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Generalized Bézier Curves Based on Bernstein-Stancu-Chlodowsky Type Operators

Kejal Khatri∗ and Vishnu Narayan Mishra

abstract: In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with
shifted knots for construction of modified Chlodowsky Bézier curves. We study the nature of degree elevation
and degree reduction for Bézier Bernstein-Stancu-Chlodowsky functions with shifted knots for t ∈ [ γ

n+δ
, n+γ
n+δ

].

We also present a de Casteljau algorithm to compute Bernstein Bézier curves with shifted knots. The new
curves have some properties similar to Bézier curves. Furthermore, some fundamental properties for Bernstein
Bézier curves are discussed. Our generalizations show more flexibility in taking the value of γ and δ and
advantage in shape control of curves. The shape parameters give more convenience for the curve modelling.

Key Words:Bernstein-Stancu-Chlodowsky type operators, Bézier curves, Degree elevation,
de Casteljau algorithm, Shape parameters.
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1. Introduction

Bézier curves were developed by Casteljau [4] and Bézier [3], and have been applied to many
computer-aided design (CAD) applications. While their origin can be traced back to the design of car
body shapes. A Bézier curve is defined in terms of a set of control points, though it only considers global
information i.e. it does not consider local information and calculates the curve points in a linear recursive
approach starting with the edges of the control polygon. Frequently, there is a large gap between the
Bézier curve and its control polygon, which restricts the maximum length of a curve segment. While
strategies such as degree elevation, composite Bézier curves, refinement and subdivision reduce this gap,
they also increase the number of control points. A higher-degree Bézier curve obviously provides a better
shape representation.
In this problem, we generalize some of the very well-known Bézier curve techniques by using a general-
ization of the Bernstein basis, called the Bernstein-Stancu-Chlodowsky basis.
S.N. Bernstein [2] in 1912, who first introduced his famous operators Bn : C[0, 1] −→ C[0, 1] defined for
any n ∈ N and for any function f ∈ C[0, 1]

Bn(f ;x) =

n
∑

k=0

(

n

k

)

xk(1− x)n−kf

(

k

n

)

, 0 ≤ x ≤ 1. (1.1)
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and named it Bernstein polynomials to prove the Weierstrass theorem [16] and Bernstein polynomials
possess many remarkable properties and has various applications in many areas such as approximation
theory, numerical analysis, computer-aided geometric design, and solutions of differential equations due
to its fine properties of approximation.
In computer aided geometric design (CAGD), Bernstein polynomials and its variants are used in order
to preserve the shape of the curves or surfaces. One of the most important curve in CAGD [29] is the
classical Bézier curve [3] constructed with the help of Bernstein basis functions. Other works related to
different generalization of Bernstein polynomials and Bézier curves and surfaces can be found in [6-7, 8,
13-14, 17-18, 22-28].
Gadjiev and Gorhanalizadeh [9] introduced the following construction of Bernstein- Stancu type polyno-
mials with shifted knots:

Sn,γ,δ(f ;x) =

(

n+ δ2

n

) n
∑

k=0

(

n

k

)(

x−
γ2

n+ δ2

)k (
n+ γ2

n+ δ2
− x

)n−k

f

(

k + γ1

n+ δ1

)

(1.2)

where γ
2

n+δ2
≤ x ≤ n+γ

2

n+δ2
and γk, δk (k = 1, 2) are positive real numbers provided 0 ≤ γ1 ≤ γ2 ≤ δ1 ≤ δ2.

It is clear that for γ1 = γ2 = δ1 = δ2 = 0, then these operators reduces to the classical Bernstein
operators. The classical Bernstein-Chlodowsky polynomials have the following form

Cn(f ;x) =

n
∑

k=0

(

n

k

)(

x

bn

)k (

1−
x

bn

)n−k

f

(

k

n
bn

)

, (1.3)

where 0 ≤ x ≤ bn and {bn}(n≥1) is a positive increasing sequence with the properties

lim
n→∞

bn = ∞, lim
n→∞

bn

n
= 0.

