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On Exponential Stabilization of a Nonlinear Neutral Wave Equation

Abdelkarim Kelleche and Amirouche Berkani

abstract: This work aims to study a nonlinear wave equation subject to a delay of neutral type. The
nonlinearity and the delay appear in the second time derivative. In spite of the fact that delays by nature,
have an instability effect on the structures, the strong damping is sufficient to allow the system to reach
its equilibrium state with an exponential manner. The difficulties arising from the nonlinearity have been
overcome by using an inequality due to a Sobolev embedding theorem. The main result has been established
without any condition on the coefficient of the neutral delay.
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1. Introduction

The main purpose of this work is to study the stability of the following problem of a strongly damped
neutral wave equation























|(u(t) − pu(t − τ ))t|
ρ

[u(t) − pu(t − τ )]tt − △ [u(t) − pu(t − τ)] − △ut = 0
in (0, ∞) × Ω,
u(t, x) = f(t, x), t ∈ [−τ, 0], x ∈ Ω,
u(t, x) = f(t, x) = 0, t ∈ (0, ∞), x ∈ ∂Ω,
u(0, x) = u0(x), ut(0, x) = u1(x), f(0, x) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded regular domain of Rn. The delay that is acting in the second time derivative is of
neutral type. The functions u0(x) and u1(x) are given and p, τ are positive constants such that 0 < p < 1.
The parameter ρ is called the density dependence coefficient, which is constant here. To determine the
future evolution of the system, we need to specify the initial state variables u(t, x) over the time interval
[−τ, 0], i.e., u(t, x) = f(t, x), t ∈ [−τ, 0], x ∈ Ω, where f is a given function that will be specified later.

Stability of time-delay systems became a main subject of study over the last three decades. There
has been a remarkable rise in research activities, creating a diversity in term of tools and results. This
study is not only for theoretical reasons, but also due to the appearance of such systems in engineering
problems and in ecology [13,14].

Neutral Delay Differential Equations (NDDES) form a part of the larger class of FDEs, see for instance
[1,4,5,12,15,21,22,24]. From this class, it has been derived some models of the neutral delay wave equation

[u(t) − pu(t − τ ))]tt = △u(t) + g(t, u(t), u(t − τ )),

[u(t) − pf(u(t − τ ))]tt = △u(t) + g(t, u(t)),

[u(t) − pf(u(t − τ(t)))]tt = g(△u(t)) + h(t, △u(τ(t)), u(τ (t))),

When a time-delay system is defined, it is the characteristic that the evolution of systems in the future
in addition of its current state, depends also on some time phase of its past history. This particular close
relationship can be modeled by functional differential equations (FDEs), or, in particular, by differential-
difference equations (DDEs). It was shown, throughout many studies, that the delay term, which arises
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in many practical problems, produces some instability effects. This is proved in [6,7] where small delays
can upset the stability of a system which was already stable. The presence of delays is usually considered
undesirable, which is a source of perturbations, defect and may causes a dysfonctionnement or destruction
of systems. It may be produced for different reasons: delayed measurements, intrinsic property of the
system, feedback control action, etc. For these reasons, researchers have been derived a stability result
namely (exponential) by considering this effect which is not controllable in most practical situations.

Different methods and control strategies have been adopted to deal with this situation. These investi-
gations have created a variety of results. We cite briefly some interesting ones, Xu et al. [27], proved that
the stability of the system depends on the delay coefficient using the spectral analysis approach. Nicaise et
al. [20] examined the case where the delay is a time-varying function. Nicaise and Pignotti [18] obtained
an exponential stabilization result using Carleman estimates combined with compactness-uniqueness ar-
guments. The case of dynamic boundary conditions was also investigated by Nicaise and Pignotti [19,16]
and Gerbi and Said-Houari [11]. Note that Nicaise and Pignotti in [17] extended these results for other
systems (elasticity system and the Petrovsky system) by considering a nonlinear abstract second-order
evolution equations. Other results have been obtained when the delay is of witching or intermittent type.
(see [10,23].)

