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ABSTRACT:

In this work, we consider a multicompartment nonlinear epidemic model with temporary immu-

nity and a saturated incidence rate. N(t) at time ¢, this population is divide into seven sub-classes.

N(t) =

S(t)+Et)+I(t)+11 () +I2(t)+ I3 (t)+Q(t). where S(t),E(t), I(t), I (t),I2(t), Is(t) and Q(t) denote

the sizes of the population susceptible to disease, exposed, infectious members and quarantine members with
the possibility of infection through temporary immunity, respectively. The stability of a disease-free status
equilibrium and the existence of endemic equilibrium determined by the ratio called the basic reproductive
number. The multicompartment non linear epidemic model with saturated rate has been studied the stochastic
stability of the free disease equilibrium under certain conditions, and obtain the conditions of global attractivity

of the infection.
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1. Introduction
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This paper considers the following nonlinear epidemic model with temporary immunity:

S(t) = A+v—(p+d)S(t) - BE2H
B(t) = 51+le((tt) (11 +d) E(t) — Bem7S(
I(t)=Be ™S (t—7)I(t—7)— (uy+d)I(t)

L (t) = ond (t) = 010y (t) — (pg +d)
Iy (t) = ool (t) = 0212 (t) — (pg +d)
13()—0431(75)—5313() (15 +d)

Qt) =201 6:l; () — (g +d) Q (t) —
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2 L. CHAHARAZED

Consider a population of size N(t) at time t, this population is divide into seven sub-classes, with
N(t) = S(8) + E(t) + 1(8) + L (£) + Ia(8) + Is(t) + Q(1).

Where S(t),E(t),1(t), I (t),I2(t), I3(t) and Q(t) denote the sizes of the population susceptible to dis-
ease, exposed, infectious members and quarantine members with the possibility of infection through
temporary immunity, respectively. The positive constants g, iy, fto, tt3, fta, 5, and pg represent the
death rates of susceptible, exposed, infectious and quarantine. Biologically, it is natural to assume
that p<min {pq, fo, fi5, [y, i5, fig - The positive constant d is natural mortality rate. The positive con-
stants A represent rate of insidence. The positive constant « represent the recovery rate of infection. The
positive constant 3 is the average numbers of contacts infective for S and I. v the positive constant is
the parameter of emigration. The positive constant «y, as, ag are the average numbers of contacts. The
positive constants 01,02, 03, are the numbers of transfer to conversion of infected people to quarantine.

a is saturation constant and and 7 is the length of immunity period.

The form of incidence is %112((2), which is saturated with the susceptible.

The initial condition of (1) given as:

S(n) = @1(n), E(n) = 2(n), I(n) = 3(n), [r(n) = Pa(n), (1.2)
Iy(n) = ®5(n), I3(n) = P6(n), Q1) = P7(n), =7 <n<0. '

Where ® = (®q, By, B3, By, D5, B, D7)” € C such that

{ S(1) = 1(0) > 0, E(n) = ®2(0) > 0,1(n) = $5(0) > 0, [i(5) = 4(0) >0, 1.9

) >
Ir(n) = ®5(0) > 0, I3(n) = ®6(0) = 0,Q(n) = ®7(0) > 0, =7 < n<0.

Let C denote the Banach space C ([—7,0],R") of continuous functions mapping the interval [—7,0]
into R7. With a biological meaning, we further assume that ®;(n) = ®;(0) > 0, for i = 1,2,3,4,5,6,7.
We have,

N(#) = X+ v — S(t) — i E(®) — poI(t) — i () — jalo() — s Talt) — Q8 — AN() (1)
The region € is positively invariant set of (1.1),

Q= (S(t), B(t), I(t), 1 (t), 12 (1), I(t), Q(t)) € R, (1.5)
S(t) + B(t) + I(t) + L(t) + I2(t) + I3(t) + Q) <N < 724 '

Hence, system (1.1), can be rewrite as:

S(t)=A+v—(u+d)S(t) - FELHD +4Q (1),
E(t) =0 — (uy +d) E(t) — e 7S (t— ) I (t—7),

T+al2(t)
[(#) = BemmS (t =)L (t=7) = (g +d+ TPy ai) 1 (1),
L) =aad (8) = (3 +d +61) I (1), (1.6)
Ié() aol (t) = (pg +d+02) I (t),
I3 (t) = asl (t) — (ps +d +03) I3 (t),
Q) =27 0L () — (s +d+7)Q(1).
2. Equilibrium points

