

Twisted Hessian Curves over the Ring $\mathbb{F}_q[e], e^2 = e^*$

Elhamam Moha Ben Taleb, Abdelhakim Chillali, Lhoussain El Fadil

ABSTRACT: Let $\mathbb{F}_q[e]$ be a finite field of q elements, where q is a power of a prime number p. In this paper, we study the Twisted Hessian curves over the ring $\mathbb{F}_q[e]$, where $e^2=e$, denoted by $H_{a,d}(\mathbb{F}_q[e])$; $(a,d)\in(\mathbb{F}_q[e])^2$. Using the Twisted Hessian equation, we define the Twisted Hessian curves $H_{a,d}(\mathbb{F}_q[e])$ and we will show that $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q)$ and $H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$ are two Twisted Hessian curves over the field \mathbb{F}_q , where π_0 and π_1 are respectively the canonical projection and the sum projection of coordinates from $\mathbb{F}_q[e]$ to \mathbb{F}_q . Precisely, we give a bijection between the sets $H_{a,d}(\mathbb{F}_q[e])$ and $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q)\times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$.

Key Words: Finite field, Finite ring, Local ring, Twisted Hessian curve.

Contents

1 Introduction 1
2 The ring $\mathbb{F}_q[e], e^2 = e$ 1
3 Twisted Hessian curves over the Ring $\mathbb{F}_q[e], e^2 = e$ 2
4 Classification of elements in $H_{a,d}(\mathbb{F}_q[e])$ 4
5 Cryptography applications 6
6 Conclusion 6

1. Introduction

Let \mathbb{K} be a finite field of order $q=p^n$ where n is a positive integer and p is a prime number. Daniel, Chitchanok, David and Tanja (2015), in [1], has studied the Twisted Hessian curves $H_{a,d}(\mathbb{K})$ defined over the field \mathbb{K} . A. Boulbot et al, study the arithmetic of the ring $\mathbb{F}_q[e]$, $e^2=e$, in particular we show that this ring is not a local (see [2]). In section 3, we define the Twisted Hessian curves $H_{a,d}(\mathbb{F}_q[e])$ over this ring, we study discriminant and the Twisted Hessian equation which allows us to define two Twisted Hessian curves: $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q)$ and $H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$ defined over the finite field \mathbb{F}_q . In the next of this section, we classify the elements of $H_{a,d}(\mathbb{F}_q[e])$ and we give a bijection between the two sets: $H_{a,d}(\mathbb{F}_q[e])$ and $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$, where π_0 and π_1 are surjective morphisms of rings defined by:

$$\pi_0: \mathbb{F}_q[e] \to \mathbb{F}_q \text{ and } \pi_1: \mathbb{F}_q[e] \to \mathbb{F}_q$$

 $x_0 + x_1 e \mapsto x_0$ $x_0 + x_1 e \mapsto x_0 + x_1$

2. The ring
$$F_q[e], e^2 = e$$

 \mathbb{F}_q is a finite field of order $q=p^n$ where n is a positive integer and p is a prime number. The ring $\mathbb{F}_q[e], e^2=e$ can be constructed as an extension of the ring \mathbb{F}_q by using the quotient ring of $\mathbb{F}_q[X]$ by the polynomial X^2-X . An element $X\in\mathbb{F}_q[e]$ is represented by $X=x_0+x_1e$ where $(x_0,x_1)\in\mathbb{F}_q$. The arithmetic operations in $\mathbb{F}_q[e]$ can be decomposed into operations in \mathbb{F}_q and they are computed as follows:

$$X + Y = (x_0 + y_0) + (x_1 + y_1)e$$
$$X \cdot Y = (x_0 y_0) + (x_0 y_1 + x_1 y_0 + x_1 y_1)e,$$

^{*} Sidi Mohamed Ben Abdellah University, Morocco 2010 Mathematics Subject Classification: 11T71, 14G50, 94A60. Submitted January 21, 2020. Published April 24, 2020

where $X = x_0 + x_1 e$ and $Y = y_0 + y_1 e$.

