the known result of Pathan and Khan, (see [16]).

Remark 2.1. On setting \(y = 0 \), (2.1) reduces to the known result of Aoki et al. [2] as follows:

\[
F_{r,N}(x,t) = \frac{1}{1F_1(1;N+1;t)} e^{xt} = \left(\frac{t^N}{N!} \right)^r e^{xt} - \sum_{n=0}^{N-1} \frac{t^n}{n!},
\]

(2.2)

In particular in terms of higher-order hypergeometric Bernoulli numbers \(B^{(r)}_{N,n} \) and Hermite polynomials \(H_s(x,y) \), the higher order Hermite-Bernoulli polynomials \(H^{(r)}_{N,n}(x,y) \) are defined as

\[
H^{(r)}_{N,n}(x,y) = \sum_{s=0}^{n} \binom{n}{s} B^{(r)}_{N,n-s} H_s(x,y).
\]

(2.3)

Taking \(r = N = 1 \) and \(x = 0 \) in (2.1) gives the result

\[
\sum_{m=0}^{\infty} \binom{n}{2m} B_{n-2m} y^m = H^{(1)}_{1,n}(0, y).
\]

(2.4)

Using \(e^{it} = \cos t + i \sin t \) and \(N = 1 \), the result reduces to

\[
\sum_{n=0}^{\infty} f(n) = \sum_{n=0}^{\infty} f(2n) + \sum_{n=0}^{\infty} f(2n + 1),
\]

(2.5)
and
\[\left(\frac{it}{e^{it} - 1} \right)^r = \left(\frac{it \cos t - 1 - i \sin t}{(\cos t - 1 + i \sin t)(\cos t - 1 - i \sin t)} \right)^r = \left(\frac{it \cos t - 1 - i \sin t}{(\cos t - 1)^2 + (\sin t)^2} \right)^r = \left(\frac{(t \sin t) + it \cos t - 1}{\Omega} \right)^r, \]

where \(\Omega = (\cos t - 1)^2 + (\sin t)^2 \), together with the definition (2.1) and the result (2.5), we get (see Pathan and Khan [16]):

\[e^{ixt + yt^2} \left(\frac{(t \sin t) + it \cos t - 1}{\Omega} \right)^r = \sum_{n=0}^{\infty} H B_{2n}^{(r)}(x, y) \frac{(-1)^n t^{2n}}{(2n)!} + \sum_{n=0}^{\infty} H B_{2n+1}^{(r)}(x, y) \frac{(-1)^n t^{2n+1}}{(2n + 1)!}, \]

(2.6)

where \(r \geq 1, \Omega = (\cos t - 1)^2 + (\sin t)^2 \).

On setting \(r = 1, x = y = 0 \) in the above results, we get the following well known classical results involving Bernoulli numbers, (see [16]):

\[\frac{t}{2} \cot \left(\frac{t}{2} \right) = \sum_{n=0}^{\infty} B_{2n} \frac{(-1)^n t^{2n}}{(2n)!}, \quad \frac{t}{2} \coth \left(\frac{t}{2} \right) = \sum_{n=0}^{\infty} B_{2n} t^{2n} (2n)! \cdot \]

Theorem 2.2. For \(n \geq 1 \), we have

\[H_n(x, y) = n!(N)! \sum_{m=0}^{n} \sum_{i_1 + \cdots + i_r = n-m} \frac{H B_{N,m}^{(r)}(x, y)}{m!(N + i_1)! \cdots (N + i_r)!}. \]

(2.7)

Proof. From definition (2.1), we have

\[\left(\frac{t}{N} \right)^r e^{xt + yt^2} = \left(\frac{t + N}{(i + N)!} \right)^r \sum_{n=0}^{\infty} H B_{N,n}^{(r)}(x, y) \frac{t^n}{n!} \]

\[= r^N \sum_{i=0}^{\infty} \sum_{i_1 + \cdots + i_r = 1} \frac{t!}{(N + i_1)! \cdots (N + i_r)!} \left(\sum_{m=0}^{\infty} H B_{N,m}^{(r)}(x, y) \frac{t^m}{m!} \right) \]

\[= r^N \sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{i_1 + \cdots + i_r = n-m} \frac{H B_{N,m}^{(r)}(x, y)}{m!(N + i_1)! \cdots (N + i_r)!}. \]

Comparing the coefficients of \(t^n \) on both sides, we get (2.7).