These polynomials were introduced by Chlodowsky [5] as a generalization of Bernstein polynomials on
an unbounded set. Aral et al. [1] defined Bernstein-Stancu- Chlodowsky polynomials which are general-
ization of Sn,γ,δ(f ;x) as:

Sn,γ,δ(f ;x) =

(

n+ δ2

n

) n
∑

k=0

(

n

k

)(

x

bn
−

γ2

n+ δ2

)k (
n+ γ2

n+ δ2
−

x

bn

)n−k

f

(

k + γ1

n+ δ1
bn

)

, (1.4)

where γ
2

n+δ2
bn ≤ x ≤ n+γ

2

n+δ2
bn, γk, δk (k = 1, 2) are positive real numbers provided 0 ≤ γ1 ≤ γ2 ≤ δ1 ≤ δ2

and {bn}(n≥1) is a positive increasing sequence such that

lim
n→∞

bn = ∞, lim
n→∞

bn

n
= 0.

1. Case 1. Take bn = 1, then (1.4) reduces to (1.2).

2. Case 2. Take γ1 = γ2 = δ1 = δ2 = 0, then (1.4) gives (1.3).

3. Case 3. Combined Case 1 and Case 2, we get classical Bernstein operators (1.1).

In recent years, generalization of the Bézier curve with shape parameters has received continuous atten-
tion. Several authors were concerned with the problem of changing the shape of curves and surfaces,
while keeping the control polygon unchanged and thus they generalized the Bézier curves in [12, 13- 14,
25].
Recently, Mishra, et al. [20] studied on inverse result in simultaneous approximation by Baskakov-
Durrmeyer-Stancu operators and various generalization of Szász - Mirakjan operators have been studied
by Mishra et al. [21], Gandhi et al. [11] and Mishra and Gandhi [19] and Gairola et al. [10] have discussed
approximation properties of linear positive operators.
In 2017, Khatri and Mishra [15] introduced Generalized Szász-Mirakyan operators involving Brenke type
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polynomials.
The rest of the paper is organized as follows: Section 2 introduces Bernstein-Stancu-Chlodowsky func-
tions Hk

n,γ,δ and their Properties. Section 3 introduces Bernstein-Stancu-Chlodowsky Bézier curves, its

properties, degree elevation and de Casteljau algorithm for Hk
n,γ,δ. The effects on the shape of the curves

by the shape parameters are presented in Section 4.

2. Properties of the Bernstein-Stancu-Chlodowsky functions

The Bernstein-Stancu-Chlodowsky functions are introduced as

Hk
n,γ,δ(s) =

(

n

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k

, (2.1)

where γ
n+δ bn ≤ s ≤ n+γ

n+δ bn and γ, δ are positive real numbers provided 0 ≤ γ ≤ δ.

2.1. Theorem

The Bernstein-Stancu-Chlodowsky functions possess the following properties:

1. Non-negativity:

Hk
n,γ,δ(s) ≥ 0, k = 0, 1, ..., n,

γ

n+ δ
bn ≤ s ≤

n+ γ

n+ δ
bn.

2. Partition of unity:

n
∑

k=0

Hk
n,γ,δ(s) = 1,

γ

n+ δ
bn ≤ s ≤

n+ γ

n+ δ
bn.

3. End-point property:

Hk
n,γ,δ

(

γ

n+ δ
bn

)

=

{

1, if k = 0,
0, k 6= 0,

Hk
n,γ,δ

(

n+ γ

n+ δ
bn

)

=

{

1, if k = n,

0, k 6= n,

clearly both side end point property holds.

4. Reducibility: when γ = δ = 0, bn = 1 formula (2.1) reduces to the classical Bernstein bases on [0,
1].

Proof: All these property can be proved easily from equation (2.1). Fig. 1 represents the Bernstein-
Stancu-Chlodowsky functions of degree 3 for γ = 6, δ = 8 and bn = (n)1/3. Here, we can see that sum of
blending fuctions is always unity and also satisfies end point interpolation property. If γ = δ = 0, bn = 1
it gives classical Bernstein basis on [0, 1] which is presented in Fig. 2.
Apart from the basic properties above, Bernstein-Stancu-Chlodowsky functions also satisfy the following
recurrence relations, as for the classical Bernstein basis.
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Figure 1: Cubic Bézier blending functions for γ = 6, δ = 8, bn = (n)1/3, n = 3.
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Figure 2: Cubic Bézier blending functions for γ = 0, δ = 0, bn = 1, n = 3.