We calculate the points of equilibrium in the absence and presence of infection.
In the absence of infection, the system (1.6) has a disease-free equilibrium Ey.

o oNT A+

T
= (S,E,f,fl,fg,lg,cg) - <u+d 0,0,0,0,0, o) . (2.1)
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Define the quarantine reproduction number as:

_BemT ()

Ry
/J“+d ,UQ"‘d‘f’Z?:lOéi

(2.2)

In the presence of infection, substituting in the system, 2 also contains a unique positive, endemic
equilibrium

Ef = (S*E*, I" I} I}, I, Q*)" (2.3)

3
S* — ”2+d+zi=1 b
- Be H1T )

* 1 * Tk 1 —Hq T
B = e 5T (st =)
= BE  y— (it d) S Q7 A = (BS7) + dam
Iik: I*v
I;: I*v
Iék: mj*v
O* - él*a

Q* — 1 a161 + a252 + (!3[53 I*
Het+d+y | paztd+d Hy+d+62 ps+d+d3 ’

(03}
3 +d+61

a2
,u4+d+52

2.1. Theorem 1.
Let (S, E,I, 11, I5, I3, Q) the solution of (1.6) wich is defined in [0, 00).

Atv
li N (t) < .
imsupi—ooN (t) < i d
PROOF.
We have (1.4), then for
N<A+v—(u+d)N. (2.4)
With integrating, we have for
Le(0,4),N <2tV (1 - e_(“+d)t) (2.5)
3 ) — M—’—d 3

Then N < 2%. The solution (S, E, I, I, I, Is, Q) bounded in [0,T). For

Atv
< _ _ (p+d)t
te0,00),N . (1 e ) . (2.6)

Finally
AtV

nw+d

limsup;_ oo N (1) <

2.2. Theorem 2.

The disease-free equilibrium Ey of the system (1.6) is locally asymptotically stable if Ry < 1.

2.3. Theorem 3.

If Ry > 1, the system (1.6) has a unique, non-trivial equilibrium E* which is locally asymptotically
stable.



4 L. CHAHARAZED

3. Stochastic stability of the free disease equilibrium

We limit ourselves here to perturbing only the contact rate so we replace by [+ ab (t), where b(t) is
white noise (Brownian motion). The system (1.6) transformed to the following It6 stochastic differential
equations:
as = [A+v = (u+d) S(t) - Bl +1Q (1) dt — arflmab,

[/31+a,2 — (g + d) B (£) — Be~ 7S (t —7) I (t — )] dt + ar-SLpdb,
dl = [ﬁe mTS(t—71)I(t—171)— (MQ +d+Y0 o I(t)} dt,
dl, = [l — (pg +d+01) L] dt, (3.1)
dls = [042.[ — (M4 +d+ (52) .[2] dt,
dIs = [ag] — (us + d + 03) I3] dt,
dQ = [0, 6ili — (g +d +) Q] dt.

)
(

3.1. Theorem 4.

If Ry < 1, E(t) and Q(t) are exponentially almost surely stable.
PROOF: Let w ,with It6’s formula, we obtain

_ . E+wQ
L—dlog(E+wQ)—E+wQ (3.2)
Bty — (uy +d) E — BeM7SI
- , Lo e a5y (33)
E+wQ W[Zizllsiji_(ﬂﬁ‘Fd‘F'}/)Q}_§m(m) E+wQ 1+al
We have
L S 1 [ﬁiiz (1+a[2 ei'ul‘r)] I - [/1’1 + d] E dt+ a X SI db,
E+wQ | + (wé)) I, + (wds) Iy + + (wds) Is — w (g + d +7) Q E+wQ  1+al?
(3.4)
Then
-1 a ST
L ——— d E d . .
< Frogl I TAEFwl+d+7)Q Jdt+ gorm x oo, (3.5)
We suppose that
Ly = min{(py +d), (g +d+7)}- (3.6)
Then e
L < —Lydt + ————db. 3.7
at + =——= F + w0 (3.7)
With integration, we obtain
v) I (v)
log (E + < —Lqdt W g (v). 3.8
09 (B + Q) 1+a/E ) (33

2
We have (%) , is bounded.

So, limtﬁw%db (v) = 0,almost surely.
The following form from Doob’s martingale inequality combined with Itd isometry see [18].
limsuptﬁoo%log (F +wQ) < —Lj,almost surely.