Corollary 2.3. For \(r = 1 \) in (2.7), we get

\[H_n(x, y) = n!(N)! \sum_{m=0}^{n} \left(\frac{n + N}{m} \right) H B_{N,m}(x, y). \]

(2.8)

Corollary 2.4. For \(x = y = 0 \) in (2.7), the result reduces to the known result of Aoki et al. [2] as follows

\[\sum_{m=0}^{n} \sum_{i_1 + \cdots + i_r = n-m} \frac{B_{N,m}^{(r)}}{m!(N + i_1)! \cdots (N + i_r)!} = 0. \]

(2.9)

and \(r = 1 \) in (2.8), the result reduces to (see [7]):

\[\sum_{m=0}^{n} \left(\frac{n + N}{m} \right) B_{N,m}(x, y) = 0. \]

(2.10)
Theorem 2.5. The following relationship holds true:

\[H_n(x, y) = \sum_{m=0}^{n} \binom{n}{m} m! \Gamma(N+1) \frac{H_{B_{N,n-m}}(x, y)}{\Gamma(N+1+m)} \] \hspace{1cm} (2.11)

Proof. Using equations (2.1), (1.5) and (1.8), we have

\[\frac{1}{1 F_1(1; N + 1; t)} e^{xt+yt^2} = \sum_{n=0}^{\infty} H_{B_{N,n}}(x, y) \frac{t^n}{n!} \]

\[e^{xt+yt^2} = \sum_{n=0}^{\infty} \frac{(1)_m}{(N+1)_m} \frac{t^m}{m!} \sum_{n=0}^{\infty} H_{B_{N,n}}(x, y) \frac{t^n}{n!} \]

\[\sum_{n=0}^{\infty} H_n(x, y) \frac{t^n}{n!} = \sum_{m=0}^{\infty} \frac{(1)_m}{(N+1)_m} \frac{t^m}{m!} \sum_{n=0}^{\infty} H_{B_{N,n}}(x, y) \frac{t^n}{n!} \]

\[= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \binom{n}{m} m! \Gamma(N+1) \frac{H_{B_{N,n-m}}(x, y)}{\Gamma(N+1+m)} \frac{t^n}{n!} \]

Comparing the coefficients of \(t^n \) on both sides, we arrive at the obtained result (2.11).

Theorem 2.6. The following relationship holds true:

\[\int_0^1 (1-x)^{N-1} H_{B^{(r)}_{N,n}}(x, y) dx = (N-1)! \sum_{k=0}^{n} \binom{n}{k} \frac{(n-k)!}{(N+n-k)!} H_{B^{(r)}_{N,k}}(0, y). \] \hspace{1cm} (2.12)

Proof. From (2.1), we have

\[\frac{1}{1 F_1(1; N + 1; t)} e^{xt+yt^2} = \sum_{n=0}^{\infty} H_{B^{(r)}_{N,n}}(x, y) \frac{t^n}{n!} \]

\[e^{xt} \sum_{n=0}^{\infty} H_{B^{(r)}_{N,n}}(0, y) \frac{t^n}{n!} = \sum_{n=0}^{\infty} H_{B^{(r)}_{N,n}}(x, y) \frac{t^n}{n!} \]

\[\sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} H_{B^{(r)}_{N,k}}(0, y) x^{n-k} \frac{t^n}{n!} = \sum_{n=0}^{\infty} H_{B^{(r)}_{N,n}}(x, y) \frac{t^n}{n!} \]

Thus, we have

\[H_{B^{(r)}_{N,n}}(x, y) = \sum_{k=0}^{n} \binom{n}{k} H_{B^{(r)}_{N,k}}(0, y) x^{n-k}. \] \hspace{1cm} (2.13)

