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ABSTRACT: The current article introduces the notion of asymptotically lacunary (A™, u)-statistical equiv-
alent sequence in the settings of a probabilistic norm N. Furthermore, the article presents the concepts
of asymptotically (A™, u)-strongly Cesdro equivalent sequences and asymptotically (A™, u)-strongly Cesaro
Orlicz equivalent sequences in the theory of probabilistic normed spaces and also investigates their various
properties including some inclusion relations as well as some equivalent conditions in this new settings.
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1. Introduction

Ever since the theory of metric spaces was introduced by Fréchet [10], it has been emerged as an
important area of research in various field of mathematics such as geometry, analysis etc. In numerous
branches of mathematics, it has been found much convenient to have a notion of distance which is applica-
ble to the elements of abstract sets. In context to this, Fréchet [10] introduced the theory of metric spaces
in 1906. In this theory, he defined the notion of distance between two elements of a set by associating a
non-negative real number with each ordered pair of elements of the set satisfying certain properties. But
it is not always possible for associating such a single number with a pair of elements. In such type of
situations, it is better to look upon the distance concept as a statistical rather than a determinate one.
In this context, generalizing the notion of metric space, Menger [17] introduced the notion of statistical
metric space, now known as probabilistic metric space. Using the concept of statistical metric and gen-
eralizing the idea of ordinary normed linear space, Serstnev [24] introduced the notion of probabilistic
normed space (in short PN-space) in 1962, where the norms of the vectors are represented by distribution
function rather than a positive number. Situations where crisp norm is unable to measure the length
of a vector precisely, the notion of probabilistic norm happens to be useful, one may refer to Alsina et
al. [1]. This theory is important as a generalization of deterministic results of normed linear spaces and
furnishes us vital tools appropriate to the investigation of geometry of nuclear physics, topological spaces,
convergence of random variables, continuity properties, linear operators, etc.

The concept of statistical convergence was introduced by Steinhaus [25] and Fast [9] independently
and then studied by many researcher see for instance [4,7,12,13,18,19,20,22,26,27,31]. The idea of lacu-
nary strong convergence was introduced by Freedman et al. [11] and investigated by many researcher
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from different aspects [2,3,7,19,22,26,27,32]. As an important generalization of statistical convergence
Fridy and Orhan [12,13] studied the concept of lacunary statistical convergence.

The notion of difference sequence was first proposed by Kizmaz [15]. It was generalized by Et and
Colak [8] as generalized difference sequence. Then this concept has been investigated by various authors
[2,3,22,26,27,28] from different aspects.

The concept of asymptotically equivalent sequences was first introduced by Marouf [16]. Patterson
[18] investigated the statistical analogue of this notion by introducing asymptotically statistical equiva-
lent sequences, which was further extended using a lacunary sequence by Patterson and Savas [19]. In
that paper, they introduced the idea of asymptotically lacunary statistical equivalent sequences. This
idea was further generalized using a generalized difference sequence and an Orlicz function in order to
develop the concepts of asymptotically A”-lacunary statistical equivalent sequences and Cesaro Orlicz
asymptotically statistical equivalent sequences by Braha [3]. The work of Patterson and Savas [19] was
generalized from the aspect of PN-spaces by Esi [7].

An interesting generalization of the theory of asymptotically statistical equivalent sequences is to
study the concept of statistical convergence using a complete {0,1} valued measure p defined on an
algebra of subsets of natural numbers has been introduced by Connor [4,5].

Motivated by the literature reviewed above, we thought of studying asymptotically lacunary statis-
tical equivalence of generalized difference sequences in the theory of PN-spaces using the two valued
measure 4 in this article. In context to this, we introduce the notion of asymptotically lacunary (A™, u)-
statistical equivalent sequences in PN-spaces and investigate some results. We introduce the concepts
of asymptotically (A™, u)-statistical equivalent sequences, asymptotically (A™, u)-strongly Ceséro equiv-
alent sequences and asymptotically (A", u)-strongly Cesdro Orlicz equivalent sequences in the theory of
PN-spaces and also investigate their various inclusion relations as well as some equivalent conditions in
this new settings.