2.2. Theorem

Each Bernstein-Stancu-Chlodowsky functions of degree n is a linear combination of two Bernstein-
Stancu-Chlodowsky functions of degree n+ 1.

Hk
n,γ,δ(s) =

(

n+ 1− k

n+ 1

)

Hk
n+1,γ,δ(s) +

(

k + 1

n+ 1

)

Hk+1
n+1,γ,δ(s), (2.2)

where γ
n+δ bn ≤ s ≤ n+γ

n+δ bn and γ, δ are positive real numbers 0 ≤ γ ≤ δ.
Proof:

(

n

n+ δ

)

Hk
n,γ,δ = Hk

n+1,γ,δ

(

n+ γ

n+ δ
−

s

bn
+ {

s

bn
−

γ

n+ δ
}

)

,

(

n

n+ δ

)

Hk
n,γ,δ(s) =

(

n+ γ

n+ δ
−

s

bn

)

Hk
n+1,γ,δ(s) +

(

s

bn
−

γ

n+ δ

)

Hk
n+1,γ,δ(s)

= I1 + I2, (2.3)

I1 =

(

n+ γ

n+ δ
−

s

bn

)((

n

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k )

=

(

n

n+ δ

)(

n+ 1− k

n+ 1

)

Hk
n+1,γ,δ(s).
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Similarly,

I2 =

(

s

bn
−

γ

n+ δ

)((

n

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k )

=

(

n

n+ δ

)(

k + 1

n+ 1

)

Hk+1
n+1,γ,δ(s).

By putting the values of I1 and I2 in (2.3), we get required result (2.2).

2.3. Theorem

Each Bernstein-Stancu-Chlodowsky functions of degree n is a linear combination of two Bernstein-
Stancu-Chlodowsky functions of degree n− 1.

Hk
n,γ,δ(s) =

(

s

bn
−

γ

n+ δ

)(

n+ δ

n

)

Hk−1
n−1,γ,δ(s) +

(

n+ γ

n+ δ
−

s

bn

)(

n+ δ

n

)

Hk
n−1,γ,δ(s), (2.4)

where γ
n+δ bn ≤ s ≤ n+γ

n+δ bn and γ, δ are positive real numbers 0 ≤ γ ≤ δ.
Proof: We use the Pascal-type relations, we have

Hk
n,γ,δ(s) =

(

n

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k

=

{(

n− 1

k − 1

)

+

(

n− 1

k

)}(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k

=

(

n− 1

k − 1

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k

+

(

n− 1

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k

=

(

s

bn
−

γ

n+ δ

)(

n+ δ

n

)

Hk−1
n−1,γ,δ(s) +

(

n+ γ

n+ δ
−

s

bn

)(

n+ δ

n

)

Hk
n−1,γ,δ(s).

3. Bernstein-Stancu-Chlodowsky Bézier curves

We define the Bernstein-Stancu-Chlodowsky Bézier curves of degree n using the Bernstein-Stancu-
Chlodowsky functions as the following:

R(s) =
n
∑

k=0

RkH
k
n,γ,δ(s). (3.1)

where Rk, R3(j = 0, 1, ..., n). Rk are control points. Joining up adjacent points Rk, k = 0, 1, 2, ..., n to
obtain a polygon which is called the control polygon of Bernstein-Stancu-Chlodowsky Bézier curves.

3.1. Theorem

The end-point property of derivative:

R
′

(

γ

n+ δ
bn

)

=

(

n+ δ

bn

)

(R1 −R0)

(

n− 1 + δ

n− 1

)n−1(
n− 1 + γ

n− 1 + δ
−

γ

n+ δ

)n−1−k

(3.2)

R
′

(

n+ γ

n+ δ
bn

)

=

(

n+ δ

bn

)

(Rn −Rn−1)

(

n− 1 + δ

n− 1

)n−1(
n+ γ

n+ δ
−

γ

n− 1 + δ

)n−1

(3.3)



6 K. Khatri and V. N. Mishra

i.e. Bernstein-Stancu-Chlodowsky Bézier curves are tangent to fore-and-aft edges of its control polygon
at end points.
Proof: Let

R(s) =

n
∑

k=0

RkH
k
n,γ,δ(s)

=

n
∑

k=0

Rk

(

n

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k

= U(s).

or
R(s) = U(s).