In the absence of the neutral delay (i.e. p = 0), we shall start by citing the first investigation due to
Ferreira and Pereira [8] concerning the equation

K(x, t)utt − △u − △ut + F (u) = 0.

They studied the existence of global weak solutions where K may vanish. The result was generalised
later by Rojas Medar [9] in non-cylindrical domains. The equation in (1.1) is of the general form

f(ut)utt − △u − △ut = 0

where in our case f(ut) = |ut|
ρ

. The case f(ut) is not constant indicates that the density of the materials
used depends on the velocity ut. If p 6= 0 the equation models the phenomenon of vibrating masses
attached to an elastic long rod.

For the linear version of the problem (1.1) (i.e. ρ = 0), an exponential stability result was established
by Tatar [25] considering the model















[u(t) − pu(t − τ )]tt − △u(t) − △ut(t) = 0 in (0, ∞) × Ω,
u(t, x) = f(t, x), t ∈ [−τ, 0], x ∈ Ω,
u(t, x) = f(t, x) = 0, t ∈ (0, ∞), x ∈ ∂Ω,
u(0, x) = u0(x), ut(0, x) = u1(x), f(0, x) = u0(x), x ∈ Ω.

(1.2)

In [26], the same author considered a viscoelastic string subject to a delay of neutral type. The delay
occurs in the second time derivative. The author proved an exponential decay result using the multiplier
method. This work lead to an appropriate differential inequality which allows to conclude the desired
result. Here the delay acts only on the second time derivative. The result was obtained under the
condition that p < p∗ where p∗ is the positive root of

16Cpx2 + 2(7 + 8Cp)x − 3

where Cp is the constant of Poincaré. To the best of our knowledge, the question of the stabilization of
neutral delay wave equation likes (1.1) is a new subject and does not attract the attention of researchers
and scientists until now comparatively to (NDDES). The major difficulties encountered in our case are the
presence of nonlinearity and the delay in the second time derivative. These obstacles were surmounted
by using an inequality due to a sobolev embedding theorem.

The content of the remaining parts of this paper is ordered as follows. In section 1, we collect some
preliminary results (Lemmas, inequalities, etc.) and introduce our assumptions needed in our analysis.
In section 2, we state and prove our main result by making use of the multiplier method combined with
some arguments derived from an inequality due to Sobolev embedding theorem.
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2. Preliminaries

In this section, we introduce our assumptions and lemmas required in the proof of our main result.
We need to use the standard Lebesgue space Lp(Ω) and the Sobolev space H1

0 (Ω) equipped with their
usual products and norms. We denote by ‖.‖pthe norm of Lp(Ω). For simplicity we denote by ‖.‖ the

norm of L2(Ω).

Lemma 2.1. (Sobolev-Poincaré inequality) Let w ∈ H1
0 (Ω) and let q a real number such that

{

2 ≤ q ≤ 2n
n−2 if n ≥ 3,

q > 0 if n = 1, 2,

then the following inequality hold
‖w‖q ≤ Cs ‖w‖ .

Lemma 2.2. (Holder inequality) Let (p, q) ∈ ℜ2 such that 1 ≤ p, q ≤ ∞ and 1
p

+ 1
q

= 1. If v ∈ Lp(Ω)

and w ∈ Lq(Ω), then vw ∈ L1(Ω) and

‖vw‖1 ≤ ‖v‖p ‖w‖q .

Lemma 2.3. (Minkowski inequality) Let 1 ≤ p ≤ ∞ and let v, w ∈ Lp(Ω). Then v + w ∈ Lp(Ω) and we
have the triangle inequality

‖v + w‖p ≤ ‖v‖p + ‖w‖p .

Lemma 2.4. (Young inequality) Let (a, b) ∈ ℜ2, for any η > 0, it holds

ab ≤ ηa2 +
b2

4η
.