A short outline of the article is as follows: In Section 2 we procure some basic definitions and exam-
ples which are going to be used during this investigation. We have introduced asymptotically (A™, u)-
statistical equivalent sequences in PN-spaces and discussed some of their properties in Section 3. In
this section itself, we have further introduced the concepts of asymptotically lacunary (A™, u)-statistical
equivalent sequences and asymptotically (A", u)-strongly Ceséro equivalent sequences in PN-spaces and
also investigates their various inclusion relations as well as some equivalent conditions in this new set-
tings. In the Section 4, we are deal with the concept of asymptotically (A", u)-strongly Ceséro Orlicz
equivalent sequences in the theory of PN-spaces and investigate few inclusion properties. Finally, Section
5 summarizes the article with a conclusion.

2. Preliminaries

Throughout the paper, N, R, RT™ and ZT denote the sets of natural, real, non-negative real numbers
and non-negative integers, respectively.

Definition 2.1. [21] A function f: R"Y — [0,1] is called a distribution function if it is non-decreasing,
left-continuous with infiep+ f(t) = 0 and sup,cp+ f(t) = 1. Let D denotes the set of all distribution
functions.

Definition 2.2. [21] A binary operation x : [0,1] x [0,1] — [0,1] is said to be a continuous t-norm if it
satisfies the following conditions, for all a,b,c,d € [0,1]:

(i) a*x1=a,
(i) axb="bxa,

(i) a*b < cx*d, whenever a < ¢ and b < d,
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(iv) (a*xb)*xc=ax(bxc).

Definition 2.3. [1] A triplet (X, N,x) is called a probabilistic normed space (in short a PN-space) if X
is a real vector space, N a mapping from X into D (for x € X, the distribution function N(x) is denoted
by N, and N, (t) is the value of N, at t € RY) and * a t-norm satisfying the following conditions:

(i) Nz(0) =0,

(i) Ny(t) =1, for all t > 0 if and only if v =0,

(iii) Now(t) = N, (ﬁ) for all @ € R\ {0},

(iv) Ngqy(s+1t) > Ny(s)* Ny(t), for all z,y € X and s,t € RT.

Example 2.4. Let (X,||.||) be a normed linear space. Let a * b = min{a,b}, for all a,b € [0,1] and
N,(t) = Tl x€X andt>0. Then (X, N,x) is a PN-space.
x

Definition 2.5. [8] For an integer n € Z%, the generalized difference operator A™z; is defined as
Amz; = A"z, — A" gy, where Az = x; and Ax; = x; — x441, for all i € N,

Definition 2.6. [6] A sequence x = (x;) in a PN-space (X, N,x) is said to be A™-convergent to xg € X
in terms of the probabilistic norm N, if for every e > 0 and A € (0, 1), there exists a positive integer iy
such that Nang,—z,(€) > 1 — X, whenever i > iy. In this case, we write N-lim A"z = xy.

Definition 2.7. [6] A sequence x = (x;) in a PN-space (X, N,x) is said to be A™-Cauchy sequence in
terms of the probabilistic norm N, if for every e > 0 and X € (0, 1), there exists a positive integer ig such
that Nang, —aAng;(€) > 1 =X, for all i,j > ig.

Before proceeding further, we discuss some basic notions as defined follows.

Definition 2.8. [16] Two non-negative sequences x = (xy) and y = (yr) are said to be asymptotically

equivalent of multiple L provided that lilzn% = L. It is denoted by x ~ y and it is said to be simply

asymptotically equivalent if L = 1.

Definition 2.9. A number sequence x = (x) is said to be statistically convergent to a number L provided
that, for every e > 0,

1
i — < N . — > =
nh—>Holo - {k<n:|z,—L|>e}| =0,

where | - | denotes the cardinality of the enclosed set. In this case, we write stat-limz = L.

Definition 2.10. [19] Two non-negative sequences x = (xy) and y = (yx) are said to be asymptotically
statistical equivalent of multiple L provided that for every e > 0, we have

{kgn: ﬁ—L'za}’:O.

Yk
L
It is denoted by x L y and it is said to be simply asymptotically statistical equivalent if L = 1.

o1
lim —
n—o00 M

L
Let S” denote the set of all sequences z = () and y = (yx) such that z L y.