We can see ([2]), where the authors have proved the following results:

- $(\mathbb{F}_q[e], +, .)$ is a finite unitary commutative ring.
- $\mathbb{F}_q[e]$ is a vector space over \mathbb{F}_q of dimension 2 and $\{1, e\}$ is it's basis.
- $X.Y = (x_0y_0) + ((x_0 + x_1)(y_0 + y_1) x_0y_0)e$.
- $X^2 = x_0^2 + ((x_0 + x_1)^2 x_0^2)e$.
- $X^3 = x_0^3 + ((x_0 + x_1)^3 x_0^3)e$.
- Let $X = x_0 + x_1 e \in \mathbb{F}_q[e]$, then $X \in (\mathbb{F}_q[e])^{\times}$ if and only if $x_0 \neq 0$ and $x_0 + x_1 \neq 0$. The inverse is given by: $X^{-1} = x_0^{-1} + ((x_0 + x_1)^{-1} x_0^{-1})e$.
 - Let $X \in \mathbb{F}_q[e]$, then X is not invertible if and only if X = xe or X = x xe, such that $x \in \mathbb{F}_q$.
 - $\mathbb{F}_q[e]$ is a non local ring.
 - π_0 and π_1 are two surjective morphisms of rings.

3. Twisted Hessian curves over the Ring $\mathbb{F}_q[e], e^2 = e$

In this section the elements X, Y, Z, a and d are in the ring $\mathbb{F}_q[e]$ such that $X = x_0 + x_1 e, Y = y_0 + y_1 e, Z = z_0 + z_1 e, a = a_0 + a_1 e$ and $d = d_0 + d_1 e$ where $x_0, x_1, y_0, y_1, z_0, z_1, a_0, a_1, d_0$ and d_1 are in \mathbb{F}_q . We define an Twisted Hessian curve over the Ring $\mathbb{F}_q[e]$, as a curve in the projective space $P^2(\mathbb{F}_q[e])$, which is given by the equation:

$$aX^3 + Y^3 + Z^3 = dXYZ$$

where the discriminant $\Delta = a(27a - d^3)$ is invertible in $\mathbb{F}_q[e]$. We denote this curves by: $H_{a,d}(\mathbb{F}_q[e])$.

Remark 3.1.

$$\pi_0(\Delta) = a_0(27a_0 - d_0^3),$$

$$\pi_1(\Delta) = (a_0 + a_1)(27(a_0 + a_1) - (d_0 + d_1)^3).$$

Proposition 3.1. Let $\Delta_0 = \pi_0(\Delta)$ and $\Delta_1 = \pi_1(\Delta)$, then $\Delta = \Delta_0 + (\Delta_1 - \Delta_0)e$

Proof. We have:

$$\Delta = a(27a - d^{3})$$

$$= (a_{0} + a_{1}e)(27(a_{0} + a_{1}e) - (d_{0} + d_{1}e)^{3})$$

$$= 27a_{0}(a_{0} + a_{1}e) - a_{0}(d_{0} + d_{1}e)^{3} + 27a_{1}e(a_{0} + a_{1}e) - a_{1}e(d_{0} + d_{1}e)^{3}$$

$$= 27a_{0}^{2} + 27a_{0}a_{1}e - a_{0}d_{0}^{3} - a_{0}(d_{0} + d_{1})^{3}e + a_{0}d_{0}^{3}e + 27a_{0}a_{1} + 27a_{1}^{2}e - a_{1}d_{0}^{3}e - a_{1}(d_{0} + d_{1})^{3}e + a_{1}d_{0}^{3}e$$

$$= a_{0}(27a_{0} - d_{0}^{3}) + ((a_{0} + a_{1})(27(a_{0} + a_{1}) - (d_{0} + d_{1})^{3}) - a_{0}(27a_{0} - d_{0}^{3}))e$$

$$= \Delta_{0} + (\Delta_{1} - \Delta_{0})e.$$

Corollary 3.2. Δ is invertible in $\mathbb{F}_q[e]$ if and only if $\Delta_0 \neq 0$ and $\Delta_1 \neq 0$.