Therefore, by integrating (2.13) with weight \((1-x)^{N-1} \) and using the result ([20], p.26(48)), we obtain

\[\int_0^1 (1-x)^{N-1} H_{B^{(r)}_{N,n}}(x, y) dx = \sum_{k=0}^{n} \binom{n}{k} H_{B^{(r)}_{N,k}}(0, y) \int_0^1 (1-x)^{N-1} x^{n-k} dx \]

\[= (N-1)! \sum_{k=0}^{n} \binom{n}{k} \frac{(n-k)!}{(N+n-k)!} H_{B^{(r)}_{N,k}}(0, y), \]

which follows from (2.12). This completes the proof.
Theorem 2.7. The following representation for higher-order hypergeometric Hermite-Bernoulli polynomials $H B^{(r)}_{N,n}(x, y)$ involving Hermite-Euler polynomials $H E_n(x, y)$ holds true:

$$H B^{(r)}_{N,n}(x, y) = \frac{1}{2} \left[\sum_{m=0}^{n} \sum_{k=0}^{m} \left(\begin{array}{c} m \\ n \end{array} \right) \left(\begin{array}{c} m \\ k \end{array} \right) H E_{n-m}(x, y) B^{(r)}_{N,m-k} \\
+ \sum_{m=0}^{n} \left(\begin{array}{c} n \\ m \end{array} \right) H E_{n-m}(x, y) B^{(r)}_{N,m} \right].$$

(2.14)

Proof. Using generating function for Hermite-Euler polynomials as follows

$$e^{xt+yt^2} = e^t + \frac{1}{2} \sum_{n=0}^{\infty} H E_n(x, y) \frac{t^n}{n!}, \text{ (see [18])}.$$

Substituting this value of e^{xt+yt^2} in (2.1) gives

$$\sum_{n=0}^{\infty} H B^{(r)}_{N,n}(x, y) \frac{t^n}{n!} = \frac{1}{1F_1(1; N+1; t)^r} e^t + \frac{1}{2} \sum_{n=0}^{\infty} H E_n(x, y) \frac{t^n}{n!}$$

$$= \frac{1}{2} \left[\sum_{n=0}^{\infty} H E_n(x, y) \frac{t^n}{n!} \sum_{m=0}^{n} \sum_{k=0}^{m} B^{(r)}_{N,m-k} \frac{t^m}{(m-k)!k!} \right.\right.$$

$$+ \left[\sum_{n=0}^{\infty} \sum_{m=0}^{n} H E_{n-m}(x, y) B^{(r)}_{N,m} \frac{t^n}{(n-m)!m!} \right] \frac{1}{n!}.$$

Comparing the coefficients of $\frac{t^n}{n!}$ on both sides, we required at the result (2.14).

Theorem 2.8. For $n \geq 0$, $p, q \in \mathbb{R}$, the following formula for higher-order hypergeometric Hermite-Bernoulli polynomials $H B^{(r)}_{N,n}(px, qy)$ holds true:

$$H B^{(r)}_{N,n}(px, qy)$$

$$= n! \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \sum_{j=0}^{k} H B^{(r)}_{N,n-k}(x, y)((p-1)x)^{k-j}((q-1)y)^j \frac{t^n}{(n-k-2j)!j!k!}.$$

(2.15)

Proof. Rewrite the generating function (2.1), we have

$$\sum_{n=0}^{\infty} H B^{(r)}_{N,n}(px, qy) \frac{t^n}{n!}$$

$$= \frac{1}{1F_1(1; N+1; t)^r} e^{xt+yt^2} e^{(p-1)x} e^{(q-1)y} t^2$$

(2.16)
For $n \geq 0$, $p, q \in \mathbb{R}$ and $x, y \in \mathbb{C}$, we have

$$H B_{N,n}^{(r)}(px, qy) = \sum_{k=0}^{n} \binom{n}{k} H B_{N,n-k}^{(r)}(x, y) H_k((p-1)x, (q-1)y). \quad (2.17)$$

Proof. By using (2.16) and (1.8), we can easily derive (2.17). We omit the proof. \qed

3. Summation formulae for higher-order hypergeometric Hermite-Bernoulli polynomials

In this section, we derive the summation formula, the sum of the product of identity and recurrence relations. First, we prove the following results involving higher-order hypergeometric Hermite-Bernoulli polynomials $H B_{N,n}^{(r)}(x, y)$.