Finally
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o limsup; oo tlogE < —Lq,almost surely,
o limsup; 001109Q < —Ly,almost surely.

4. Impulsive vaccination

The following mathematical model with saturation incidence:

(1) =Atv—(u+d) S —BEBLD 450 (1),
B(t) = B0 — (4, +d) E (1) -

() =Be St =) It =)= (i +d+ XL 00) 1(1),

With 6, is pulse vaccination rate, (0 < 6 < 1).
We simplify (4.1) ,and with (1.4) the following system is:

The initial condition of (4.2) given as:

{ S(n) =
Ix(n) = ®4(n), I3(n ) (n)

With a biological meaning, we further assume that: ®;(n) =

Be MTS(t—T1)I(t—T)

)

I (t) = anl () = (g +d+61) I (1),
Iy (t) = aol (t) — (py +d+ 02) I (),
I3 (t) = asl (t) — (ns + d+63) I3 (1),
Q) =30, 0:li (1) = (ns +d+7)Q (1),
StF)=(@1-0)S(t),
E({tT)=E(t),
I(tT)=1I(t"),
LYY =6L1'), 4=k keN,
LY=L,
I3 (tT) =I5 (),
Q) =Q(t)+05(t),

S(t)=A+v—(u+d)S(t) - ELEL +5Q (1),
Hﬂzﬁe“FS@—ﬂI@—T%—O@+d+§f1a0[@%
I (t) = en I (t) = (pz +d+061) I (1),
L(t) = aal (t) = (g +d +02) I (1) ,
I3 (t) = a3l () (s +d+03) I3 (1),
()=Zf Li(t) = (pe +d+7)Q(1),
N ~ A—i—u—(u—i—d)N()
StF)=(1-0)S(t),
I(tT) =1(tY),
L(tT) =1 (th),
LY=L, ,t=kT k€N,
Lty =1I30%),
QU =Q () +0S (),
N(tT)=N(),

£ KT,k eN,

£ KT k€N,

= ®3(n
()= 6(1), () ‘I’()—TSUSO.

®7(0) > 0, for i = 1,2,3,4,5,6,7.

(4.2)
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The region € is positively invariant set of (4.2),

{ Q= (S(1), I(t), [i(t), L), I3(£), Q(t), N(t)) € RT, }

S(t) +1(t) + I(t) + La(t) + I3(t) + Q)N < 235, N(t) < 235

pu+d
4.1. Lemma 1.

Consider the following impulsive differential system

u(t) =a — bu(t),t # kT
w(tt)=(1-0)u(t),t =kT.
Where a > 0,0 > 0, and (0 < 6 < 1). Then there exists a unique positive periodic solution
of system (4.2).

i) =2 x _ @\ —b(t—kT) <
e (t) b—|—(u b)e KT <t<(k+1)T

Which is globally asymptotically stable, where

*_a(l—H)(l—e_bT)
T b 1-(1-6)etT -

4.2. Lemma 2.

Consider the following linear neutral delay equation:

(t) = arx(t — 7) — agz () (4.6)

Where a1,as, and 7 ara all positive constants.
For —7<¢<0,x (t)> 0. We have:

Ifar < ag,limi_oox (t) =0 (4.7)
4.3. Global attractivity

In this section, we discuss the global attractivity of infection free periodic solution, in which infectious
individuals are entirely absent from the population permanently

Q(n) = ®7(0) > 0, —7<n<0.

Forall ¢ > 0,
I(t) = 0,1;(t) = 0.