Using corrolary 3.2, if Δ is invertible in $\mathbb{F}_q[e]$, then $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q)$ and $H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$ are two Twisted Hessian curves over the finite field \mathbb{F}_q , and we notice:

$$H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) = \{ [x:y:z] \in P^2(\mathbb{F}_q) \mid a_0 x^3 + y^3 + z^3 = d_0 x y z \}$$

$$H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q) = \{ [x:y:z] \in P^2(\mathbb{F}_q) \mid (a_0 + a_1) x^3 + y^3 + z^3 = (d_0 + d_1) x y z \}$$

Proposition 3.2. Let X, Y and Z in $\mathbb{F}_q[e]$, then $[X:Y:Z] \in P^2(\mathbb{F}_q[e])$ if and only if $[\pi_0(X):\pi_0(Y):\pi_0(Z)] \in P^2(\mathbb{F}_q)$ and $[\pi_1(X):\pi_1(Y):\pi_1(Z)] \in P^2(\mathbb{F}_q)$.

Proof. Suppose that $[X:Y:Z] \in P^2(\mathbb{F}_q[e])$, then there exists $(U,V,W) \in (\mathbb{F}_q[e])^3$ such that UX + VY + WZ = 1. Hence for $i \in \{0,1\}$, we have:

 $\pi_i(U)\pi_i(X) + \pi_i(V)\pi_i(Y) + \pi_i(W)\pi_i(Z) = 1$, so $(\pi_i(X), \pi_i(Y), \pi_i(Z)) \neq (0, 0, 0)$, which proves that $[\pi_i(X) : \pi_i(Y) : \pi_i(Z)] \in P^2(\mathbb{F}_q)$.

Reciprocally, let $[\pi_i(X) : \pi_i(Y) : \pi_i(Z)] \in P^2(\mathbb{F}_q)$, where $i \in \{0, 1\}$.

Suppose that $x_0 \neq 0$, then we distinguish between two case of $x_0 + x_1$:

- a) if $x_0 + x_1 \neq 0$, then X is invertible in $\mathbb{F}_q[e]$, so $[X:Y:Z] \in P^2(\mathbb{F}_q[e])$.
- **b)** if $x_0 + x_1 = 0$, then $y_0 + y_1 \neq 0$ or $z_0 + z_1 \neq 0$.
- i) If $y_0 + y_1 \neq 0$ then:

$$x_0 + (y_0 + y_1 - x_0)e = x_0 - x_0e + (y_0 + y_1)e = X + eY \in (\mathbb{F}_q[e])^{\times},$$

so there exists $U \in \mathbb{F}_q[e]$, such that UX + eUY = 1, hence $[X:Y:Z] \in P^2(\mathbb{F}_q[e])$.

ii) If $z_0 + z_1 \neq 0$ then $X + eZ \in (\mathbb{F}_q[e])^{\times}$, so $[X : Y : Z] \in P^2(\mathbb{F}_q[e])$.

We can use the same proof if y_0 not 0 or z_0 not 0.

Theorem 3.3. Let X, Y and Z in $\mathbb{F}_q[e]$, then $[X:Y:Z] \in H_{a,d}(\mathbb{F}_q[e])$ if and only if $[\pi_i(X):\pi_i(Y):\pi_i(Z)] \in H_{\pi_i(a),\pi_i(d)}(\mathbb{F}_q)$, for $i \in \{0,1\}$.