Theorem 3.1. The following implicit summation formulae for higher-order hypergeometric Hermite-Bernoulli polynomials $H B_{N,n}^{(r)}(x, y)$ holds true:

$$H B_{N,k+l}^{(r)}(z, y) = \sum_{n,p=0}^{k,l} \frac{k! l! ((z-x)^{n+p} H B_{N,k+l-p-n}^{(r)}(x, y))}{(k-n)!(l-p)!n!p!}. \quad (3.1)$$

Proof. We replace t by $t + u$ and rewrite the generating function (2.1) as

$$\frac{1}{1+q} \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(x, y) \frac{t^k u^l}{k! l!} = e^{-(t+u)x} \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(x, y) \frac{t^k u^l}{k! l!}. \quad (3.2)$$

Replacing x by z in the above equation and equating the resulting equation to the above equation, we get

$$e^{(z-x)(t+u)} \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(x, y) \frac{t^k u^l}{k! l!} = \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(z, y) \frac{t^k u^l}{k! l!}. \quad (3.3)$$
On expanding exponential function (3.3) gives

\[
\sum_{M=0}^{\infty} \frac{[z - x](t + u)^M}{M!} \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(x,y) \frac{t^k u^l}{k! l!} = \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(z,y) \frac{t^k u^l}{k! l!},
\]

(3.4)

which on using formula ([20], p.52(2))

\[
\sum_{M=0}^{\infty} f(M) \frac{(x + y)^M}{M!} = \sum_{n,m=0}^{\infty} f(n + m) \frac{x^n y^m}{n! m!},
\]

(3.5)

in the left hand side becomes

\[
\sum_{n,p=0}^{\infty} \frac{(z - x)^{n+p}}{n!p!} \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(x,y) \frac{t^k u^l}{k! l!} = \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(z,y) \frac{t^k u^l}{k! l!}.
\]

(3.6)

Now replacing \(k \) by \(k - n \), \(l \) by \(l - p \) and using the lemma ([20], p.100(1)) in the left hand side of (3.6), we get

\[
\sum_{n,p=0}^{\infty} \sum_{k,l=0}^{\infty} \frac{(z - x)^{n+p}}{n!p!} H B_{N,k+l-n-p}^{(r)}(x,y) \frac{t^k u^l}{(k-n)!(l-p)!} = \sum_{k,l=0}^{\infty} H B_{N,k+l}^{(r)}(z,y) \frac{t^k u^l}{k! l!}.
\]

(3.7)

Finally on equating the coefficients of the like powers of \(t \) and \(u \) in the above equation, we get the required result.

Corollary 3.2. On taking \(l = 0 \) in Theorem 3.1, the result reduces to

\[
H B_{N,k}^{(r)}(z,y) = \sum_{n=0}^{k} \binom{k}{n} (z - x)^n H B_{N,k-n}^{(r)}(x,y).
\]

(3.8)

Corollary 3.3. On replacing \(z \) by \(z + x \) and setting \(y = 0 \) in Theorem (3.1), we get the following result involving higher-order hypergeometric Hermite-Bernoulli polynomials of one variable:

\[
H B_{N,k+l}^{(r)}(z + x) = \sum_{n,m=0}^{k,l} \frac{k!l! z^{n+m} H B_{N,k+l-m-n}^{(r)}(x)}{(k-n)!(l-m)!n!m!},
\]

(3.9)

whereas by setting \(z = 0 \) in Theorem 3.1, we get another result involving hypergeometric Hermite-Bernoulli polynomials of one and two variables:

\[
H B_{N,k+l}^{(r)}(y) = \sum_{n,m=0}^{k,l} \frac{k!l! (-x)^{n+m} H B_{N,k+l-m-n}^{(r)}(x,y)}{(k-n)!(l-m)!n!m!}.
\]

(3.10)

Theorem 3.4. The following implicit summation formulae for higher-order hypergeometric Hermite-Bernoulli polynomials \(H B_{N,n}^{(r)}(x,y) \) holds true:

\[
H B_{N,n}^{(r)}(x,y) = \sum_{m=0}^{n} \binom{n}{m} B_{N,n-m}^{(r)}(x-z) H_m(z,y).
\]

(3.11)