Our assumption on the density dependence coefficient ρ is such that

{

0 < ρ ≤ 4
n−2 if n ≥ 3,

ρ > 0 if n = 1, 2.
(2.1)

The existence and uniqueness for this type of problems can be established by the Faedo-Galerkin methods,
for further informations and the way of the proof we refer the reader to [2,3]. According to those, we
state

Theorem 2.5. Let (u0, u1) ∈
(

H2(Ω) ∩ H1
0 (Ω)

)

× H1(Ω) and let the assumption ( 2.1). Then there
exists at least one solution u of problem (1.1 ) such that

u ∈ L∞
(

[0, T ), H2(Ω) ∩ H1
0 (Ω)

)

, ut ∈ L∞
(

[0, T ), L2(Ω)
)

, utt ∈ L2
(

[0, T ), L2(Ω)
)

for any T > 0.

3. Decay of the Solution Energy

In this section, we shall state and prove our main result. We first define the classical energy for
problem (1.1) as the continuous function given by

E(t) :=
1

ρ + 2
‖ut(t)‖

ρ+2
ρ+2 +

1

2
‖∇u(t)‖

2
, t ≥ 0 (3.1)

which should be modified to

E(t) :=
1

ρ + 2
‖ut(t) − put(t − τ )‖

ρ+2
ρ+2 +

1

2
‖∇ (u(t) − pu(t − τ))‖

2
, t ≥ 0. (3.2)

Let us begin by estimating the derivative of E(t)
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Lemma 3.1. Let u be a solution of problem (1.1), then the energy E(t) satisfies

d

dt
E(t) ≤ −(1 − η1p) ‖∇ut(t)‖

2
+

p

4η1

‖∇ut(t − τ )‖
2

, t ≥ 0.

Proof. Multiplying the equation in (1.1) by the term ut(t) − put(t − τ) and integrating over Ω, we find,
for t ≥ 0

1

ρ + 2

d

dt
‖ut(t) − put(t − τ )‖

ρ+2
ρ+2

= −
1

2

d

dt
‖∇ (u(t) − pu(t − τ ))‖

2
− ‖∇ut(t)‖

2
+ p

∫

Ω

∇ut(t − τ )∇ut(t)dx.

Next, by Young inequality, we see that for η1 > 0

1

ρ + 2

d

dt
‖ut(t) − put(t − τ )‖ρ+2

ρ+2 +
1

2

d

dt
‖∇ (u(t) − pu(t − τ))‖2

≤ −(1 − η1p) ‖∇ut(t)‖
2

+
p

4η1

‖∇ut(t − τ )‖
2

, t ≥ 0.

�

Observe that, the derivative of the energy can not respond to the question concerning the dissipativity
of the system. Next, the energy functional should be modified to achieve this aim. For positive constant
λ to be specified later, we introduce the functional

Eλ(t) = E(t) + λΨ(t), t ≥ 0

where

Ψ(t) :=

∫

Ω

e−γt

∫ t

t−τ

eγ(s+τ)|∇ut|
2(s)dsdx, t ≥ 0.

We now proceed to evaluate the derivative of Eλ(t).

Lemma 3.2. Let u be a solution of problem (1.1), then the functional Eλ(t) satisfies

d

dt
Eλ(t) ≤ −C1 ‖∇ut(t)‖

2 − C2 ‖∇ut(t − τ )‖2 − λγΨ(t), t ≥ 0

where C1 = 1 − p
2 − p

2 (2 − p) eγτ and C2 = p (1 − p) /2.

Proof. A direct differentiation of Ψ(t) shows that Eλ(t) satisfies along solutions of problem (1.1) the
assertion of Lemma 3.2

d

dt
Eλ(t) =

d

dt
E(t) − λγΨ(t) + λeγτ ‖∇ut(t)‖

2
− λ ‖∇ut(t − τ )‖

2
, t ≥ 0.

This gives after inserting of the total derivative of E(t) from Lemma 3.1

d

dt
Eλ(t) ≤ −(1 − η1p − λeγτ ) ‖∇ut(t)‖

2
−

(

λ −
p

4η1

)

‖∇ut(t − τ )‖
2

− λγΨ(t), t ≥ 0.