Proof. We have:

$$aX^{3} = (a_{0} + a_{1}e)(x_{0} + x_{1}e)^{3}$$

$$= (a_{0} + a_{1}e)(x_{0}^{3} + ((x_{0} + x_{1})^{3} - x_{0}^{3})e)$$

$$= a_{0}x_{0}^{3} + a_{0}(x_{0} + x_{1})^{3}e - a_{0}x_{0}^{3}e + a_{1}x_{0}^{3}e + a_{1}(x_{0} + x_{1})^{3}e - a_{1}x_{0}^{3}e$$

$$= a_{0}x_{0}^{3} + (a_{0} + a_{1})(x_{0} + x_{1})^{3}e - a_{0}x_{0}^{3}e$$

$$Y^{3} = y_{0}^{3} + ((y_{0} + y_{1})^{3} - y_{0}^{3})e$$

$$Z^{3} = z_{0}^{3} + ((z_{0} + z_{1})^{3} - z_{0}^{3})e$$

$$dXYZ = (d_{0} + d_{1}e)(x_{0} + x_{1}e)(y_{0} + y_{1}e)(z_{0} + z_{1}e)$$

$$= d_{0}x_{0}y_{0}z_{0} + d_{0}x_{0}y_{0}z_{1}e + d_{0}x_{0}y_{1}z_{0}e + d_{0}x_{0}y_{1}z_{1}e + d_{1}x_{0}y_{0}z_{0}e + d_{1}x_{0}y_{0}z_{1}e$$

$$+ d_{0}x_{1}y_{1}z_{0}e + d_{0}x_{1}y_{1}z_{1}e + d_{1}x_{1}y_{0}z_{0}e + d_{1}x_{1}y_{1}z_{0}e + d_{1}x_{1}y_{1}z_{0}$$

Or $\{1,e\}$ is a basis \mathbb{F}_q vector space $\mathbb{F}_q[e]$, then: $aX^3+Y^3+Z^3=dXYZ$ if and only if $a_0x_0^3+y_0^3+z_0^3=d_0x_0y_0z_0$ and $(a_0+a_1)(x_0+x_1)^3+(y_0+y_1)^3+(z_0+z_1)^3=(d_0+d_1)(x_0+x_1)(y_0+y_1)(z_0+z_1)$.

Corollary 3.4. The mappings $\tilde{\pi_0}$ and $\tilde{\pi_1}$ are well defined, where $\tilde{\pi_i}$ for $i \in \{0,1\}$ is given by:

$$\begin{array}{cccc} \tilde{\pi_i} & : & H_{a,d}(\mathbb{F}_q[e]) & \to & H_{\pi_i(a),\pi_i(d)}(\mathbb{F}_q) \\ & & [X:Y:Z] & \mapsto & [\pi_i(X):\pi_i(Y):\pi_i(Z)] \end{array}$$

Proof. From the previous theorem, we have $[\pi_i(X):\pi_i(Y):\pi_i(Z)]\in H_{\pi_i(a),\pi_i(d)}(\mathbb{F}_q)$ If [X:Y:Z]=[X':Y':Z'], then there exist $\lambda\in(\mathbb{F}_q)^{\times}$ such that: $X'=\lambda X,\,Y'=\lambda Y$ and $Z'=\lambda Z$, then:

$$\begin{split} \tilde{\pi_i}([X':Y':Z']) &= [\pi_i(X'):\pi_i(Y'):\pi_i(Z')] \\ &= \underbrace{[\pi_i(\lambda)\pi_i(X):\pi_i(\lambda)\pi_i(Y):\pi_i(\lambda)\pi_i(Z)]}_{\pi_i(\lambda) = \lambda \in (\mathbb{F}_q)^\times} \\ &= [\pi_i(X):\pi_i(Y):\pi_i(Z)] \\ &= \tilde{\pi_i}([X:Y:Z]). \end{split}$$

4. Classification of elements in $H_{a,d}(\mathbb{F}_q[e])$

In this subsection, we assume that -3 is not a square in \mathbb{F}_q , we will classify the elements of the Twisted Hessian curves into three types, depending on whether the projective coordinate X is invertible or not. The result is in the following proposition.