Now, on differentiating both side with respect to s, we get

R
′

(s) = U
′

(s).

Bn
k (s) =

(

n

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k (
n+ γ

n+ δ
−

s

bn

)n−k

,

then

U(s) =

n
∑

k=0

RkB
n
k (s).

(Bn
k (s))

′

=

(

n

k

)(

n+ δ

n

)n
k

bn

(

s

bn
−

γ

n+ δ

)k−1 (
n+ γ

n+ δ
−

s

bn

)n−k

−

(

n

k

)(

n+ δ

n

)n (
s

bn
−

γ

n+ δ

)k
n− k

bn

(

n+ γ

n+ δ
−

s

bn

)n−k−1

=

(

n+ δ

bn

)

[Bn−1
k−1 (s) +Bn−1

k (s)],

then

U
′

(s) =
n
∑

k=0

Rk(B
n
k (s))

′

.

Now

U
′

(

γ

n+ δ
bn

)

= R
′

(

γ

n+ δ
bn

)

=

(

n+ δ

bn

)

(R1 −R0)B
n−1
0

(

γ

n+ δ
bn)

)

and

R
′

(

γ

n+ δ
bn

)

=

(

n+ δ

bn

)

(R1 −R0)

(

n− 1 + δ

n− 1

)n−1 (
n− 1 + γ

n− 1 + δ
−

γ

n+ δ

)n−k−1

.

Similarly, we get

U
′

(

n+ γ

n+ δ
bn)

)

= R
′

(

n+ γ

n+ δ
bn

)

=

(

n+ δ

bn

)

(Rn −Rn−1)B
n−1
0

(

n+ γ

n+ δ
bn)

)

and

R
′

(

n+ γ

n+ δ
bn

)

=

(

n+ δ

bn

)

(Rn −Rn−1)

(

n− 1 + δ

n− 1

)n−1 (
n+ γ

n+ δ
−

γ

n− 1 + δ

)n−1

.
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Degree elevation and de Casteljau algorithm

Degree elevation
Bernstein-Stancu-Chlodowsky Bézier curves have a degree elevation algorithm that is similar to that
possessed by the classical Bézier curves. To increase the flexibility of a given curve, we use the technique
of degree elevation. A degree elevation algorithm calculates a new set of control points by taking a convex
combination of the old set of control points which retains the old end points.

R(s) =

n
∑

k=0

RkH
k
n,γ,δ(s)

and

R(s) =
n+1
∑

k=0

R∗
kH

k
n+1,γ,δ(s).

where

R∗
k =

(

k

n+ 1

)

Rk−1 +

(

1−
k

n+ 1

)

Rk, k = 0, 1, ... , n + 1, R−1 = Rn+1 = 0. (3.4)

The statement above can be derived from Theorem (2.2). When γ = δ = 0 and bn = 1 formula (3.4)

reduce to the degree evaluation formula of the classical Bézier curves. If we let R = (R0,R1, ...,Rn)
T

denote the vector of control points of the initial Bernstein-Stancu-Chlodowsky Bézier curves of degree
n, and R(1) = (R∗

0,R
∗
1, ...,R

∗
n+1) the vector of control points of the degree elevated Bernstein-Stancu-

Chlodowsky Bézier curves of degree n+ 1, then we can represent the degree elevation procedure as:

R(l) = Tn+1R, (3.5)

where

Tn+1 =
1

n+ 1



















n+ 1 0 · · · 0 0
n+ 1− n n · · · 0 0

...
...

. . .
...