We request all the coefficients to be negative. For this, we set η1 = 1/2 and λ = (2 − p) p/2, we get

d

dt
Eλ(t) ≤ −C1 ‖∇ut(t)‖

2
− C2 ‖∇ut(t − τ )‖

2
− λγΨ(t), t ≥ 0

where C1 = 1 − p
2 − p

2 (2 − p) eγτ and C2 = p (1 − p) /2. Note that C1 is positive, if we choose γ small
such that peγτ < 1. �
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Theorem 3.3. Let (u0, u1) ∈
(

H2(Ω) ∩ H1
0 (Ω)

)

× H1(Ω), ft(−τ) ∈ L2(Ω), ∇f(−τ) ∈ L2(Ω) and f ∈

H1
(

[−τ, 0] , H1 (Ω)
)

under the assumption (2.1) the solution of problem (1.1) satisfies

Eλ(t) ≤ Eλ(0) = E(0) + λΨ(0) (3.3)

where

Ψ(0) :=

∫

Ω

∫ 0

−τ

eγ(s+τ)|∇ft|
2(s)dsdx

and

E(0) :=
1

ρ + 2
‖u1 − pft(−τ )‖

ρ+2
ρ+2 +

1

2
‖∇u0 − p∇f(−τ)‖

2
.

Proof. Notice that Eλ(0) is well-defined as (u0, u1) ∈
(

H2(Ω) ∩ H1
0 (Ω)

)

× H1
0 (Ω), ft(−τ) ∈ L2(Ω),

∇f(−τ) ∈ L2(Ω) and f ∈ H1
(

[−τ, 0] , H1 (Ω)
)

. Integrating the relation in Lemma 3.2 over (0, t), the
result follows immediately. �

We introduce for a positive constant ϑ, the functional

L(t) = Eλ(t) + ϑΦ(t), t ≥ 0

where

Φ(t) :=
1

ρ + 1

∫

Ω

[u(t) − pu(t − τ )] |ut(t) − put(t − τ )|
ρ

[ut(t) − put(t − τ )] dx, t ≥ 0.

The next result shows an equivalence result between L(t) and Eλ(t).

Proposition 3.4. There exist two positive constants β1and β2 such that the relation

β1Eλ(t) ≤ L(t) ≤ β2Eλ(t), t ≥ 0

is satisfied for small ϑ.

Proof. Lemma 2.2 (with: p = ρ + 2 and q = (ρ + 2) / (ρ + 1) ) entails

|Φ(t)| ≤
1

ρ + 1
‖u(t) − pu(t − τ )‖ρ+2 ‖ut(t) − put(t − τ)‖

ρ+1
ρ+2

ρ+2 , t ≥ 0

which implies by Lemma 2.4 with η = 1/2 and the relation (3.3) that

|Φ(t)| ≤
1

2 (ρ + 1)

(

‖u(t) − pu(t − τ )‖
2
ρ+2 + ‖ut(t) − put(t − τ )‖

2(ρ+1)
ρ+2

)

≤
1

2 (ρ + 1)

(

‖u(t) − pu(t − τ )‖
2
ρ+2 + C3 ‖ut(t) − put(t − τ)‖

ρ+2
ρ+2

)

, t ≥ 0

where C3 = [(ρ + 2)Eλ(0)]
ρ

ρ+2 . Since 0 < ρ+2 ≤ 2n
n−2 if n ≥ 3 and ρ+2 > 0 if n = 1, 2., then by applying

Lemma 2.1 the previous identity becomes

|Φ(t)| ≤
1

2 (ρ + 1)

(

C2
s ‖∇ (u(t) − pu(t − τ ))‖

2
+ C3 ‖ut(t) − put(t − τ )‖

ρ+2
ρ+2

)

, t ≥ 0.