Definition 2.11. [12] An increasing sequence 0 = {k,}, r = 0,1,2,... with ko = 0 of non-negative
integers is said to be a lacunary sequence such that h, =k, — k,._1 — oo whenever r — oo. The intervals

governed by 0 will be denoted by I = (kr—_1, k] and the ratio k’:il will be denoted by q,.
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Definition 2.12. [19] Let 0 be a lacunary sequence. Then two non-negative sequences x = (xy) and
y = (yx) are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every

e > 0, we have
{k:e] ——L‘ H:o.
Yk

SL
It is denoted by x '~ y and it is said to be simply asymptotically lacunary statistical equivalent if L = 1.

1
lim —

L

5
Let SE denote the set of all sequences z = (i) and y = (yx) such that z '~ y.

Definition 2.13. [7] Let (X, N, *) be a PN-space and 0 be a lacunary sequence. Then two non-negative
sequences x = (x) and y = (yx) are said to be asymptotically lacunary statistical equivalent of multiple
L in terms of the probabilistic norm N provided that for every e > 0 and X\ € (0,1), we have

hm —

hy,

{k;e] N L(s)gl—/\}’:O.

SE(N
It is denoted by x V) y and it is said to be simply asymptotically lacunary statistical equivalent if

L=1.

L
Let SF(N) denote the set of all sequences z = (z1) and y = (yx) such that x 56, V) Yy

3. Asymptotically Lacunary (A", u)-Statistical Equivalent Sequences in PN-spaces

Throughout the paper, p will denote a complete {0, 1}-valued finitely additive measure defined on a
field T' of all finite subsets of N and suppose that u(A) = 0, if [A] < oo; if A C B and pu(B) = 0, then
w(A) =0; and p(N) = 1.

Using the above notion of p, we introduce the following definition in the theory of PN-space keeping
in mind that the notion is going to be useful in establishing the main results of the present work.

Definition 3.1. A sequence x = (x;) in a PN-space (X, N,*) is said to be u-statistically convergent to
xo in terms of the probabilistic norm N, if for every e > 0 and A € (0,1),

({7 €N: Ny ay(e) <1 =2} =0.
We denote it by p-staty -limx = xg.

Definition 3.2. Let (X, N,x) be a PN-space. Then two non-negative sequence x = (xx) and y = (yi)
are said to be asymptotically (A", u)-statistical equivalent of multiple L in terms of the probabilistic norm
N, if for every e > 0 and X € (0, 1),

u({k‘EN:NiZZ:_L(s) Sl—/\}> =0.

-Sk(A
It is denoted by x Sy (A y or written as p- statn - lim ﬁT:;: = L and it is said to be simply asymptotically
(A™, p)-statistical equivalent if L = 1.

L n
Let #SE(A™) denote the set of all sequences x = (z1) and y = (yx) such that = EROU

In view of the Definition 3.2 and other properties of measure, we state the following 1emma without
proof.

Lemma 3.3. Let (X, N, x) be a PN-space. Then for every e > 0 and X € (0, 1), the following statements
are equivalent:

(i) p-staty - lim 3= A =1L,
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ATy,

(ﬁ)u({keN:Aun%L@)<1—A})::Q

(43) 1 ({k EN:Namay, (6)>1-— )\}) =1,

ATy,

() p-stat-lim Nara, (¢) =1.

ATy,

Theorem 3.4. Let (X, N,x) be a PN-space. If two sequences (xx) and (yx) in X are asymptotically
(A™, p)-statistical equivalent of multiple L in terms of the probabilistic norm N, then L is unique.

pSyH(A™) Sy (A™)
Proof: We assume that = ~ y and x ~ y with Ly # Lo. Now for a given A\ > 0, we choose

r € (0,1) such that (1 —7) (1 —r) > 1— A. Then for any € > 0, we define the following sets:

A1: {kGNINA"kal(E) S ].—’l"}

ATy

Ay = {kEN:NAnkaQ(é‘) < 1—7’}.

