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Existence and Stability Results of the Solution for Nonlinear Fractional Differential
Problem
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ABSTRACT: The problem of existence and stability results for fractional problem is considered. Based on the
Krasnoselskii’s fixed point theorem, we prove our main results. Then we give an examples to illustrate our
main results.
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1. introduction and Preliminaries

It is known that fractional order equations serve as the basis for mathematical modeling of processes
occurring in fractal media. When constructing mathematical models of geophysical processes, the in-
troduction of the concept of the effective rate of change of certain physical quantities characterizing the
modeled processes leads to differential equations containing a composition of fractional differentiation
operators with different principles [4], [10].

In this paper we consider the following IVP of fractional differential equation

Dy a(t) = g(t,(t) + “ Dy f(t (1), t €0, +00) W)
z(0) = zo, 2'(0) = 1,

where 1 < p < 2, (29,71) € R%, f,g: Ry x R — R are continuous functions with f(¢,0) = g(¢,0) = 0
and ¢ DP is the standard Caputo fractional derivative of order p.

The nonlinear fractional differential problem have been studied less intensively. Unlike the classical
differentiation operator of integer order, the action of the fractional differentiation operator on the product
of two functions does not appear to be a finite sum, but an infinite series (The so-called generalized
Leibniz rule). A particular case of which is also equation (1.1). Nevertheless, there are a number of
general mathematical approaches that make it possible to construct solutions and to treat the stability,
one of which is Krasnoselskii’s fixed point theory (Please see [1], [2], [3], [6], [7] )-

Here, we present some notations, definitions and auxiliary Lemmas concerning fractional calculus and
fixed point theorems. Some preliminary concepts of fractional calculus [11].

Definition 1.1. Let ¢ > 0 and ¢ : Ry — R. The Riemann-Liouville fractional integral of order q of a
function C is defined by

I9.C() = ﬁ/o (t— )7 ¢(s)ds, € Rs.
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Definition 1.2. [11] Let ¢ > 0, the Caputo fractional derivative of order q of a function ¢ : Ry — R
is defined by

D) = g [ (= s

= I %¢M@), teRy,
where n = [q] + 1, provided the right side is pointwise defined on R.

Lemma 1.3. [11] For real numbers ¢ > 0 and appropriate function ((t) € C"~1[0,00) and ((t) exists
almost everywhere on any bounded interval of R.

(I5: “ D3 Q) = C(t) = R

Lemma 1.4. [8] Let be A be a subset of the Banach space X. Then, A is relatively compact in X if the
following assumptions hold
(A1) {% . z(t) € A} is uniformly bounded.

(As) % i x(t) € A} is equicontinuous on any compact interval of Ry.

(A3) {% :ox(t) € A} is equiconvergent at infinity i.e. for each given € > 0, there exists Ty > 0 such
that for any x € A and t1,t2 > Ty, we have

Lemma 1.5. [9](Krasnoselskii’s fived point Theorem) Let E be bounded, closed and convex subset in a
Banach space X. If T, T5 : E — E are two applications satisfying the following conditions

1) e +Toy € E, for every xz,y € E.

2) Ty is a contraction.

3) Ty is compact and continuous.

then, there exists z € E such that Tyz + Toz = z.

Let Q be the set of all strictly increasing functions h : Ry — [1,4+00) satisfying the following as-
sumptions
(1) h(0) = 1.
(Ho) tl_i}m h(t) = +oo0.
(Hs) h(t) > h(t—s)h(s) forall 0 < s <t < oo.

Remark 1.6. Note that Q is a non-empty set, because the functions hi(t) = e' and ha(t) = €' belong
to Q.

We denote

E = {x(t) € C[0, +00), 212113 |zgg| < oo},

with the norm

|z(1)]

=s :
] U0
Then (E, || - ||) is a Banach space. For more details of this Banach space we refer to [5,8].

In addition, we define ||¢||: = max{|¢(s)],0 < s <t} for all t > 0,
all given function ¢ € C(Ry), and let B(e) = {x:x € E,||z| <€}
be a non-empty closed convex subset of F, for each € > 0.
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Lemma 1.7. Let g(t,z(t)) € C[0,+00) and f(t,z(t)) € C*[0, +0c0).
Then z(t) € C[0,+00) is a solution of (1.1) if and only if x(t) is a solution of the following Cauchy
system:

() = 177 (gu,x(t)) +CD§:1f<t,m<t>>) fa, t20 (2)
1.

z(0) = xo.