Consequently, we have for t ≥ 0

|L(t)| ≤
1

ρ + 2

(

1 +
ϑC3

2

)

‖ut(t) − put(t − τ )‖ρ+2
ρ+2

+
1

2

(

1 +
ϑC2

s

ρ + 2

)

‖∇ (u(t) − pu(t − τ ))‖2 + λΨ(t).
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One can take β2 = max
{

(

1 + ϑC3

2

)

,
(

1 +
C2

s

ρ+2

)}

. For β1, we infer that for t ≥ 0

L(t) ≥
1

ρ + 2

(

1 −
ϑC3

2

)

‖ut(t) − put(t − τ )‖
ρ+2
ρ+2

+
1

2

(

1 −
ϑC2

s

ρ + 2

)

‖∇ (u(t) − pu(t − τ))‖
2

+ λΨ(t)

which permits to choose β1 = min
{

(

1 − ϑC3

2

)

,
(

1 −
ϑC2

s

ρ+2

)}

provided that ϑ < min
{

2
C3

, ρ+2
C2

s

}

. �

Lemma 3.5. Let u be a solution of problem (1.1), then the functional Φ(t) satisfies

d

dt
Φ(t) ≤ − (1 − η2) ‖∇ (u(t) − pu(t − τ))‖

2
+

(

1

4η2

+ C4

)

‖∇ut(t)‖
2

+C4p2 ‖∇ut(t − τ )‖
2
2 , t ≥ 0.

for η2 > 0, where C4 = 2
ρ+1 [(ρ + 2)Eλ(0)]

ρ

ρ+2 Cρ+2
s .

Proof. A differentiation of Φ(t) gives for t ≥ 0

d

dt
Φ(t) :=

∫

Ω

[u(t) − pu(t − τ)] |ut(t) − put(t − τ)|ρ [utt(t) − putt(t − τ)] dx

+
1

ρ + 1

∫

Ω

(ut(t) − put(t − τ )) |ut(t) − put(t − τ )|ρ [ut(t) − put(t − τ )] dx.

Using now the first equation in (1.1) to replace the term [utt(t) − putt(t − τ)] , we get for t ≥ 0

d

dt
Φ(t) := − ‖∇ (u(t) − pu(t − τ ))‖

2
−

∫

Ω

∇ (u(t) − pu(t − τ)) ∇ut(t)dx

+
1

ρ + 1

∫

Ω

(ut(t) − put(t − τ )) |ut(t) − put(t − τ )|
ρ

[ut(t) − put(t − τ )] dx.

Applying Lemma 2.4 with η = η2, we infer that

d

dt
Φ(t) ≤ − (1 − η2) ‖∇ (u(t) − pu(t − τ ))‖

2
+

1

4η2

‖∇ut(t)‖
2

+
1

ρ + 1
‖ut(t) − put(t − τ )‖ρ+2

ρ+2 , t ≥ 0. (3.4)

We see from (3.3) that

‖ut(t) − put(t − τ )‖
ρ+2
ρ+2 = ‖ut(t) − put(t − τ )‖

ρ

ρ+2 ‖ut(t) − put(t − τ )‖
2
ρ+2

≤ [(ρ + 2)Eλ(0)]
ρ

ρ+2 ‖ut(t) − put(t − τ )‖
2
ρ+2 , t ≥ 0.

Applying Lemma 2.1 with q = ρ + 2, this leads for t ≥ 0 to

‖ut(t) − put(t − τ )‖
ρ+2
ρ+2 ≤ [(ρ + 2)Eλ(0)]

ρ
ρ+2 Cρ+2

s ‖∇ (ut(t) − put(t − τ ))‖
2
2 (3.5)

≤ 2 [(ρ + 2)Eλ(0)]
ρ

ρ+2 Cρ+2
s

(

‖∇ut(t)‖
2
2 + p2 ‖∇ut(t − τ )‖

2
2

)

.

The conclusion follows by replacing the last identity in (3.4). �

We are now ready to state the main result.
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Theorem 3.6. Let (u0, u1) ∈
(

H2(Ω) ∩ H1
0 (Ω)

)

× H1
0 (Ω), ft(−τ ) ∈ L2(Ω), ∇f(−τ ) ∈ L2(Ω) and ft ∈

H1
(

[−τ , 0]; H1(Ω)
)

, then there exist two positive constants M and m such that the classical energy
satisfies

E(t) :=
1

ρ + 2
‖ut(t)‖

ρ+2
ρ+2 +

1

2
‖∇u(t)‖

2
≤ Me−mt, t ≥ 0.