Proposition 4.1. The elements of $H_{a,d}(\mathbb{F}_q[e])$ are of the form:

- $[1: y_0 + y_1e: z_0 + z_1e]$
- [0:-1:1]
- \bullet [$e:-1+y_1e:1+z_1e$]
- $[1-e:-1-y_1+y_1e:1-z_1+z_1e]$

Proof. Let $P = [X : Y : Z] \in H_{a,d}(\mathbb{F}_q[e])$, where $X = x_0 + x_1e$, $Y = y_0 + y_1e$ and $Z = z_0 + z_1e$. We have two cases of the projective coordinate X:

- 1) first case: X is invertible, then: $[X:Y:Z] \sim [1:Y:Z]$
- 2) second case: X is no invertible, in this case we have:
- i) X = xe, where $x \in \mathbb{F}_q$, then:
- if x = 0 then [X : Y : Z] = [0 : -1 : 1], else $x \neq 0$ then:

$$[X:Y:Z] \sim [e:y_0 + y_1e:z_0 + z_1e]$$

we have: $\pi_0([e:y_0+y_1e:z_0+z_1e])=[0:y_0:z_0]\in H_{\pi_0(a),\pi_0(d)}$ then: $y_0=-1$ and $z_0=1$, i.e:

$$[e: y_0 + y_1e: z_0 + z_1e] = [e: -1 + y_1e: 1 + z_1e]$$

- ii) X = x xe, where $x \in \mathbb{F}_q$, then:
- if x = 0 then [X : Y : Z] = [0 : -1 : 1], else $x \neq 0$ then:

$$[X:Y:Z] \sim [1-e:y_0+y_1e:z_0+z_1e]$$

we have $\pi_1([1-e:y_0+y_1e:z_0+z_1e])=[0:y_0+y_1:z_0+z_1]\in H_{\pi_1(a),\pi_1(d)}$ then: $y_0+y_1=-1$ and $z_0+z_1=1$, i.e:

$$[1 - e: y_0 + y_1e: z_0 + z_1e] = [1 - e: -1 - y_1 + y_1e: 1 - z_1 + z_1e]$$

From this proposition we deduce the following Corollaries:

Corollary 4.1.
$$H_{a,d}(\mathbb{F}_q[e]) = [1:Y:Z] \setminus a + Y^3 + Z^3 = dYZ \}$$

 $\cup \{[e:-1+y_1e:1+z_1e] \setminus [1:-1+y_1:1+z_1] \in H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q) \}$
 $\cup \{[1-e:-1-y_1+y_1e:1-z_1+z_1e] \setminus [1:-1-y_1:1-z_1] \in H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \}$
 $\cup \{[0:-1:1] \}$

Corollary 4.2. $\tilde{\pi_0}$ is a surjective mapping.

Proof. Let $[x:y:z] \in H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q)$, then:

- if x = 0 then $[x : y : z] \sim [0 : -1 : 1]$; hence [0 : -1 : 1] is an antecedent of [0 : -1 : 1]
- if $x \neq 0$, then $[x:y:z] \sim [1:y:z]$; hence [1-e:y-(1+y)e:z+(1-z)e] is an antecedent of [1:y:z].

Corollary 4.3. $\tilde{\pi_1}$ is a surjective mapping.

Proof. Let $[x:y:z] \in H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$, then:

- If x = 0, then $[x : y : z] \sim [0 : -1 : 1]$; hence [0 : -1 : 1] is an antecedent of [0 : -1 : 1]
- If $x \neq 0$, then $[x:y:z] \sim [1:y:z]$; hence [e:-1+(y+1)e:1+(z-1)e] is an antecedent of [1:y:z].

The next proposition gives a bijection between the two sets

$$H_{a,d}(\mathbb{F}_q[e])$$

and

$$H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q).$$

Proposition 4.2. The $\tilde{\pi}$ mapping defined by:

$$\begin{array}{ccccc} \tilde{\pi} & : & H_{a,d}(\mathbb{F}_q[e]) & \to & H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q) \\ & & [X:Y:Z] & \mapsto & ([\pi_0(X):\pi_0(Y):\pi_0(Z)], [\pi_1(X):\pi_1(Y):\pi_1(Z)]) \end{array}$$

is a bijection.