Proof. To begin the proof, note that for any 0 < a < 0, if ¢ € C[0,4+00), then (/§})(0) = 0. Indeed

lIgvo(t)] = ﬁ /0 (t —s)* Lp(s)ds
el o
< mt — 0, ast — 0. (1.3)

To simplify calculations, we use the notation
m(t) = g(t,z(t)) + DY f(t 2(t)):
(1) let z(t) € C[0,+o0) be a solution of (1.1). By the definition 1.2, we get
C Dy a(t) = (D5 DEa)(t) = (O DR ) (1) = mio),
then from Lemma 1.3 we obtain
a/(t) = 101 O D (1) = 2/ (0) + I8 'm(t) = I8 'm(t) + 1,

therefore z(t) is a solution of (1.2).
(2)  Conversely, let x(t) be a solution of the problem (1.2). Then we have

Db a(t) =DVl (t) = (YD ) (1) + O DB ey = mi(t).
Since m(t) € C(R.), then we find (Ig:lm)(O) = 0, this implies
2/(0) = (I8 'm)(0) + x1 = 1.

Thus, x(t) is a solution of the problem (1.1). O

Lemma 1.8. The problem (1.2) is equivalent to the problem

2'(t) = —pz(t) + G(t,z(t)) + %/0 P(t — s)x(s)ds,
z(0) = zp,

where: Y(t —s) = (t_lf(;;il +p, VpeR, 0<s<t<+o0,

and:  G(t,z(t)) = Ig;l (g(t,x(t)) — x(t)) + f(t,z(t)) — f(0,2q) + 1.
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Proof.
() = I§+1(g + Db 1f(t,x(t)))+x1.
= Ig+1<g + 9D 1f(t,x(t))—x(t))+Ig;1x(t)+x1.
= 7 (a(ta(0) = o)) + 15 DL ) + B al0)
= 7 (a(ta(0) = o(0)) + F0.000) — F0,20) + 1 2(0) + 1.
= Gta(t) + 127 (t).

t 5)P—2
= G(t, x(t))—i—/ % (s)ds.

= dt/¢t—s s)ds — px(t).
(]

Lemma 1.9. z(t) is a solution of the problem (1.4) if and only if x(t) satisfies the following integral
equation:

z(t) = e Plag+ w(xl f(o, x0)> —|—p/te P () du (1.5)
/ =) £ (s, x( ds+/ / e S—U,)p_QdS g(u, z(u))du.

Proof. Using the variation of constants method to the first order nonlinear equation in (1.4) with inte-
gration by parts, we find:

x(t) =e oy + /t e P(t=9) [G(S, z(s)) + % /OS (s — u)x(u)du] ds.

0

ety /0 Ceat=0) [% /0 " (s — w)a(u )dU]ds+ / PG s, 2(s)ds.

—e Pt —p(t—s) ’ _ d ]S_ _ —p(t—s) _ w)dud
e xo—f—[e /Ow(s u)x(u)usz p/ /¢s u)x(u)duds
—|—/ e Pt=s) {I&lg(s,x(s)) — Igflx(s) + f(s,2(8)) — f(0,20) + xl} ds.
0
—ert — 8)a(s)ds — P(t=9) (s — u)dsa(u)du
e x0+/0¢(t s)xz(s)ds //e (s —u)dsz(u)

+/Ot€_p(t_s) /0 (?(— 11)”1)2 (u, 3(u ))duds_/o o p(t=s) /0% (u)duds

t

+/)t efp(tfs)f(s’ (s ))ds—/t e P(t— )f(o xo)d5+/ —p(t—s )xlds.

:e_ptxo+/0t¢(t—s s)ds — / / —PU=)a)(s — u)dsz(u)du

+ %1 /t /t e*P(t*S)(s —w)P"%ds g(u, z(u))du — 1 _; - (xl — f(O,x0)>

+/e”(t ) f(s,z( ds—// tsaws_u)ds x(s)du.
0 Os
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t t t
=e Plxg + / P(t — s)x(s)ds — p/ / e Py (s — w)dsz(u)du
0 0 u

1 t ot
+m/ / e P (s —w)P~2ds g(u, z(u))du
0 Ju
1—e P

+_7_(m_ﬂam0+A¥P@%uw@Ms

s=t

+%f{%p@ﬁ¢@—uﬂku—pﬁﬁf“SW@—um%wwm%

_ e rt t
=e Pzy + d=c) (251 - f(0,$0)> + P/ e P g (u)du
0

t t t efp(tfs)
e P=5) f(s, 2(s))ds —(s—uw)’"%ds g(u,x(u))du.
- Fls.ateis+ [ [ o= uwp =2 glua(u)a

Conversely, suppose that (1.5) is satisfied, then we have z(0) = x¢ and :

(eptx(t))/ = pefz(t) + e’ (t).

ePt —

! (ml - f(O,x0)> + p/ot P (u)du

+A¥ﬂvaumw+é

w{m—fmwm+pmw+f@w@»+4;wmx@ﬂ.

l:x() +

t /
e P IP g (u, x(u))du} .