Proof. First, we estimate the derivative of L(t), from Lemma 3.2 and Lemma 3.5, we get for t ≥ 0

d

dt
L(t) ≤ −

[

C1 − ϑ

(

1

4η2

+ C4

)]

‖∇ut(t)‖
2 −

(

C2 − ϑC4p2
)

‖∇ut(t − τ )‖2

−ϑ (1 − η2) ‖∇ (u(t) − pu(t − τ))‖
2

− λγΨ(t).

Adding and subtracting the term ϑ
ρ+2 ‖ut(t) − put(t − τ)‖

ρ+2
ρ+2. In view of the identity (3.5), we infer for

t ≥ 0 that

d

dt
L(t) ≤ −

[

C1 − ϑ

(

1

4η2

+ C4 + C5

)]

‖∇ut‖
2

−
[

C2 − ϑp2 (C4 + C5)
]

‖∇ut(t − τ )‖
2

−
ϑ

(ρ + 2)
‖ut(t) − put(t − τ)‖

ρ+2
ρ+2 − ϑ (1 − η2) ‖∇ (u(t) − pu(t − τ ))‖

2

−λγΨ(t).

where C5 = 2
ρ+2 [(ρ + 2)Eλ(0)]

ρ

ρ+2 Cρ+2
s . Taking η2 = 1/2 and choosing ϑ so small that

ϑ < min

{

C1/

(

1

4η2

+ C4 + C5

)

, C2/
[

p2 (C4 + C5)
]

, γ

}

to arrive at
d

dt
L(t) ≤ −ϑEλ(t), t ≥ 0.

The equivalence result in proposition 3.4 implies

d

dt
L(t) ≤ −

ϑ

β2

L(t), t ≥ 0. (3.6)

We deduce from (3.6) that

L(t) ≤ L(0)e− ϑ
β2

t, t ≥ 0.

Since (u0, u1) ∈ H1(Ω) × H1(Ω), ft(−τ) ∈ L2(Ω), ∇f(−τ) ∈ L2(Ω) and f ∈ H1
(

[−τ, 0] , H1 (Ω)
)

then
L(0) is well defined. Moreover, using again the equivalence result in proposition 3.4, it holds

Eλ(t) ≤
L(0)

β1

e− ϑ
β2

t, t ≥ 0.

The expression of Eλ(t) and Lemma 2.3 (with: v = ut(t) − put(t − τ ), w = put(t − τ), p = ρ + 2) imply

‖ut(t)‖ρ+2 ≤ ‖ut(t) − put(t − τ )‖ρ+2 + p ‖ut(t − τ )‖ρ+2

≤

(

L(0) (ρ + 2)

β1

)
1

ρ+2

e
− ϑ

β2(ρ+2)
t

+ p ‖ut(t − τ)‖ρ+2 , t ≥ 0. (3.7)

We claim that
‖ut(t)‖ρ+2 < Ae

− ϑ
β2(ρ+2)

t
+ e−bt sup

−τ≤s≤0
‖ut(s)‖ρ+2 , t ≥ 0 (3.8)

for some A ≥
(

L(0)(ρ+2)
β1

)
1

ρ+2

to be determined and for some b > 0. For t = 0 , since p < 1

‖ut(0)‖ρ+2 ≤

(

L(0) (ρ + 2)

β1

)
1

ρ+2

+ p ‖ut(−τ )‖ρ+2 < A + sup
−τ≤s≤0

‖ut(s)‖ρ+2 .
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That is, the claim is valid for t = 0. Let us suppose, for contradiction, that there exists a t̄ > 0 such that

∥

∥ut(t̄)
∥

∥

ρ+2
= Ae

− ϑ
β2(ρ+2)

t̄
+ e−bt̄ sup

−τ≤s≤0
‖ut(s)‖ρ+2 (3.9)

and
‖ut(t)‖ρ+2 < Ae

− ϑ
β2(ρ+2)

t̄
+ e−bt̄ sup

−τ≤s≤0
‖ut(s)‖ρ+2 , t ∈ [0, t̄).