Proof. • As $\tilde{\pi_0}$ and $\tilde{\pi_1}$ are well defined, then $\tilde{\pi}$ is well defined.

- Let $([x_0:y_0:z_0],[x_1:y_1:z_1]) \in H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q))$, clearly: $\tilde{\pi}([x_0+(x_1-x_0)e:y_0+(y_1-y_0)e:z_0+(z_1-z_0)e]) = ([x_0:y_0:z_0],[x_1:y_1:z_1])$, hence $\tilde{\pi}$ is a surjective mapping.
- Lets [X:Y:Z] and [X':Y':Z'] are elements of $H_{a,d}(\mathbb{F}_q[e])$, where $X=x_0+x_1e$, $Y=y_0+y_1e$, $Z=z_0+z_1e$, $X'=x'_0+x'_1e$, $Y'=y'_0+y'_1e$ and $Z'=z'_0+z'_1e$.

If $[x_0: y_0: z_0] = [x_0': y_0': z_0']$ and $[x_0 + x_1: y_0 + y_1: z_0 + z_1] = [x_0' + x_1': y_0' + y_1': z_0' + z_1']$, then there exist $(k, l) \in (\mathbb{F}_q^*)^2$ such that:

then:
$$\begin{cases} x'_0 = kx_0 \\ y'_0 = ky_0 \\ z'_0 = kz_0 \end{cases} \begin{cases} x'_0 + x'_1 = l(x_0 + x_1) \\ y'_0 + y'_1 = l(y_0 + y_1) \\ z'_0 + z'_1 = l(z_0 + z_1) \end{cases} \text{ so } \begin{cases} x'_1 = (l - k)x_0 + x_1 \\ y'_1 = (l - k)y_0 + y_1 \\ z'_1 = (l - k)y_0 + y_1 \\ z'_1 = (l - k)z_0 + z_1 \end{cases}$$
then:
$$\begin{cases} X' = kx_0 + ((l - k)x_0 + x_1)e = (k + (l - k)e)X \\ Y' = ky_0 + ((l - k)y_0 + y_1)e = (k + (l - k)e)Y \\ Z' = kz_0 + ((l - k)z_0 + z_1)e = (k + (l - k)e)Z \end{cases}$$

Or k + (l - k)e is invertible in $\mathbb{F}_q[e]$, so [X' : Y' : Z'] = [X : Y : Z], hence $\tilde{\pi}$ is an injective mapping. We can easily show that the mapping $\tilde{\pi}^{-1}$ defined by:

$$\tilde{\pi}^{-1}([x_0:y_0:z_0],[x_1:y_1:z_1]) = [x_0 + (x_1 - x_0)e:y_0 + (y_1 - y_0)e:z_0 + (z_1 - z_0)e]$$

is the inverse of $\tilde{\pi}$.

Since there is a bijection between $H_{a,d}(\mathbb{F}_q[e])$ and $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$ then we deduce the following corollary:

Corollary 4.4. The cardinal of $H_{a,d}(\mathbb{F}_q[e])$ is equal to the cardinal of $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$.

Example 4.5. In $\mathbb{F}_{5}[e]$, let a = 2 + 2e, d = 1 + e. We have:

$$\begin{split} H_{a,d}(\mathbb{F}_{5}[e]) &= \{[0:-1:1], [1:0:2+4e], [1:2:4e], [1:e:2+3e], [1:2e:2+2e], \\ &= [1:3e:2+e], [1:4e:2], [1:4e:2+2e], [1:2+2e:2e], [1:2+2e:4e], \\ &= [e:4:1+e], [e:4:1+3e], [e:4+e:1], [e:4+2e:1+4e], \\ &= [e:4+4e:1+2e], [1+4e:4e:2+4e], [1+4e:2+2e:e], [1:2+e:3e], \\ &= [1:2+3e:e], [1:2+4e:0], [e:4+3e:1+3e]\} \\ H_{2,1}(\mathbb{F}_{5}) &= \{[0:-1:1], [1:0:2], [1:2:0]\} \\ H_{4,2}(\mathbb{F}_{5}) &= \{[0:-1:1], [1:0:1], [1:1:0], [1:2:4], [1:3:3], [1:4:2], [1:4:4]\} \end{split}$$