= et {Iéﬂrlg(t, a(t)) + IEYODP f(t a(t)) + xl} + pePla(t).
Thus,
o (t) = I gt (1) + I0 YO DE F(t a(t)) + .
[

Based on Lemma 1.7, Lemma 1.8 and Lemma 1.9, we conclude that the problem (1.1) is equivalent
to the integral equation (1.5).
Section 2, provide the proofs of the existence of solution to the problem (1.1) in Banach space. Finally,
a stability result and an illustrative example is presented in Section 3.

2. Existence result

In order to prove the existence of the solution for the problem (1.1) in E. We transform the problem
(1.1) into fixed point problem Pz = x Where P is an operator defined on B(¢) by

Px(t) = e Pag+ % (xl — f(O,x0)> —|—p/0 e P (u)du (2.1)

b [ e s+ gy [ e 6w gatwan

0

We decompose the operator P into two operators Py and P, (i.e. P = P, + P») defined on 9B(¢), as
follows:

Pix(t) = e Plag + =" (xl - f(O,x0)> + p/t e Pt g (u)du.
P 0
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Pyx(t) = / —P=9) f (s a( ds+/ / e s—)u)p 2ds g(u, z(u))du.

/ efp(th)f‘(S’ x(s))ds + / K(t—u)g(u,z(u))du,
0 0

to—p(t=s)(g _ 4, \P—2
/e (5 —u) ds, t—u>0

where :  k(t —u) = L(p—1)

0, t—u <0,

Theorem 2.1. Suppose that there are strictly positive constants ¢,0,c1,c2,c3 where ¢1 + c2 + ¢3 <
1, |zo| + |z1] + | £(0, 20)| < and the functions f,G: Ry x (0,¢] — Ry are continuous and nondecreasing

inr for fived t with f,g € L*[0,+00) in t for fived r, such that

MO < gt oy, L <7, 1),

hold for allt >0, 0 < |v| < ¢ and

t _ _
sup/ Rt — u) g(u’r)du§02<1—cl—03
>0Jo h(t—u) r

e T
tZIO) o hit—s) r

ds < €3,

hold for every 0 < r < . Then there exists at least one fixed point of the operator P in B(e).

—pt

Proof. Suppose that there exists constant ¢y > 0 such that 2(—t) < ¢4 and

e —pt L JrOO —ps

€ BC[0,+00) N L0, +00), |p|/ —dsgcl.

h(t) h(s)

Let
1—
O<6§[ (01+62+63)}|p|6.
calpl +1+ca

Firstly, we will show that: Pi*B(e) C E, P,%B(e) C E, and P; is a contraction mapping.

(2.2)

(2.6)

It is clear that for x € B(e), P; and P, are continuous functions on R. Moreover, for all x € B(e) and

each t > 0, we have

|\Pz@) 1| _, (L—e") bt
) Wepmo—FT(xl—f(Omo))—i—p/oep z(u)du|.
e~ rt (1 —e=rt) be=p(t=u) p(y)
< S+ S (o) +o [ G
< ool + % (o] + 100l ) + Ll
< oo,

which means that P;B(e) C E.
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Similarly, for any x € 9B(¢), we have

| Paa(t)] _ 1 te*p(t*@ s.x s —u)g(u, z(u))du|.
ol h(t)/o £(5,2(5)) d+/Kt )g(u, 2(u))d
- Fempt=s) | f(s,2(s))| ds + Kt—u) lg(u, z u))‘du

o h(t—s)  h(s h(t —u) h(u)

(s)
t o=plt-3) |z(s)| —u | (u)|
/o h(t—s)f( ’ h(s d8+ K;_u ) )d“'

IN

< csllz|l + cof ]

< (3 +c2)e

< +oo0. (2.7)
-

which implies that Py (¢) C E. For any z,y € B(e), we have

L e—p(t—u)
e () — y(w)]

Pix(t) Pw(ﬂ‘
su — < su
] IO RO N B L ()
Lem Pz (u) — y(u)|
< su . du.
o tz%))'p' o h(t—u) h(u)
[