The relation (3.7) at t = t̄ gives us

∥

∥ut(t̄)
∥

∥

ρ+2
≤ C6e

− ϑ
β2(ρ+2)

t̄
+ p

∥

∥ut(t̄ − τ )
∥

∥

ρ+2

where C6 =
(

L(0)(ρ+2)
β1

)
1

ρ+2

, which implies by virtue of (3.9)

∥

∥ut(t̄)
∥

∥

ρ+2
≤ C6e

− ϑ
β2(ρ+2)

t̄
+ pAe

− ϑ
β2(ρ+2)

(t̄−τ)
+ pe−b(t̄−τ) sup

−τ≤s≤0
‖ut(s)‖ρ+2

≤
[

C6 + pAe
ϑ

β2(ρ+2)
τ
]

e
− ϑ

β2(ρ+2)
t̄

+ pebτ e−bt̄ sup
−τ≤s≤0

‖ut(s)‖ρ+2 .

Now to achieve our aim, we may assume that

{

pebτ ≤ 1,

C6 ≤ A
(

1 − pe
ϑ

β2(ρ+2)
τ
)

.

That is, we need to consider b small enough and ϑ so small that pe
ϑ

β2(ρ+2)
τ

≤ 1. This leads to a contra-
diction with the assumption (3.9) and proves (3.8).

Next, we repeat the proof for ‖∇u(t)‖
2

. The expression of Eλ(t) and Lemma 2.3 (with: v =
∇ (ut(t) − put(t − τ )) , w = ∇ut(t − τ) , p = 2) imply

‖∇u(t)‖ ≤ ‖∇ (ut(t) − put(t − τ))‖ + p ‖∇ut(t − τ)‖

≤

(

2L(0)

β1

)
1
2

e− ϑ
2β2

t + p ‖∇ut(t − τ)‖ , t ≥ 0. (3.10)

Our claim by this time is that

‖∇u(t)‖ < Be− ϑ
2β2

t + e−ct sup
−τ≤s≤0

‖∇u(s)‖ , t ≥ 0 (3.11)

for some B ≥
(

2L(0)
β1

)
1
2

to be determined and for some c > 0. For t = 0, since p < 1

‖∇u(0)‖ ≤

(

2L(0)

β1

)
1
2

+ p ‖∇u(−τ)‖ < B + ‖∇u(−τ)‖ .

This validate the claim at t = 0. For contradiction, let us suppose that there exists a t∗ > 0 such that

‖∇u(t∗)‖ = Be− ϑ
2β2

t∗

+ e−ct∗

sup
−τ≤s≤0

‖∇u(s)‖ (3.12)

and
‖∇u(t)‖ < Be− ϑ

2β2
t + e−ct sup

−τ≤s≤0
‖∇u(s)‖ , t ∈ [0, t̄).

The relation (3.10) at t = t∗ gives us

‖∇u(t∗)‖ ≤ C7e
− ϑ

2β2
t∗

+ p ‖∇u(t∗ − τ )‖
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where C7 =
(

2L(0)
β1

)
1
2

, which implies by means of (3.12)

‖∇u(t∗)‖ ≤ C7e− ϑ
2β2

t∗

+ pBe− ϑ
2β2

(t∗

−τ) + pe−c(t∗−τ) sup
−τ≤s≤0

‖∇u(s)‖

≤
[

C7 + pBe
ϑ

2β2
τ
]

e− ϑ
2β2

t∗

+ pecτe−bt∗

sup
−τ≤s≤0

‖∇u(s)‖ .

Now, to reach our aim, we can assume that

{

pecτ ≤ 1,

C7 ≤ B
(

1 − pe
ϑ

β2(ρ+2)
τ
)

.

Arguining as for ‖ut(t)‖ρ+2 we need to consider c small enough and ϑ so small that pe
ϑ

2β2
τ ≤ 1. This

leads to a contradiction with the assumption (3.12) and proves (3.11). Finally, the proof of the theorem
is established by combining the relations (3.8) and ( 3.11). �
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