ATy

. pSH(A™) =S 2 (A™)
Since x ~ y, 80 (A1) =0 and as x ~ y, s0 u(Az) =0 for all e > 0 and r € (0,1). Now,
let Ay N Ay = A. Then we observe that p(A) = 0 which implies that (N\ A) = 1. If k € N\ A, then we

have

Niiora(6) = Ny, anay, (s p,) (/24 €/2)
> Nﬁz;p: _L1(€/2) * NiZZ,: _L2(€/2)
>(1—r)x(1—r)
>1-A\

Since A\ > 0 is arbitrary, we get Ny, _1,(¢) = 1, for all ¢ > 0 which gives L; = Lo. Hence the proof. [
Definition 3.5. Let (X, N,x) be a PN-space. Then two non-negative sequence v = () and y = (yx)

are said to be asymptotically (A", p)-strongly Cesdro equivalent of multiple L in terms of the probabilistic
norm N, if for every e > 0 and X € (0,1), we have

1 m
H({mEN — NA"’%_L(E)SI_A}> =0.
mi= ATk

y and it is said to be simply asymptotically (A™, u)-strongly Cesdro equivalent

uloi| 5 (A™)
~Y

It is denoted by x
ifL=1.

L n ulo ‘k (A™)

Let ,|o1]|%(A™) denote the set of all sequences « = (x}) and y = (yx) such that « ~
Theorem 3.6. Let x = (x) and y = (yx) be two non-negative sequences in a PN-space (X, N,x). If x
and y are asymptotically (A™, u)-statistical equivalent of multiple L in terms of the probabilistic norm N,
then they are asymptotically (A™, u)-strongly Cesdro equivalent of multiple L in terms of the probabilistic
norm N.
. u-Sg (A™)

Proof: Let z = (z1) and y = (yx) be two non-negative sequences such that z = '~
e>0and X\ € (0,1), we have

y. Then for every

u({keN:Nizzk_L(s) Sl—/\}> =
Yk
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Given € > 0, we have

ATy, ATy

1 m
NAnzk 7L(€) S E ZNAnmk 7L(€)7
k=1 !

for all m € N. Thus for every ¢ > 0 and X € (0,1), we have

1 m
{mEN: E;Nizzz_L(e) Sl—)\} C {keN:NiZi:_L(a) < 1—)\}

and hence

1 m
T — ng <1- < : ng <1-
M({meN meNiny;;—L(E) <1 A}) _u({keN Niny:_L(s) <1 A})

=1
=0.

uloil§(A™)
~Y

Consequently z O

The converse of the above result is not true, which has been illustrated with the help of the following
counterexample.

Example 3.7. Let us consider n=1,L = %,5 =0.1 and A =0.9. We define x = (x1) as follows:

_ |1, kisodd
TET\ 2, ks even,

ploi|h(A™) p-SH (A™)
~ 2

and Ay =1, for all k. Then it can be easily proved that x y but x

Definition 3.8. Let (X, N, *) be a PN-space and 0 = (k) be a lacunary sequence. Then two non-negative
sequence x = (zy) and y = (yr) are said to be asymptotically lacunary (A™, p)-statistical equivalent of
multiple L in terms of the probabilistic norm N, if for every e > 0 and X € (0,1)

1
u({reN:h—ZNizz:_L(a)g1_A}> =0.

" kel

wg-SL(A™
It is denoted by x Ha-SE(AT)

equivalent if L = 1.

y and it is said to be simply asymptotically lacunary (A™, u)-statistical

gL (A7
Let 5 SL(A™) denote the set of all sequences z = (zj) and y = (yx) such that = #o-SE (A7)

Theorem 3.9. Let © = (zx) and y = (yx) be two non-negative sequences in a PN-space (X, N,*) and

-Sx(An -Sp(A”
0 = (k) be a lacunary sequence such that liminf g, > 1. Then x #IN(AT) y implies x #o-Sp (A7)
T

Proof: Suppose that liminf g, > 1. Then there exists 6 > 0 such that ¢, > 1+ 4, for all » € N, which
yields

0 and For 1

>
T 146 hy.

<

e
ol =

-SE(An
Now if ¢ * 588" y, then for every ¢ > 0 and A\ € (0, 1), we have

u({k‘EN:NiZZ:_L(s) Sl—/\}> =0.
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=S (A™) ol (A™)
~ ~ y

From the Theorem 3.6, we have if = That is, for every € > 0 and

A€ (0,1), we have

y, then x

Now for every e > 0, € (0,1) and r € N, we have

hir Z 22% ZNﬁnT" Z NA"Tk E

ATy
kel,

r ATy

k k 1
hrl ZNA"Tk7 81— — B ZNA"% L({-Z)

Ky ke
But the terms ;- E NAnTk ,(e) and = Z Nane,  (€) both converges to 1. Hence
k=1 ATy ATy,
hZNM,k y=1>1-\

kel,.