< ——ds||lx — <ci||lx—1yll.
< ol [ grydslle vl <alle =yl

Since ¢; < 1, hence P; is a contraction.
Secondly, for every x,y € B(¢), we have

sup | Pox(t) + Pry(t)|
>0 h(t)

1 (1 e—pt) /t
o —pt —p(t—u)
= — +— — f(0, + d
igg{h(t) e g (xl ( a:o)) p ; e y(u)du

+/Ot e P79 f (s, z(s))ds + /tK(t — w)g(u, z(w))du }

e ) =) Jy(u)
< su + —|— x|+ | f(0,x + / du
o { ol g (vt + ) (11 0)')  Jo W= hw)
e Pt g)|f$a: K(t—u) ,o(u))]
+/0 h(t—s) d+/ Bt —u) h(u) d“}'
< ealool + 10 o (1 1|+|f(0 w0)]) + ellyll + esllell + s all.
14
< %54'(014-634—02)6.
< e
Thus, Py + P> € B(e).
From the assumption |Pz?t()t)| < 400, we find that the set {% coa(t) € %(e)} is uniformly bounded

in E. Furthermore, the convolution product of two functions where the first one is of L' and the other
tends to zero also tends to zero. Therefore, for ¢ — u > 0, we have:

t— ) 1 LemPm) (s —u)p—2
0< 1 < li d
>~ t—1>r-r|-loo h(t _ u) - t—1>r-ri-loo F(p — 1) w h(t — S)h(S — 'U:) s
t —p(t—u—s) p—2
— lim ¢ W=,

t—+oo I'(p—1) Jo h(t —u—3s) h(s)
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p—2
because, 7;1(—75) — 0 ast — +oo for 1 < p < 2. In addition, by the continuity of the functions k(t) and
h(t), it follows that there exists a positive constant ¢s such that ’zg — u; < ¢5 and for any x € B(e)
—u
and for all t1,t3 € [0,T*], T* € Ry, t1 < ta, we have:
‘ng(tg) _ ng(tl)
h(t2) h(t1)
t1 k(tz — ’U,) k(tl — ’U,) t2 k(tz — ’U,)
< - _ .
< | et s+ [ EREE g2
t | gmplta=s)  o—plti—s) ] t o—plta—s) ]
S Sy s+ [ s a(elas
" k(t2 — wh(u)  k(ts — u)h(u) |z (u)| P k(tz —u) |g(u, z(u))|
< - g . .
< [ Ay P o )9+ / Mea—w) R
t1 [ p—plta—s) (=5 py(g) | ty y—plta—s)
[ |n) bl el [ e o,
0 h(t2) h(t1) h(s) o hlt2—s)  h(s)
B E(ty —u)h(u)  k(ty —u)h(u) t2
< — 7l d g du.
< [ et es [ g,
1 e*p(trs)h(s) e*p(trs)h(s) _ tz2
+ — s,eds—i—c/ s, €)ds.
| = w5 +ea [ T(5.0

b (t2) »a(t1)
hu ’Ph(tgt) B Ph(tf)
{ z(t) € %(6)}

Now, based on Lemma 1.4 to show that P»%B(e) is relatively compact it suffices to prove that {% :

— 0, as tg —> t1, which means that

z(t) .

oK is equicontinuous on any compact of R .

x(t) € B(e)} is equiconvergent at infinity. Indeed, for any ¢* > 0, there exists M > 0 such that

“+o0 €* +oo _ €*
65/ g(u, €)du < —, 04/ f(s,e)du < —.
M 6 M 6
Then there exists T' > M such that for all t1,t2 > T, we get
sup ‘k(fz —wh(u) k(1 —u)h(u) < sup ‘k(tg —u) + sup k(ty —u)
wel0,M] h(tz) h(t1) wefo,m] | P(t2 —w) | wepo,m | A(E1 — u)
6*
< PR
- 64
e—ﬂ(fa—s)h(s) e—P(tl—S)h(S) e—p(t2—s) e—P(ti—s)
sup — < sup |—— |+ sup |—F——
s€[0,M] h(t2) h(ty) sefo.m] | P(t2 = 8) | sepoon | Pt — 8)
6*
< PR
- 6B

where

+oo +oo
A:/o g(u, €)du, B:/o f(s,€)ds.
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Then, we have

’PQ.’E(tQ) . PQl‘(tl)
h(tz2) h(t1)