So, $card(H_{a,d}(\mathbb{F}_5[e]) = 21$, $card(H_{2,1}(\mathbb{F}_5)) = 3$ and $card(H_{4,3}(\mathbb{F}_5)) = 7$. Note that "card" is the cardinal of a set.

5. Cryptography applications

Several authors have introduced cryptographic applications on projective curves such as elliptic curves, see [3,4,5], in our work, we propose the following cryptographic applications:

- If $card(H_{a,d}(\mathbb{F}_q[e])) := n$ is an odd number, then $n = s \times t$ is the factorization of n, where $s := card(H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q))$ and $t := card(H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q))$, hence the cardinal of $H_{a,d}(\mathbb{F}_q[e])$ is not a prime number.
- The discrete logarithm problem in $H_{a,d}(\mathbb{F}_q[e])$ is equivalent to the discrete logarithm problem in $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$.

6. Conclusion

In this work, we have proved the bijection between $H_{a,d}(\mathbb{F}_q[e])$ and $H_{\pi_0(a),\pi_0(d)}(\mathbb{F}_q) \times H_{\pi_1(a),\pi_1(d)}(\mathbb{F}_q)$, classified the elements of $H_{a,d}(\mathbb{F}_q[e])$ and it has been proven that its cardinal is never a prime number.

Acknowledgments

The author gratefully acknowledges that his research is supported by Sidi Mohamed Ben Abdellah University, Morocco. We thank the referee by your suggestions.

References

- 1. Daniel J. Bernstein, Chitchanok Chuengsatiansup, David Kohel, and Tanja Lange, Twisted Hessian Curves, In LAT-INCRYPT 2015, pp 269–294, (2015).http://cr.yp.to/papers.html#hessian
- 2. A. Boulbot, A. Chillali and A. Mouhib, Elliptic Curves Over the Ring R, Bol. Soc. Paran, v. 38 3, pp 193-201, (2015).
- 3. M. H. Hassib, A. Chillali, M. A. Elomary, *Elliptic curves over a chain ring of characteristic 3*, Journal of Taibah University for Science, 40(9), pages 1687-1700 (2015).
- 4. M. Joye and J. Quisquater, V.L. Hessian elliptic curves and sidechannel attacks. Cryptographic Hardware and Embedded Systems CHES 2001', Lecture Notes in Computer Science Vol,2162, Springer, pp. 402-410.(2010).
- 5. A. Tadmori, A. Chillali, M. Ziane, Elliptic Curve over Ring $A_4 = F_2^d[\varepsilon]$, $\varepsilon^4 = 0$, Applied Mathematical Sciences, Volume 9, Issue 33, Pages 1721-1733(2015).

E. M. Ben Taleb,
Sidi Mohamed Ben Abdellah University,
FSDM, Fez
FP, LSI, Taza
Morocco.
E-mail address: mohaelhomam@gmail.com

and

A. Chillali,
Department of Mathematics,
Physics and Computer Science,
LSI, Polydisciplinary Faculty,
Sidi Mohamed Ben Abdellah University
TAZA; Morocco.
E-mail address: abdelhakim.chillali@usmba.ac.ma

and

L. El Fadil,
Department of Mathematics,
Faculty of Sciences Dhar-El Mahraz Sidi Mohamed Ben Abdellah University,
B.P. 1796-Atlas, Fes, Morocco.
E-mail address: lhouelfadil2@gmail.com