Therefore,

N —SL AT
Consequently z " xAn

Theorem 3.10. Let x = (zx) and y = (yx) be two non-negative sequences in a PN-space (X, N,*) and

no-Sx(A™) . p-SK(A™) Y

0 = (k,) be a lacunary sequence such that limsup g, < co. Then x y tmplies x ~

T

gL Am
Proof: If limsup g, < oo, then there exists B > 0 such that ¢, < B, for all » > 1. Now if x #orSp (A7) Y,

then for every e > 0 and A € (0,1), we have

We set
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Then we have u(A) = 0. Now let m be an integer with k,._1 < m < k, where r > R, R > 0. Then

1 1
» {k <miNamy () <1- )\} - {k <y Nane, [ (6)<1- )\}

ATy - kr—l ATy,
1
C k<I: —ZNM - sgl—A}
Fra { Ve, 27
1
U {k<12 —k;Nﬁzﬁ_ £) < 1—)\}
1
<I :— Nana, )<1-—
Hence we have
(fremngy o _A})
L
since pu(A) = 0. Consequently 2" “SNiA y. O

Corollary 3.11. Let (X, N,*) be a PN-space and 6 = (k,) be a lacunary sequence. If 1 < liminf g, <

=S (A™) 1e-Sy (A™)
~ ~ y

limsup ¢, < oo, then x y if and only if x

T
4. Asymptotically (A", u)-Strongly Cesaro Orlicz Equivalent Sequences in PN-spaces

In this segment, we introduce the notion of asymptotically (A", u)-strongly Cesaro Orlicz equivalent
sequences in the theory of PN-spaces and investigate few inclusion properties.

Let Q; be the set of all subsets of N, which does not contain more than ¢ elements. Suppose that (¢,)
is a non decreasing sequence of positive real numbers with the property that ¢, - coast — ocoand ¢, <t
for every ¢ € N. Furthermore, a function M : (0,00] — (0,00] that is non decreasing, continuous and
convex with the the property that M (0) = 0, M(x) > 0 for x > 0 and M (xz) — oo as x — co. Since the
Orlicz function M is a convex function with M (0) = 0, hence it satisfies the property M (\y) < AM (y),
for all X € (0,1].

Definition 4.1. Let (X, N,x*) be a PN-space. Then two non-negative sequences x = (xx) and y = (yx)
are said to be asymptotically (A™, u)-strongly Cesdro Orlicz equivalent of multiple L in terms of the
probabilistic norm N, if for every X\ € (0,1) and € > 0, we have

u({meN ZM( ares ) (s))gl—)\}>:0,

wloa| % (M-A™)
~Y

denoted by x y and simply asymptotically (A™, u)-strongly Cesdro Orlicz equivalent if L = 1.

Definition 4.2. Let (X, N,x*) be a PN-space. Then two non-negative sequences x = (xx) and y = (yi)
are said to be asymptotically (A™, u, ¢,)-strongly Cesdro Orlicz equivalent of multiple L in terms of the
probabilistic norm N, if for every X € (0,1) and € > 0, we have

1
pllteN: — Z M(Nizmk_L(s))gl—)\ =0,
t keo,0eQy Yk

B, ~lor| 5 (M-A") . . . . . .
denoted by x ~ y and simply asymptotically (A™, i, ¢,)-strongly Cesdro Orlicz equivalent if

L=1.
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Definition 4.3. Let (X, N,*) be a PN-space. Then two non-negative sequences x = (xx) and y = (yi)
Be-SK(A™)

are said to be x y, if for every X € (0,1) and € > 0, we have

1
pleteN:— > Naw, ()<1-Xp|=0.
t ke€o,0eQ, A"k
. . p=Sg (A™)
Theorem 4.4. For two non-negative sequences v = (xy) andy = (yi) in a PN-space (X, N,*), z "= '~
L 1g=Sx (A™)

y tmplies x ~
Proof: Let x = (x) and y = (yx) be two non-negative sequences in a PN-space (X, N, ) such that

-SE (A"
g oA y. Then for every A € (0,1) and £ > 0, we have

W ({k eN: NA"zkiL(é:) <1-— A}) = 0.
ATy

Given ¢ > 0, we have

NAnzk_L(g) < - Z NA"“”k _L(€)7
Yy .