Proof. By exploiting the generating function (2.1) and using (1.8), we can write equation (2.1) as

\[
\frac{1}{\Gamma(1; N + 1; t)} e^{(x-z)t} e^{zt+y^2} = \sum_{n=0}^{\infty} B_{N,n}^{(r)}(x-z) \frac{t^n}{n!} \sum_{m=0}^{\infty} H_m(z,y) \frac{t^m}{m!}.
\]
Replacing \(n \) by \(n - m \) in above equation and using lemma ([20], p.101(1)), we get

\[
\sum_{n=0}^{\infty} H B_{N,n}^{(r)}(x,y) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \sum_{m=0}^{n} B_{N,n-m}^{(r)}(x-z)H_m(z,y) \frac{t^n}{(n-m)!m!}.
\]

On equating the coefficients of the like powers of \(t \), we get (3.11).

Corollary 3.5. Letting \(z = x \) in Theorem 3.2 gives

\[
H B_{N,n}^{(r)}(x,y) = \sum_{m=0}^{n} \binom{n}{m} B_{N,n-m}^{(r)}H_m(x,y).
\]

Theorem 3.6. The following implicit summation formulae for higher-order hypergeometric Hermite-Bernoulli polynomials \(H B_{N,n}^{(r)}(x,y) \) holds true:

\[
H B_{N,n}^{(r)}(x+1,y) = \sum_{m=0}^{n} \binom{n}{m} H B_{N,n-m}^{(r)}(x,y).
\]

Proof. Using the generating function (2.1), we have

\[
\sum_{n=0}^{\infty} H B_{N,n}^{(r)}(x+1,y) \frac{t^n}{n!} - \sum_{n=0}^{\infty} H B_{N,n}^{(r)}(x,y) \frac{t^n}{n!} = \frac{1}{1F_1(1; N + 1; t^r)(e^t - 1)e^{zt+y2t}}
\]

\[
= \sum_{n=0}^{\infty} H B_{N,n}^{(r)}(x,y) \frac{t^n}{n!} \left(\sum_{m=0}^{\infty} \frac{t^m}{m!} - 1 \right)
\]

\[
= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \binom{n}{m} H B_{N,n-m}^{(r)}(x,y) \frac{t^n}{n!} - \sum_{n=0}^{\infty} H B_{N,n}^{(r)}(x,y) \frac{t^n}{n!}.
\]

Finally equating the coefficients of the like powers of \(t \), we get (3.13). \(\square \)

Theorem 3.7. The following implicit summation formula involving higher-order hypergeometric Hermite-Bernoulli polynomials \(H B_{N,n}^{(r)}(x,y) \) holds true:

\[
H B_{N,n}^{(r)}(z+x,u+y) = \sum_{m=0}^{n} \binom{n}{m} H B_{N,n-m}^{(r)}(x,y)H_m(z,u).
\]

Proof. We replace \(x \) by \(x+z \) and \(y \) by \(y+u \) in (2.1), use (1.2) and rewrite the generating function as

\[
\frac{1}{1F_1(1; N + 1; t^r)e^{zt+y2t}} = \sum_{n=0}^{\infty} H B_{N,n}^{(r)}(x,y) \frac{t^n}{n!} \sum_{m=0}^{\infty} H_m(x,y) \frac{t^m}{m!}
\]

\[
= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} H B_{N,n}^{(r)}(x,y)H_m(x,y) \frac{t^{n+m}}{n!m!}.
\]

Replacing \(n \) by \(n - m \) in above equation, we have

\[
= \sum_{n=0}^{\infty} \sum_{m=0}^{n} H B_{N,n-m}^{(r)}(x,y)H_m(x,y) \frac{t^n}{(n-m)!m!}.
\]

Comparing the coefficients of \(t \) on both sides, we get the result (3.14). \(\square \)
Theorem 3.8. The following implicit summation formula involving higher-order hypergeometric Hermite-Bernoulli polynomials $H^{(r)}_{N,n}(x,y)$ holds true:

$$H^{(r)}_{N,n}(y,x) = \sum_{k=0}^\infty B^{(r)}_{N,n-2k}(y) \frac{x^k}{(n-2k)!k!}.$$ \hspace{1cm} (3.15)