< [Nt pwenas + [ s atoas
+/0M k(]tf(;)u) _ k(]t;(t:)“) g(u,x(u))dU—i—/J:: %g(u,x(w)du
+/A: %f(s,x(s))dS-i-/A: %g(u,w(w)du
N /OM k(tzh—(;:))h(u) B k(tlh—(z))h(“) G(u, z(u))du + /N j %E(u,m(u))du
n /A; %7(&3@(5% + /A; Ha(w(u))du
<S4St /M+°° Fls,a(s))ds +2¢4 /N joo glu, z(w))du
< stttz T

Finally, from krasnoselskii fixed point Theorem, we conclude that the problem (1.1) has at least one
solution. (]

3. Stability Result

Before stating and proving our main stability results, we need the following definitions:

Definition 3.1. The trivial solution x = 0 of fractional order system (1.1) is said to be
i=1
1) Stable in Banach space E, if for every ¢ > 0, there exists 6 = 0(€) such that Z |z;| < & implies that
i=0
the solution x(t) = x(t, zo,x1) exists for all t > 0 and satisfies ||z|| < e.
i=1
2)  Asymptotically stable, if it is stable in E and there exists a number u > 0 such that Z lzi| < p
i=0
implies that t_l}+moo lz(t)]| = 0.

Theorem 3.2. Assume that all assumptions of Theorem 2.1 hold such that |xo| > |f(0,z0)|. Then the
trivial solution x = 0 of the system (1.1) is stable in the Banach space E.

Proof. Let for any € > 0

{1—(c1+ca+es)}lpl
calpl + 14 ¢4 '

0<d < (31)

From the assumption |xo| 4+ |z1]| + | f(0, 20| < 0 it follows that

|zo| + [21] <0 —[f(0, 20| = 61 > 0.
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Then, we get

e Pt 1—e Pt t o—p(t—u)
lol = sup|S o+ )@n—ﬂ&mﬂ+p/————%WMu
0

>0 | h(t) ph(t

erlt=9) "Rt w)
) gty || st

IN

t>0

Ce=rt=3) | F(s,x(s)) Bt — u) lg(u, 2(u))
*Afm—s> h) ‘i+Aim—u> h(u) “}
cady + +“m+QWWwﬂw+@mH

sw{%%mwﬂ ?)mu+m0m +m/6p )l
(s

IN

Hence,

calpl + 1+ ca

]l <
ol

51 Sev

therefore, the trivial solution z = 0 of the problem (1.1) is stable in the Banach space E. O

Theorem 3.3. Suppose that all assumptions of Theorem 2.1 are satisfied with

lim < 2
AR =0 (32)

and for any r > 0 there exist two strictly positive functions ¢, (t),,(t) € L'[0,+00) such that |u| < r
implies

Lol <y (), aer t€[0,400). (3.3)

Then the trivial solution x = 0 of the system (1.1) is asymptotically stable in E.

Proof. From Theorem 3.2 it follows that the trivial solution # = 0 of problem (1.1) is stable in the Banach
space E. So, it suffices to show that x = 0 is attractive. For this fact, we define for any r > 0

B(r) = {z € B(r): tLigrnoo % =0}.

We only show that Py 4+ Py € B(r) for any x,y € B(r), in other words,

lim ng(t) + Ply(t)

N B
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For all z,y € B(r), we have:

| Poa(t) + Pry(t)]
h(t)

- % el + @ (a:l - f(O,x0)> +p /0 =)y )
+/Ot e_p(t_s)f(s,x(s))ds—l—/tK(t—u)g(u,x(u))du.

< gl i b QEQO““”ﬂOM"””/jﬁﬁ:”ﬁgu“
T e,

: EYDOFFQ(§ﬂ+ZfD(Wﬂ+VWwa+p[f§§;%€$yw
+/0 Z(p(t o + Kf__:f o ()

From (2.5) and (3.2), we have:

Let® fyu)
o 7t —u) hlw)

du — 0, as t— 400,

and . ()
k(t—u 1 e Pit—u _
hEt—u;:F( 5 ), AW s =0, as t— oo

Together with the hypotheses ¢,.(t),v,.(t) € L]0, +00), we find

PR(t—
v (u)du — 0, as t — o0,
t— u)
and
b o—p(t—s)

o m¢r(8)d8 — O, as t — +OO

Moreover, since h(t) — +oo as t — +00, we conclude that

Pyx(t) + Pry(t)

0 — 0, as t — +o0.

Therefore, Pyz + Pyy € B(r) which implies that the trivial solution z = 0 of problem (1.1) is asymptoti-
cally stable. O

Example 3.4.