Under this condition, the growth of susceptible individuals , quarataine individuals and total popula-
tion must satisfy the following impulsive system:

(1—e=GetdtnT

S (t) =A tv- ('u + d) S(t) + 7;\;2 1—(1—-0)e~(rTd+NT + fQ (t) ’
Q) =~ (ug+d+7)Q (1), t#ETEEN,
N(t)%)‘+y_(ﬂ+d)N(t)v (48)
S(tH)=(1-0)5(t),
QUT)=Q)+0S(t), p,t=kT,keN,
N () = N (1),

We have

(4.9)

N(t) =A+v— (u+d) N(t),
N(tF)=N(t),
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From (4.9),
. At
tlggoN(t) =4 (4.10)
We have . S
B (1) = BEEEG — (i + ) B (1) = 7S (¢ = 7)1 (1= 7). (411
E(tY)=E(t),
From(4.11) and if I(¢) =0,
limi— oo E (t) = 0 (4.12)
We have S,Q oscillate with 7" in synchronization with the periodic pulse vaccination.
From (4.10) and (4.11), we have
AtV
t) = — S(#), 4.13
Q)= S5~ 5 (113)
and
- _ AMr
S = (utd+7) (25 -S@®) t AT )
Str)y=01-6)S(t),t =kT
According to lemma 1, the periodic solution of system (4.14) is:
S, (1) = 2 ( . M) e~ (N —KT) pp < (] 4 1) T (4.15)
p+d p+d ’ -
It is globally asymptotically stable, wih
A 1—0) (1 — e (ptd+NT

T ptd 1—(1—0) e (urdNT
4.4. Theorem 5.

The infection-free periodic solution (576 (¢),0,0,0,0, f\ti; — S, (1), i‘big) of (4.2) is globally attractive
provided that Q* < 1.

(A +v)Be~mT (1 — e~ (utdtNT)

@ = (p+d)1—(1—0)e (wtdtnNT
PROOF.
With @Q* < 1, we choose ¢ sufficiently small,
i A+ v (1 _ e—(,u+d+’y)T) 3
pe <u+d1—(1—0)e—(u+d+w):r +& <M2+d+za¢ (4.17)
i=1

‘We have

300 0w (3 -5 0)

Then the following comparison impulsive differential system is:

{a‘c(t>=(u+d+v)(,iiz—x(ﬂ)vf#’fT (4.18)

x(tN)=0-0)x(t),t =kT

From (4.14), we have the periodic solution of (4.18) is (4.14), with @, (t) = S, (t) which is globally
asymptotically stable, if we have (4.15).

(S(t), I(t), I1(t), I2(t), I3(t), Q(t), N (t)) the solution of (4.2), with (4.3) and S (07)= Sp> 0 and x (¢)
slution of (4.18), with 2 (07) =Sy > 0 .



8 L. CHAHARAZED

By comparaison theorem for impulsive differential system [12].
There existe an integer k1> 0, such that

St)y<z()<z. () +&ET <t < (k+1)T,k > ky, (4.19)
From (4.19)
) Abv (1— elmrdenT)
S(t)<Se(t)+¢< <,u+d1—(1—9)e(ﬂ+d+7)T +E| KT <t<(k+1)T, k> ki, (4.20)
Then we have
S(t)<o (4.21)

With
Av (1= e tdnT)

7= p+dl—(1—0)e (ptdtNT +&
From (4.21) and the second equation of (4.2), we have
. 3
I(t) < BeiﬂlTaI(t—T) - (/142 —l—d—i—Zai) I(t) gt > KT+ 71,k > k. (422)
i=1
Consider the following comparaison
3
J(t) = Be MTol (t—T) — <u2 +d+ Zm) y),t > kT + 7,k > k. (4.23)
i=1

From (4.17),
3

Be MTo <y +d+ Zai.
i=1

According to lemma 2,
limi— ooy (t) = 0.

y (t) is the solution of (4.23), with initial condition y(n) = ®(n) > 0, —7<n<O0.
We have limy—oo I (t) < limi— ooy (t) = 0,then

limy—ool (£) = 0. (4.24)

For &> 0 sufficiently small, there exist an integer ko > 0, with koT> kT + 7, with I (t)< &, for all
t > koT.