ATy

for all ¢ € N. Then for every A € (0,1) and € > 0, we have

1
te N: — Z NA"rk_L(E)Sl—A g{k‘ENINAnz,C_L(E)Sl—/\}

ANy,
t k€o,0eQ: k

and hence

1
plqteN:— > Naw, () <1-2

¢t k€o,0€Q: At
<u ({k‘ €N: Nang, L(s) <1-— /\}> =
ATy
-skan
Consequently, x He ﬁ( ) Y. O

Theorem 4.5. Let M be an Orlicz function. Then the following results hold:

L ulealg(M-AT) Hg-lo1| R (M-AT)
(i) x ~ y implies x ~ Y.

ol | (-A7) ENEIUONS

(i) If limtinf fjl =1, then x y implies x

@
Proof: (i) From the definition of ¢,, it pursues that irtlf # > 1. Then there exists § > 0 such that

146 ul”ﬂk(M‘An)
<=0 Letx ~ y. Then for every A € (0,1) and € > 0, we have

t
¢y — 0
1 m
T — "y <1- =0.
M({meN m;M<Niny:L(€))l A}) 0

By the Lemma 3.3, we have

R
M—stat—hmEZM (NA"mk L(€)> =1

ATy,
k=1 Yk
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Now for every A € (0,1) and € > 0, we have

x Z M(Nﬁzzz_L( >_ :itkzt: <NMI'c (6))

Qst k€o,0€Q:
1
. ) M (NM,C L(s)) _1

¢t ke{1,2,...t}\o,0€Q: ATy
t
t |1 .
=~ =S M(Nana, () =1 +—
t [t ; < 2"—;;_L( )) &,

_ L > M <Niﬁij,’: _L(s)) -1

¢ kE{1,2,....t}\o,0€Qs

[ ()

k=1

1
i (e L@)’

!
)

¢

where ko € {1,2,...,t}\o. Since p-stat-lim + > M (NA"mk L(E)) = 1 and M is continuous, so letting
k=1 ATy

t — oo on the last relation, we have

1 1
5 E M(Nﬁ::m’“L(E)>_1<S:% (saydz%,for’y>0).
t keo,oeQ: o

Hence, we have

1
(- stat-lim —
¢t k€o,0€Q:

(s i0) 1

ATy

Hg,-lo| K (M-A™)
Consequently, = ~

Hg-lo1| K (M-AT)
~Y

(ii) Let 1imtinf dftl = 1. Suppose that =
that

y. Then for every A € (0,1) and ¢ > 0, such

1
i teN: — Z M(Nmka(s))Sl—)\ =0.

ANy,
t k€o,0cQ: vk

Then for € > 0, we have

1
tha Z M<N§ka—L(€)) — 1.
t keo,0eQt vk

Then for § > 0, there exists ty € N such that H; < 1+¢, for all t > ty. Also we can find T' > 0 such that
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H,<T, t=1,2,.... Let m be an integer with ¢,_; < m < [¢,]. Then
1 [¢.]
— M | Nara g) ] < M | Nana, €
Z < ﬁn ka( )) = b1 kZ:l ( ﬁny’; 7L( ))

o %M <N“”“ L(g))

. z o (N, 0)

AT
=[¢¢—1]

1
b L M (NM%_L(E))
¢t71 (bl keo,ceQ: ATy,

PRI B M(NMM@)

<

¢t—1 ¢t k€o,oeQ; ATy
¢ ¢t “+1 th
< sup H—+—""H, 1+ -+
1<i<ty, be1 b1 by
<P (1+¢) Potr ¥ Qupra oot ¢t.
by b1

Since ¢,_; — 0o as m — oo, it follows that

pi- stat - hm—ZM <NA"zk _L(s)) — 1.

o
k=1 Y

L M-An
Consequently, x wloaln )

5. Conclusion
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In this article, we have introduced asymptotically (A™, u)-statistical equivalent sequences in PN-
spaces and discussed some of their properties. We have further introduced the concepts of asymptotically
lacunary (A™, u)-statistical equivalent sequences and asymptotically (A", u)-strongly Cesaro equivalent
sequences in the theory of PN-spaces. Moreover, we have introduced the concept of asymptotically
(A™, p)-strongly Cesdro Orlicz equivalent sequences and obtained some inclusion relations as well as

some equivalent conditions in this new settings.
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