Proof. We replace x by y and y by x in equation (2.1) to get

$$\sum_{n=0}^\infty H^{(r)}_{N,n}(y,x) \frac{t^n}{n!} = \sum_{n=0}^\infty B^{(r)}_{N,n-2k}(y) \frac{t^n}{n!} \sum_{k=0}^\infty \frac{x^k t^{2k}}{k!}.$$ \hspace{1cm} (3.16)

Now replacing n by $n-2k$ and comparing the coefficients of t, we get the result (3.15). \hfill \Box

Theorem 3.9. The following implicit summation formula involving higher-order hypergeometric Hermite-Bernoulli polynomials $H^{(r)}_{N,n}(x,y)$ holds true:

$$H^{(r)}_{N,n}(z,u) = \sum_{m=0}^n \binom{n}{m} H_m(\alpha - x + z, \beta - y + u) H^{(r)}_{N,n-m}(x - \alpha, y - \beta), \hspace{1cm} (3.17)$$

and

$$H^{(r)}_{N,n}(z - \alpha - x, u - \beta + y) = \sum_{m=0}^n \binom{n}{m} H_m(z,u) H^{(r)}_{N,n-m}(x - \alpha, y - \beta). \hspace{1cm} (3.18)$$

Proof. By exploiting the generating function (2.1), we can write

$$\sum_{n=0}^\infty H^{(r)}_{N,n}(z,u) \frac{t^n}{n!} = \frac{1}{1F_1(1;N+1;t)^r} e^{zt+ut^2}$$

$$= e^{-(x-z)\alpha - (y-u)\beta} t^{(x-z)\alpha + (y-u)\beta} \sum_{n=0}^\infty H^{(r)}_{N,n}(x - \alpha, y - \beta) \frac{t^n}{n!},$$

which yields

$$\sum_{n=0}^\infty H^{(r)}_{N,n}(x,y) \frac{t^n}{n!} = \sum_{m=0}^n H_m(\alpha - x + z, \beta - y + u) \frac{t^m}{m!} \sum_{n=0}^\infty H^{(r)}_{N,n}(x - \alpha, y - \beta) \frac{t^n}{n!}.$$ \hspace{1cm} (3.19)

Replacing n by $n-m$ in above equation and comparing the coefficients of t, we obtain (3.17). On replacing z by $z - \alpha - x$ and u by $u - \beta + y$ in (3.16), we get (3.17). \hfill \Box

Corollary 3.10. On setting $z = u = 0$ in (3.16), we have the following result for higher-order hypergeometric Hermite-Bernoulli polynomials $H^{(r)}_{N,n}(x,y)$ holds true:

$$B^{(r)}_{N,n} = \sum_{m=0}^n \binom{n}{m} H_m(\alpha - x, \beta - y) H^{(r)}_{N,n-m}(x - \alpha, y - \beta).$$
Theorem 3.11. The following implicit summation formula involving higher-order hypergeometric Hermite-Bernoulli polynomials $H_{N,n}(x, y)$ holds true:

$$
\sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{B^{(r)}_{N,n-2m}(x)B^{(r)}_{N,m}(y)}{(n-2m)!m!} = \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{H_{N,n-2m}(x, y)B^{(r)}_{N,m}}{(n-2m)!m!},
$$

(3.18)

and

$$
\sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{B^{(r)}_{N,n-2m}(x)B^{(r)}_{N,m}(y)}{(n-2m)!m!} = \sum_{k=0}^{n} \sum_{m=0}^{\left\lfloor \frac{n-k}{2} \right\rfloor} \frac{B^{(r)}_{N,n-k-2m}B^{(r)}_{N,m}H_{k}(x, y)}{(n-k-2m)!mk!}.
$$

(3.19)

Proof. Consider the definition of (2.1), we have

$$
\sum_{n=0}^{\infty} B^{(r)}_{N,n}(y) \frac{t^{2n}}{n!} = \frac{1}{1F_{1}(1; N + 1; t^{2})} e^{yt^{2}},
$$