We have .
I (t) = ond (t) = (pg +d+61) I (1), (4.25)
I(t) <&y, forallt > koT. '
Then for ¢ > k3T, we have .
I (t) <& — (g +d+61) 1 (2) (4.26)
Consider comparaison equation for ¢ > koT
Ly (t) = 1€y — (ug +d +61) Ly (1) (4.27)

We see lim;— oo L1 (t)=0, by comparaison theorem [12] there exists an integerky > ks, such that for
all ¢ > k3T, and &, arbitrarily small, we have

limi—soly () =0 (4.28)
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We have .
I (t) = a2l (t) — (py +d+02) I (), (4.29)
I(t) <&, forallt > koT. '
Then for t > k4T, we have .
I (t) < 01251 — (,u4 +d+ 52) I (t) (430)
Consider comparaison equation for t > kT
Lo (t) = g€y — (g +d +62) Lo (t) (4.31)

We see lim;—, oo Lo (t)=0, by comparaison theorem [12] there exists an integerks > kg, such that for
all ¢ > k4T, and &, arbitrarily small, we have

limi—oolo () =0 (4.32)
We have .
I3 (t) = a3l (t) — (us +d+03) I3 (¢) (4.33)
I(t) <&, forallt > koT. '
Then for ¢ > k5T, we have )
Is (1) < aséy — (us +d+63) I3 (1) (4.34)
Consider comparaison equation for t > kT
Ly (t) = az&y — (us +d +63) Lz (1) (4.35)

We see lim;—, oo L3 (t)=0, by comparaison theorem [12] there exists an integerks > ks, such that for
all ¢ > ksT', and &, arbitrarily small, we have

limi—oels (t) = 0 (4.36)

From (4.10), and (4.24) ,there exists k7 > kg such that

I(t) <&,andN (t) > Aty — &, fort > k7T (4.37)
w+d
From second equation of (4.1),Then
L Av B
E@) < — d)E (), fort > k7T 4.38
) < i~ DB Jort > b (4.38)
There exists kg > k7 such that
E(t) < Aty 5% + &, fort > ksT (4.39)

(u+d)? 1+ aé?

We have the first equation to (4.2), (4.37), and (4.39), we have

: S(t) & Atv P& At
S(t)Z)x-f—l/—(,u—I—d)S(t)—ﬁil_’_aﬁ(t)—I—’y(u_’_d—1+a£%(’u+d)2—5(t)—3§1>

) )\—|—y_ vB8¢,  A+v B B B,

S(t)ZA+V+7M+d Tt 0 (ut P 376, (M+d+71+a§?(t)+7) S(t), (4.40)

Consider the comparaison impulsive differential equation fort > ksT and k > ks,

(4.41)

i (t) = (A+u+vﬁi’;—%§ﬁg—37§1) - (u+d+$§m+7)u(ﬂ,t7ﬁkT
u(tT)=0-0)u(t),t =kT
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With lemma 1, we have the solution

_ __B& _
(“+d+1+as§<t> JW) (t=kT)

Ue (1) =V + (u* —V)e KT <t < (k+1)T,

Which is globally asymptotically stable, where
(1-6) <1 e (“+d+$%“>+”)T>
v .

Bg
R e

Consider the comparaison impulsive differential equation, there exists an integer kg > kg,

ptd  1+a€? (utd)?
B¢
w+d+ 1—!—&75%(1‘/) + v

St) >t (t) — &L, kT <t < (k+1)T,k > kg (4.42)

From (4.20), (4.42), we have

5 Atv 0
AR —(ptd+7) (t—kT)
Se(t)_;ﬁ—d( 1_(1_9)6—(u+d+w)T6 >,kT<t<(k+1)T, (4.43)
(4.43) is globally attractive, then )
lim—00S (t) = S (1) . (4.44)
From (4.43), we have
limy— oo E (t) = 0. (4.45)
We have At
v ~
limy 00 Q (1) = — S (1), 4.46
Q) = 2 = 5. (1) (4.46)

From (4.10), (4.24), (4.28), (4.32), (4.36) , (4.44) , (4.45) , and (4.46), the infection free periodic solu-

tion (5’6 (t),0,0,0,0, % -5, (t), 21;) is globally attractive.

5. Conclusion

This paper addresses the equilibrium and stability of the epidemic model with temporary immunity
and saturated incidence rate. Both trivial and endemic equilibrium are founds.

The disease-free equilibrium FEg is globally asymptotically stable, if Ry < 1, and the system has a
unique non-trivial equilibrium EZ which is globally asymptotically stable if Ry > 1. We study stochastic
stability of the free disease equilibrium under some conditions, and finally we analyse impulsive vaccina-
tion.using theorem 5 imply that the disease dynamics of (22) is determined with Q* < 1.
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