...
0 · · · n+ 1− 2 2 0
0 0 · · · n+ 1− 1 1
0 0 · · · 0 n+ 1



















(n+2)×(n+1)

For any l ∈ N, the vector of control points of the degree elevated Bernstein-Stancu-Chlodowsky Bézier
curves of degree n+ l is:

R(1) = Tn+l...Tn+2Tn+1R. (3.6)

As l → 0, the control polygon R(1) converges to a Bernstein-Stancu-Chlodowsky Bézier curves.
De Casteljau algorithm
Bernstein-Stancu-Chlodowsky Bézier curves of degree n can be written as two kinds of linear combination
of two Bernstein-Stancu-Chlodowsky Bézier curves of degree n − 1, and we can get the two selectable
algorithms to evaluate Bernstein-Stancu-Chlodowsky Bézier curves. The algorithms can be expressed as:
Algorithm 1.











R0
k(s) ≡ R0

k ≡ Rk, k = 0, 1, 2, ..., n,

Rr
k(s) =

n+δ
n

(

s
bn

− γ
n+δ

)

Rr−1
k+1(s) +

n+δ
n

(

n+γ
n+δ − s

bn

)

Rr−1
k (s),

r = 1, ..., n, k = 0, 1, 2, ..., n− r, γ
n+δ bn ≤ s ≤ n+γ

n+δ bn, 0 ≤ γ ≤ δ.

(3.7)

R(s) =

n−1
∑

k=0

R1
k(s) = ...

∑

Rr
i (s)H

k
n−r,γ,δ(s) = ...Rn

0(s). (3.8)
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It is clear that the results can be obtained from Theorem (2.3). When γ = δ = 0 and bn = 1, formula

(3.7) and (3.8) recover the de Casteljau algorithms of classical Bézier curves. Let R0 = (R0,R1, ...,Rn)
T
,

Rr = (Rr
0,R

r
1, ...,R

r
n−r)

T
, then de Casteljau algorithm can be expressed as:

Algorithm 2.

Rr(s) = Mr(s)...M2(s)M1(s)R
0, (3.9)

where Mr(s) is a (n− r + 1)× (n− r + 2) matrix and

Mr(s) =
n+ δ

n























(

n+γ
n+δ − s

bn

) (

s
bn

− γ
n+δ

)

· · · 0 0

0
(

n+γ
n+δ − s

bn

) (

s
bn

− γ
n+δ

)

0 0

...
...

. . .
...

...

0 · · ·
(

n+γ
n+δ − s

bn

) (

s
bn

− γ
n+δ

)

0

0 0 · · ·
(

n+γ
n+δ − s

bn

) (

s
bn

− γ
n+δ

)























4. Shape control of Bernstein-Stancu-Chlodowsky Bézier curves

6, 8

control polygon

control points

0, 0, bn1

0 1 2 3 4 5 6
0

1

2

3

4

5

Figure 3: The effect of the shape of Cubic Bézier curve

The Bernstein-Stancu-Chlodowsky Bézier curves is generated by setting γ = 6, δ = 8 (red lines),
the classical Bézier curve generated by setting γ = 0, δ = 0, bn = 1 (dashed bule lines). From fig.
3, Bernstein-Stancu-Chlodowsky Bézier curves move close to the control polygon approximately same
as classical Bézier curves. Similarly, in order to construct closed, we can set Rn = R0. The Bernstein-
Stancu-Chlodowsky Bézier curves is generated by setting γ = 6, δ = 8 (red line), the classical Bézier curve
is generated by setting γ = 0, δ = 0, bn = 1 (dashed blue line). From fig. 4, Bernstein-Stancu-Chlodowsky
Bézier curves is closer to the control polygon than classical Bézier curves.
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6, 8

control polygon
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Figure 4: Closed cubic Bézier curve

5. Future work

Bernstein-Stancu-Chlodowsky Bézier curves share most properties of classical Bézier curves. More-
over, the shape of Bernstein-Stancu-Chlodowsky Bézier curves can be adjusted by altering the value of
shape parameters. In the future, we will construct Bernstein-Stancu-Chlodowsky Bézier surfaces and will
discuss some fundamental properties for Bernstein-Stancu-Chlodowsky Bézier surfaces, study de Castel-
jau algorithm and degree evaluation properties for surfaces. Similarly, we will determine q-analogue of
Bernstein-Stancu-Chlodowsky Bézier curves and surfaces. We will also explain de Casteljau algorithm
and degree evaluation properties for curves and surfaces. We also hope to construct generalizations of
classical rational Bézier curves and surfaces based on these operator.
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