(3.20)

where x is replaced by y and t is replaced by t^{2} in (2.1). On multiplying (2.1) and (3.20), we have

$$
\sum_{n=0}^{\infty} B^{(r)}_{N,n}(x) \frac{t^{n}}{n!} \sum_{m=0}^{\infty} B^{(r)}_{N,m}(y) \frac{t^{2m}}{m!} = \frac{1}{1F_{1}(1; N + 1; t)} \frac{1}{1F_{1}(1; N + 1; t^{2})} e^{xt+yt^{2}},
$$

(3.21)

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} B^{(r)}_{N,n-2m}(x)B^{(r)}_{N,m}(y) \frac{t^{n}}{(n-2m)!m!} = \sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} B^{(r)}_{N,n}(x, y) \frac{t^{n}}{n!} \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} B^{(r)}_{N,m} \frac{t^{2m}}{m!}.
$$

Using the Cauchy product and comparing the coefficients of t, we obtain (3.18). Another way of defining the right hand side of equation (3.21) is suggested by replacing $e^{xt+yt^{2}}$ by its series representation

$$
\sum_{n=0}^{\infty} B^{(r)}_{N,n}(x) \frac{t^{n}}{n!} \sum_{m=0}^{\infty} B^{(r)}_{N,m}(y) \frac{t^{2m}}{m!} = \frac{1}{1F_{1}(1; N + 1; t)} \frac{1}{1F_{1}(1; N + 1; t^{2})} e^{xt+yt^{2}},
$$

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} B^{(r)}_{N,n-2m}(x)B^{(r)}_{N,m}(y) \frac{t^{n}}{(n-2m)!m!} = \sum_{k=0}^{\infty} H_{k}(x, y) \frac{t^{k}}{k!} \sum_{n=0}^{\infty} \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} B^{(r)}_{N,n} \frac{t^{n}}{n!} \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} B^{(r)}_{N,m} \frac{t^{2m}}{m!}.
$$

Using the Cauchy product and comparing the coefficients of t, we get (3.19). □

Corollary 3.12. For $y = 0$ in Theorem 3.7, we have the following result for higher-order hypergeometric Bernoulli polynomials $H_{N,n}(x, y)$ holds true:

$$
\sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{B^{(r)}_{N,n-2m}(x)B^{(r)}_{N,m}}{(n-2m)!m!} = \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{H_{N,n-2m}(x, 0)B^{(r)}_{N,m}}{(n-2m)!m!},
$$

and

$$
\sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{B^{(r)}_{N,n-2m}(x)B^{(r)}_{N,m}}{(n-2m)!m!} = \sum_{k=0}^{n} \sum_{m=0}^{\left\lfloor \frac{n-k}{2} \right\rfloor} \frac{B^{(r)}_{N,n-k-2m}B^{(r)}_{N,m}y^{k}}{(n-k-2m)!mk!}.
$$

Theorem 3.13. The following implicit summation formula involving higher-order hypergeometric Hermite-Bernoulli polynomials $H_{N,n}(x, y)$ holds true:

$$
\sum_{m=0}^{n} \sum_{r=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{B^{(k)}_{N,m,n}(x, y)}{(n-m-2r)!x^{n-m-2r}} = \sum_{m=0}^{n} \frac{B^{(k)}_{N,m}H_{N,n-m}(x, y)}{x^{m}m!(n-m-2r)!}.n = \sum_{m=0}^{n} \frac{B^{(k)}_{N,m}H_{N,n-m}(x, y)}{x^{m}m!(n-m-2r)!}.
$$

(3.22)
Proof. On replacing t by $\frac{1}{x}$ and r by k, we can write equation (2.1) as
\[
\sum_{n=0}^{\infty} H_{N,n}^{(k)}(x, y) \frac{t^n}{x^n n!} = \frac{1}{1F_1(1; N + 1; \frac{1}{x})} e^{t+y \frac{x^2}{2}}.
\] (3.23)

Now interchanging x and y, we have
\[
\sum_{n=0}^{\infty} H_{N,n}^{(k)}(y, x) \frac{t^n}{y^n n!} = \frac{1}{1F_1(1; N + 1; \frac{1}{y})} e^{t+x \frac{y^2}{2}}.
\] (3.24)