4
C s _ C 3 xs
Dg.x(t) = o T Dg. <W)a t €[0,+00)

z(0) = zg, 2'(0) =z,

(3.4)

where o > 0. Suppose 0 < |p| < Z. Let h(t) = etV and ¢; = UJl’iIer.
Then, (2.5) holds i.e.,

_ e Pt (o
e " /h(t) = ot =€ (to+l e BO(Ry) N L' (Ry),
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and N
|p|/ e—P |p|/ o—(pro+1)s Ipl _
0 (o+1)9 ~“o+1+ p

|z(?)]
Ey ={z(t) e C(Ry) : igg et < 00},

The Banach space is

equipped with the norm

|z(1)]

ol = sup o
Let ,
33 - T3
gitr)=— ) =1a

We get f(t,7),g(t,r) € L*(Ry) in t for fized r.
After some computations, we find

_ t _ _2 t—u _2 L
Bt —w) 1)/ (s w73 1)/ T _dr < (0 +1)3,
u 0 e

h(t —u) = T(3 elo+1)(s—u) r(: (o7
t —p(t—s)F t —p(t—s) 1
/ eI Tsr) / I o<,
o h(t—s) r o h(t—s)1+1t
and
E(t —u) / u) t3r 2d “.
h(t —u) h(t —u) et *

Therefore, all assumptions of Theorem 3.2 are satisfied, then the trivial solution of (3.4) is stable in the
Banach space Ejy.
Let @,., ¥, € L*(Ry) where

4
373 r3

@, (t) = pEEsE ¥, (t) = (ESDrCGED
satisfies the following inequalities

[G(t, )] < @,.(t), |F(t, )] < 0 (8),

and .
e P
li —— =0.
t—otoo h(2)
Then, from Theorem 3.3 we conclude that trivial solution of (3.4) is asymptotically stable.

Acknowledgments

The authors would like to thank the reviewers for the careful reading of the manuscript and their
constructive comments.

References

1. N. Abdellouahab, B. Tellab and Kh. Zennir, Existence and Stability results of a nonlinear fractional integro-differential
equation with integral boundary conditions, Kragujevac J. Math., 46(2), (2022), 685-699.

2. N. Abdellouahab, B. Tellab and Kh. Zennir, Existence and Stability results for the solution of Neutral fractional
integro-differential equation with nonlocal conditions, (2019), submitted.

3. B. Ahmed, A. Alsaedi, S. Salem and S. K. Ntouyas, Fractional Differential Equation Involving Mixed Nonlinearities
with Nonlocal multi-point and Reimann-steiljes integral-multi-strip conditions, Fractal Fract., 34(3), (2019).



10.

11.

NONLINEAR FRACTIONAL DIFFERENTIAL PROBLEM 13

T. M. Atanackovic, B. Stankovic, On a differential equation with left and right fractional derivatives, Fractional calc.
Appl. Anal., 10(2), (2007), 139-150.

. T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover publications INC, Mineola,

New York, 2006.

F. Ge, C. Kou, Stability analysis by Krasnoselskii’s fixed point theorem for nonlinear fractional differential equations,
Appl. Math. Comput., 257, (2015), 308-316.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations. Elsevier,
Amsterdam, 539,(2006).

C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations
on the half-axis, Nonl. Anal., 74, (2011), 5975-5986.

M. A. Kranoselskii, Two remarks on the method of successive approximations. Uspekhi Mat. Nauk., 10, (1955), 123-127.

B. Stankovic, An equation with left and right fractional derivatives, Publications de 'institute mathematique, Nouvelle
série, 80(94), (2006), 259-272.

Y. Zhou, Basic theory of fractional differential equations, 6, Singapore: World Scientific, (2014).

Naimi Abdellouahab,
Laboratory of Applied Mathematics, Kasdi Merbah University, B. P. 511. 30000 Ouargla, Algeria.
E-mail address: naimi.abdelouahab@univ-ouargla.dz

and

Brahim Tellab,
Laboratory of Applied Mathematics, Kasdi Merbah University, B. P. 511. 30000 Ouargla, Algeria.
E-mail address: brahimtel@yahoo.fr

and

Khaled Zennir,

Department of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass, Saudi Arabia.
Laboratoire de Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945 Guelma.

B.P. 401 Guelma 24000 Algérie.

E-mail address: k.Zennir@qu.edu.sa



	introduction and Preliminaries
	Existence result
	Stability Result 