Comparison of (3.23) and (3.24) yields
\[
e^{\frac{x^2}{2y^2} - \frac{y^2}{2x^2}} \frac{1}{1F_1(1; N + 1; \frac{1}{x})} \sum_{n=0}^{\infty} H_{N,n}^{(k)}(x, y) \frac{t^n}{x^n n!}
= \frac{1}{1F_1(1; N + 1; \frac{1}{y})} \sum_{n=0}^{\infty} H_{N,n}^{(k)}(y, x) \frac{t^n}{y^n n!}
= \sum_{m=0}^{\infty} B_{N,m}^{(k)} \frac{t^m}{x^m m!} \sum_{n=0}^{\infty} H_{N,n}^{(k)}(x, y) \frac{t^n}{x^n n!}.
\]

Using the Cauchy product and comparing the coefficients of t, we get (3.22). \qed

Theorem 3.14. The following implicit summation formula involving higher-order hypergeometric Hermite-Bernoulli polynomials $H_{N,n}^{(r)}(x, y)$ holds true:
\[
H_{N,n}^{(r)}(w, u)H_{N,m}^{(r)}(W, U) = \sum_{s,k=0}^{m,n} \binom{n}{s} \binom{m}{k} H_s(w - x, u - y)H_{N,n-s}^{(r)}(x, y) \times H_k(W - X, U - Y)H_{N,m-k}^{(r)}(X, Y).
\] (3.25)

Proof. Consider the product of higher-order hypergeometric Hermite-Bernoulli polynomials, equation (2.1) in the following form
\[
\frac{1}{1F_1(1; N + 1; t)} e^{xt} \frac{1}{1F_1(1; N + 1; T)} e^{yT^2}
= \sum_{n=0}^{\infty} H_{N,n}^{(r)}(x, y) \frac{t^n}{n!} \sum_{m=0}^{\infty} H_{N,m}^{(r)}(X, Y) \frac{T^m}{m!}.
\] (3.26)

Replacing x by w, y by u, X by W and Y by U in (3.26) and equating the resultant equation to itself, we find
\[
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} H_{N,n}^{(r)}(w, u)H_{N,m}^{(r)}(W, U) \frac{t^n T^m}{n! m!}
= \exp \left((w - x)t + (u - y)t^2\right) \exp \left((W - X)T + (U - Y)T^2\right)
\times \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} H_{N,n}^{(r)}(x, y) \frac{t^n}{n!} \sum_{m=0}^{\infty} H_{N,m}^{(r)}(X, Y) \frac{T^m}{m!}.
\]
\[\sum_{n=0}^{\infty} \sum_{s=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} H_s(w - x, u - y) H_{N,n}^{(r)}(x, y) \frac{t^{n+s}}{n!s!} \times H_k(W - X, U - Y) H_{N,m}^{(r)}(X, Y) \frac{T^{m+k}}{m!k!}. \]

Finally, replacing \(n \) by \(n - s \) and \(m \) by \(m - k \) in the r.h.s. of the above equation and then equating the coefficients of like powers of \(t \) and \(T \), we get assertion (3.25) of Theorem (3.8). \(\square \)

Remark 3.15. Replacing \(u \) by \(y \) and \(U \) by \(Y \) in assertion (3.25) of Theorem (3.9), we deduce the following consequence of Theorem (3.9).

Corollary 3.16. The following implicit summation formula involving higher-order hypergeometric Hermite-Bernoulli polynomials \(H_{N,n}^{(r)}(x, y) \) holds true:

\[H_{N,n}^{(r)}(w, y) H_{N,m}^{(r)}(W, Y) = \sum_{s,k=0}^{m,n} \binom{n}{s} \binom{m}{k} (w - x)^s H_{N,n-s}^{(r)}(x, y) \times (W - X)^k H_{N,m-k}^{(r)}(X, Y). \]

Acknowledgments

The author Waseem A. Khan thanks to Prince Mohammad Bin Fahd University, Saudi Arabia for providing facilities and support.

References

Waseem A. Khan,
Department of Mathematics and Natural Sciences
Prince Mohammad Bin Fahd University
P.O Box 1664, Al Khobar 31952, Saudi Arabia.
E-mail address: wkhan1@pmu.edu.sa